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Abstract. On compact manifolds with corners of arbitrary codimension, we

characterize those ‘multi-cylindrical end’ (or b- type) pseudodifferential op-

erators that are Fredholm on weighted Sobolev spaces and we compute their

indices. The index formula contains the usual interior term manufactured from

the local symbols of the operator and also contains boundary correction terms

corresponding to eta-type invariants of the induced operators on the boundary

faces.

1. Introduction

The purpose of this paper is to characterize and give an index formula for b-
pseudodifferential operators on compact manifolds with corners (of arbitrary codi-
mension) that are Fredholm on weighted Sobolev space domains. The main appli-
cation of these results is to study the Fredholm properties of perturbed b-differential
operators (e.g. Dirac-type operators) on weighted Sobolev spaces.

The origin of these considerations began with Melrose’s interpretation of the
Atiyah-Patodi-Singer index formula in the framework of his b-geometry, cf. [1, 2,
24], which we now review. Let X be an even-dimensional compact manifold with
boundary. Let g be a Riemannian metric on the interior of X such that in some
collar X ∼= [0, 1)ρ × Y of the boundary Y = ∂X, the metric takes the form g =

(dρ
ρ )2 +hρ, where hρ is a smoothly varying family of metrics on Y . Such a metric is

called an exact b-metric and it gives X the geometric structure of a manifold with
an ‘asymptotically’ cylindrical end. Indeed, the change of variables t = log ρ turns

the interior of the collar [0, 1)ρ×Y into (−∞, 0)t×Y and the metric g =
(

dρ
ρ

)2
+hρ

into the cylindrical type metric g = dt2 + het . Note that as t → −∞, the metric g
approaches the product cylindrical metric dt2 + h0 exponentially. In this sense, X
has an asymptotically cylindrical end.

Let ð+: C∞(X,E+) −→ C∞(X,E−) be a Dirac operator associated to g, where
E+ and E− are the chiral parts of a Clifford bundle over X, and let ðY denote
the Dirac operator on Y induced by ð+. Then (see [24]) the kernel of ðY is ex-
actly the obstruction to ð+ being Fredholm on its natural domain. More precisely,
ðY is invertible if and only if ð+: H1

b (X,E+) −→ L2
b(X,E−) is Fredholm, where

H1
b (X,E+) is the natural Sobolev space domain of ð+, in which case the following
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formula for the index holds:

(1.1) ind ð
+ =

∫b

X

AS − 1

2
η(ðY ),

where AS is the Atiyah-Singer density and η(ðY ) is the eta invariant of ðY . The
integral b

∫
X

AS represents a ‘regularized’ integral since AS is not integrable on X.
The formula (1.1) generalizes the work of Atiyah, Patodi, and Singer in the seminal
paper [1] for the product case near the boundary.

On weighted Sobolev spaces it turns out that there are no obstructions to making
the Dirac operator Fredholm [24]: Whether or not ðY is invertible, there is an ε > 0
such that for all real numbers α with 0 < |α| < ε,

ð
+: ραH1

b (X,E+) −→ ραL2
b(X,E−)

is Fredholm and if indα ð+ denotes the index of this map, then

(1.2) indα ð
+ =

∫b

X

AS − 1

2
[η(ðY ) + sgn α · dim ker ðY ] .

The special case of α > 0 gives the ‘extended’ L2-index theorem. Generalizations
of the L2-index theorem have been investigated by many authors, see for instance
[7], [38], [3], and for singular manifolds in [5], [36], [9], [4], [8].

The elliptic theory of Dirac operators, and totally characteristic (or b-type) dif-
ferential operators more generally, can be investigated through appropriate spaces
of pseudodifferential operators. Such operators have been studied by many authors;
to name a few, Egorov and Schulze [6], Melrose [24], Melrose and Mendoza [26],
Plamenevskij [32], Rempel and Schulze [33], and Schulze [35]. The operators we
focus on are the b-pseudodifferential operators of Melrose. These operators extend
to manifolds with corners of arbitrary codimension [29], [28].

Let A ∈ Ψm
b (X,E, F ) be an elliptic b-pseudodifferential operator of order m ∈

R+ acting between sections of vector bundles over our manifold with boundary
X. The Fredholm condition on such an operator on its natural Sobolev space
domain is well-known (cf. Kondrat′ev [16]), A: Hm

b (X,E) → L2
b(X,F ) is Fredholm

if and only if its normal operator NY (A)(τ) is invertible for each τ ∈ R, where
NY (A)(τ) is a family of pseudodifferential operators on the boundary Y depending
holomorphically on τ ∈ C. Using this result, one can show that there are no
obstructions to making an arbitrary elliptic operator A ∈ Ψm

b (X,E, F ) Fredholm
on weighted Sobolev spaces [24]: If Aα = ρ−αAρα, then there is an ε > 0 such that
for all α ∈ R with 0 < |α| < ε, NY (Aα)(τ) is invertible for all τ ∈ R, which implies
that Aα: Hm

b (X,E) −→ L2
b(X,F ) is Fredholm. That is, for all α with 0 < |α| < ε,

(1.3) A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm. If indα A denotes the index of this map, then Piazza [31] gives the
following generalization of the APS formula (1.1):

(1.4) indα A =

∫b

X

ωAα
− 1

2
η(NY (Aα)).

Here ωAα
is the ‘analytic’ Atiyah-Singer density of Aα manufactured from finitely

many homogeneous terms in the local symbol expansions of Aα, and is defined as
the constant term in the difference of the small time fiberwise trace asymptotics of
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the heat operators for A∗
αAα and AαA∗

α. The term η(NY (Aα)(τ)) is related to the
eta invariant introduced in [25], and is a certain regularization of the integral

η(NY (Aα)) ≈ 2

∫

R

Tr(DτNY (Aα)(τ)NY (Aα)(τ)−1) d̄τ,

where d̄τ = dτ/2π. This eta term represents a ‘winding number’ of NY (Aα)(τ).
A key difference between the formulas (1.2) and (1.4) is that each term in (1.2)
is constant under small variations in α, whereas each term in (1.4) changes under
small variations in α, but where the difference of the terms is of course constant. We
remark that in [19, 21], the index formula (1.4) is extended to b-pseudodifferential
operators on compact manifold with corners; Lauter and Moroianu [18] give a cusp
version in the spirit of Melrose and Nistor [27]. However, there are some drawbacks
to the formulas in [19, 21], [18]. The first is that the operator (1.3) is assumed
Fredholm without conditions guaranteeing this, and second the formula (1.4) still
has varying terms with the weight α.

A couple related questions arise: Is there a condition characterizing those elliptic
b-pseudodifferential operators on a compact manifold with corners (of arbitrary
codimension) to be Fredholm on weighted Sobolev spaces and is there a formula with
nonvarying terms (corresponding to (1.2)) for the index of such b-pseudodifferential
operators on weighted spaces? The answer to the first question is given in Theorem
1.1 below and the second in Theorem 1.2. Based on the manifold with boundary
case, it might seem that an elliptic b-pseudodifferential operator on a manifold
with corners could always be made Fredholm by considering it on weighted Sobolev
spaces. Perhaps surprisingly, this is not true as we now describe.

Let X be a compact manifold with corners and let H1, . . . ,HN be any fixed order-
ing of its boundary hypersurfaces with corresponding defining functions ρ1, . . . , ρN .
Then ρ = ρ1 · · · ρN is a total boundary defining function of X. A codimension k
face of X is a nonempty component of the intersection of k hypersurfaces of X;
the set of such faces is denoted by Mk(X). A multi-index α is just a set of N
real numbers α = {α1, . . . , αN}, in which case we define ρα = ρα1

1 · · · ραN

N . The
notation α = {αH ; H ∈ M1(X)} is also common. Manifolds with corners and
b-pseudodifferential operators are reviewed in Section 2. Let A ∈ Ψm

b (X,E, F ) and
M ∈ Mk(X). Then there is a naturally induced entire family of operators, called
the normal operator of A at M , NM (A)(τ) ∈ Ψm

b (M,E,F ) depending on τ ∈ Ck,
where E and F here denote the restrictions of E and F , respectively, to M . It
is well-known that these families at all codimension one faces of X determine the
Fredholm properties of A on (unweighted) Sobolev spaces if A is elliptic (Theorem
2.3). On weighted Sobolev spaces, those normal operators on the codimension two
faces are the determining factors.

Theorem 1.1. Let A ∈ Ψm
b (X,E, F ), m ∈ R+. Then there is an ε > 0 such that

for all multi-indices α with 0 < |α| < ε,

(1.5) A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm, if and only if, A is elliptic and NM (A)(τ): Hm
b (M,E) −→ L2

b(M,F )
is invertible for each M ∈ M2(X) and τ ∈ R2.

Here, 0 < |α| < ε means 0 < |αH | < ε for each H ∈ M1(X). For Dirac-type
operators, Theorem 1.1 is quite explicit (see Theorem 3.8). Now that we have
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characterized such Fredholm operators, what is the formula for the index of a b-
pseudodifferential that is Fredholm on weighted Sobolev spaces? The second main
result of this paper expresses the formula (1.4) in terms of unperturbed data, that
is, each term is constant under small variations in α, and we generalize this index
formula to operators on manifolds with corners of arbitrary codimension.

Theorem 1.2. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, and suppose that the conditions of

Theorem 1.1 are satisfied and let indα A denote the index of the map (1.5). Then,

indα A =

∫b

X

ωA − 1

2

{
bη̃ + sgn(α) · rk(N(A)) + β

}
− 1

2
bηC .

We now give a short description of each term in this formula; Section 3.2 contains
the precise descriptions. Just as in the manifold with boundary case, ωA is the
‘analytic’ Atiyah-Singer density of A manufactured from the local symbols of A.
The term bη̃ is the sum over each hypersurface of X of regularized ‘b-’eta invariants;
these invariants reduce to the usual ones in the Dirac case (Theorem 3.8). The
term sgn(α) · rk(N(A)) is the sum over all the ranks of the poles of the inverses of
the normal operators of A at the hypersurfaces with ± signs at a hypersurface H
determined by sgn(αH). The term β depends on the principal symbol of A restricted
to the hypersurfaces and on the poles of the inverses of the normal operators of A at
the hypersurfaces. β is in general nonzero, but vanishes in case A is a b-differential
operator modulo a term of lower order. Finally, bηC represents the sum of all the
b-eta invariants at all the codimension k faces of X with k ≥ 2.

Many authors have worked on similar index theorems on manifolds with corners;
we only mention a few whose work is most directly related. Already mentioned
are the works [19, 21] and the cusp version of Lauter and Moroianu [18]. Müller
[30] gives an index formula for Dirac operators on manifolds with corners up to
codimension two under the assumptions of Theorem 1.2, which for the case of Dirac
operators are just that the induced Dirac operators on the corners are invertible.
Without this nondegeneracy assumption, a signature formula was proved in [15]
by Hassell, Mazzeo, and Melrose, using the techniques of analytic surgery [14],
and Salomonsen [34] gives a similar formula by considering a related problem on a
manifold with wedge singularities. Finally, in joint work with Melrose [22], we give
an index formula for Dirac operators perturbed by b-pseudodifferential operators of
order −∞; in this case all the terms in Theorem 1.2 involve only the Dirac operator
and certain Lagrangian subspaces of the null spaces of the corner Dirac operators.

In Section 2 we give a very ‘hands-on’ description of the b-calculus on manifolds
with corners, avoiding the machinery of ‘blow-ups’. In Section 3 we prove sufficiency
in the Characterization Theorem 1.1. We also state the Index Theorem 3.4 with
precise descriptions of each term in the formula and we give various applications of
the index formula; for instance, we give conditions under which the β term vanishes
and we also apply our formula to Dirac operators. In Section 4 we prove our Index
Theorem. Here we rely heavily on the structure and asymptotic properties of the
heat kernel proved in the earlier paper [21] to carefully analyze the b-eta invariants.
These asymptotic properties are proved using techniques similar to Grubb and
Seeley, cf. [37, 13, 12]. Lastly, in Section 5 we prove necessity Theorem 1.1.

Finally, I want to take this opportunity to thank Richard Melrose for his support
throughout the years and for many helpful discussions.
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2. The b-calculus on manifolds with corners

We review some topics on the b-calculus on manifolds with corners. For nota-
tional simplicity we restrict our attention to b-pseudodifferential operators acting
on functions, but of course everything can be done with vector bundles too. For
more on these topics, see [23], [24], [11], or the appendices of [29] and [28].

2.1. b-pseudodifferential operators. A compact topological space X is called an
n-dimensional compact manifold with corners if there is an n-dimensional manifold

without boundary X̃ containing X and smooth functions ρ1, . . . , ρN on X̃ such
that X = {ρi ≥ 0 ; i = 1, . . . , N}, dρi 6= 0 on Hi := {ρi = 0}, and such that
each boundary hypersurface Hi is connected. We shall fix the boundary defining
functions {ρi} once and for all throughout this paper. Let p be a point in X and
suppose that ρi1 , . . . , ρiκ

are all the boundary defining functions that vanish at p.
Because dρi 6= 0 on Hi, if x = (ρi1 , . . . , ρiκ

), then on a neighborhood of p we have
a decomposition

(2.1) X ∼= [0, ε)κ
x × R

n−κ, some ε > 0,

whence the name manifold ‘with corners’. A codimension k face, k ≥ 1, of X is a
nonempty connected component of the intersection of k hypersurfaces of X. The
set of such faces is denoted by Mk(X) and the collection of all faces is denoted by
M ′(X). In particular, a hypersurface is just a codimension one face of X. The
largest k where Mk(X) is nonempty is called the codimension of X.

A b-measure is a density on X of the form ρ−1× a smooth nonvanishing density
on X, where ρ = ρ1 · · · ρN is the product of all the boundary defining functions for
X, called a total boundary defining function. Henceforth we fix a b-measure m.

We now describe the small calculus. Let Ċ∞(X) denote the space of smooth
functions on X that vanish to infinite order at the boundary of X. We first define
the space Ψ−∞

b (X) as operators R on Ċ∞(X) described in local coordinates as
follows. Let U and U

′ be coordinate patches on X of the form given in (2.1). (We
allow κ = 0 in (2.1); this just means that the coordinate patch is located in the
interior of X.) Let x = (x1, . . . , x`) denote those boundary defining functions, if
any, that are common to both coordinate patches U and U

′, so that

(2.2) U = [0, ε)`
x × V, U

′ = [0, ε)`
x × V

′,

where V and V′ are also of the form (2.1) and where ` may be zero. Let y denote
the coordinates on V and y′ the coordinates on V

′. Then given any open set W with
compact closure in U

′, for any u ∈ Ċ∞(X) having support in W, the restriction of
R u to U is of the form

(2.3) R u =

∫

U′

k
(
x,

x

x′
, y, y′

)
u(x′, y′)m(x′, y′),

where x/x′ = (x1/x′
1, . . . , x`/x′

`) and where k(x, z, y, y′) has the following regularity
properties: It is smooth in all variables, vanishes to infinite order with all derivatives
at any zi = 0 or as zi → ∞, and vanishes to infinite order at any yi = 0 or y′

i = 0
if these sets represent boundary hypersurfaces of X.

We now consider the general case. An element A ∈ Ψm
b (X), m ∈ R, is an

operator on Ċ∞(X) described in local coordinates as follows. Let U and U
′ be

coordinate patches of the form (2.2) and let W be an open set with compact closure

in U
′. If U and U

′ are disjoint, then given any u ∈ Ċ∞(X) having support in W, the
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restriction of Au to U is given by an operator R ∈ Ψ−∞
b (X) as in (2.3). Suppose

now that U = U
′. In this case, U = [0, ε)`

x × Rn−`
y . Then there is a function

a(x, y, ξ), smooth in (x, y) ∈ U and a classical symbol of order m in ξ, such that

given any u ∈ Ċ∞(X) having support in W, we have

(2.4) Au =

∫

Rn

xiξ′

eiy·ξ′′

a(x, y, ξ) ũ(ξ) d̄ξ,

where ξ′ = (ξ1, . . . , ξ`), ξ′′ = (ξ`+1, . . . , ξn), xiξ′

= xiξ1 · · ·xiξ` , and ũ(ξ) is the
Mellin transform in x and the Fourier transform in y of u,

(2.5) ũ(ξ) =

∫

U

x−iξ′

e−iy·ξ′′

u(x, y)
dx

x
dy.

For technical purposes we also need to assume that a(x, y, ξ) with all its derivatives
extends to be an entire function of ξ′, and for | Im ξ′| bounded by any fixed number,
is a classical symbol of order m in ξ as |Re ξ′|, |ξ′′| → ∞. The space Ψm

b (X) is called
the small calculus of b-pseudodifferential operators of order m. It also turns out
that any A ∈ Ψm

b (X) defines a continuous map on C∞(X). Authors often refer to
b-operators in terms of their Schwartz kernels. Observe that combining (2.4) and
(2.5), we see that the Schwartz kernel of A on the product X×X near the diagonal
is of the form

(2.6) KA =

∫ ( x

x′

)iξ′

ei(y−y′)·ξ′′

a(x, y, ξ) d̄ξ · dx′

x′
dy′,

where (x, y) are coordinates on the left factor of X and (x′, y′) are the same co-
ordinates on the right factor of X. Introducing ‘logarithmic coordinates’ w =
(log x1, . . . , log x`, y), we can write this as

(2.7) KA =

∫
ei(w−w′)·ξ a(x, y, ξ) d̄ξ · dw′,

which looks like the Schwartz kernel of a ‘usual’ pseudodifferential operator.
The space of b-pseudodifferential operators share many properties with the usual

pseudodifferential operators. For example, Diffm
b (X) ⊂ Ψm

b (X), where Diffm
b (X)

is the space of totally characteristic differential operators, and the space of b-
pseudodifferential is a symbolically filtered ∗-algebra of operators. Thus, it is closed
under taking adjoints and compositions, and there is a principal symbol map pre-
serving these operations obtained by taking the leading homogeneous term of each
symbol a(x, y, ξ) in the local representation (2.6). The principal symbol turns out
to be a function on the b-cotangent bundle bT ∗X of X minus the zero section [24].
An operator A is said to be elliptic if its principal symbol is invertible. The space
L2

b(X) consists of those functions on X that are square integrable with respect to
m; this space is defined independent of the choice of b-measure. For any m ∈ R, the
Sobolev space Hm

b (X) consists of those distributions u on X such that Au ∈ L2
b(X)

for all A ∈ Ψm
b (X). We also define H∞

b (X) =
⋂

m∈R
Hm

b (X). Any A ∈ Ψm
b (X)

defines a linear map
A: Hm

b (X) −→ L2
b(X),

which is continuous with respect to the ‘obvious’ topologies [24]. We note that by
convention, the words ‘Fredholm’ or ‘invertible’ mean with respect to their natural,
that is unweighted, Sobolev space domains unless explicitly stated otherwise.

Unfortunately, Ψ•
b(X) is not spectrally invariant in the sense that this set is

not closed under inversion, when inverses exist. Inverses are in the calculus with
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bounds, which we now describe. Let θ > 0. We define Ψ−∞,θ
b (X) as those operators

R such that with respect to coordinates of the sort described in (2.3), we can write

R u =

∫

U′

k
(
x,

x

x′
, y, y′

)
u(x′, y′)m(x′, y′),

where k(x, z, y, y′) has the following ‘boundedness’ properties: It is smooth for
x, y, y′ in the interior of X and in z > 0, and there is an ε > 0 such that given any
constant coefficient b-differential operator P in the variables x, z, y, y′, the function
(Pk)(x, z, y, y′) is bounded for all x, z, y, y′, continuous at each xi = 0, vanishes to

order zθ+ε
i and z−θ−ε

i at each zi = 0 and as zi → ∞, respectively, and vanishes to

order yθ+ε
i at any yi = 0 and (y′

i)
θ+ε at any y′

i = 0 if any of these sets represent
boundary hypersurfaces of X. This definition of the calculus with bounds is not as
fine as that found in [22, 20, 21], but we shall not need the extra structures found
in these papers. For any m ∈ R, we define

Ψm,θ
b (X) = Ψm

b (X) + Ψ−∞,θ
b (X).

These spaces form the calculus with bounds and they too form an algebra in the

sense that Ψm,θ
b (X) ◦ Ψm′,θ′

b (X) ⊂ Ψm+m′,θ′′

b (X), where θ′′ = min{θ, θ′}.

2.2. Parameter-dependent operators and the normal operator. Let S ⊂ Ck

be a horizontal strip, a subset S ⊂ Ck of the form S = {τ ∈ Ck ; a < Im τ < b} for
some a, b ∈ [−∞,∞]k. Here, for any v, w ∈ [−∞,∞]k, we define v < w if and only
if vi < wi for each i = 1, . . . , k. For instance, Ck itself is a horizontal strip.

If m ∈ R, then we define the space Ψm
b,S(X) as those operators A(τ) ∈ Ψm

b (X)
depending holomorphically in τ ∈ S such that in local coordinates of the sort
described in (2.3) and (2.4) (but now with the terms depending on the extra pa-
rameter τ), the operator R(τ) and symbol a(x, y, τ, ξ) have the following properties:
Let a < a′ < b′ < b. Then R(τ) vanishes in the topology of Ψ−∞

b (X) to infinite
order with all derivatives in τ as |Re τ | → ∞ with a′ ≤ Im τ ≤ b′, and where
a(x, y, τ, ξ) is, with all its derivatives in x and y and for | Im ξ′| bounded by any
fixed number, a symbol of order m in (τ, ξ) as |Re τ | → ∞ with a′ ≤ Im τ ≤ b′ and
|Re ξ′|, |ξ′′| → ∞. Given θ > 0, it is also possible to define a calculus with bounds

space Ψ−∞,θ
b,S (X), see [22]. Finally, we define

Ψm,θ
b,S (X) = Ψm

b,Ck(X) + Ψ−∞,θ
b,S (X).

Using the techniques of the b-calculus, see the appendix of [29], one can establish
the following lemma.

Lemma 2.1. The space Ψ•,•
b,S(X) is closed under composition; and under inversion

in the following sense. Let A(τ) ∈ Ψm,θ
b,S (X) and suppose that A(τ) is invertible for

τ on some horizonal plane {Im τ = c} in the strip S. Then there is a horizontal
strip S′ ⊂ S containing the plane and a θ′ > 0 such that A(τ)−1 is defined for

τ ∈ S′ and A(τ)−1 ∈ Ψ−m,θ′

b,S′ (X).

Let M ∈ Mk(X) be a component of Hi1 ∩ · · · ∩ Hik
, where i1 < · · · < ik, so

that ρi1 , . . . , ρik
are defining functions for M . Then near M (cf. (2.1)) we have a

decomposition

(2.8) X ∼= [0, ε)k
x × M, x = (ρi1 , . . . , ρik

).
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Given A ∈ Ψm
b (X), the normal operator of A at M is defined as follows. Given a

function v ∈ C∞(M), let u ∈ C∞(X) be any smooth function such that u|M = v.
The properties of the small calculus imply that given any fixed τ ∈ Ck, the function
x−iτA(xiτu) defines a smooth function on X. Restricting this function to M defines
the normal operator of A:

NM (A)(τ)v :=
(
x−iτA(xiτu)

)∣∣∣
M

.

This operator is defined independent of the choice of extension u. In local coordi-
nates NM (A)(τ) is simple to describe. For instance, consider a coordinate patch
U = [0, ε)`

x̃ × Rn−`
y on X where x equals the first k coordinate functions of x̃ and

where the Schwartz kernel of A is given on a compact neighborhood in U × U by
(cf. (2.6))

KA =

∫ (
x̃

x̃′

)iξ′

ei(y−y′)·ξ′′

a(x̃, y, ξ) d̄ξ · dx̃′

x̃′
dy′

Writing x̃ = (x, ỹ), we have U = [0, ε)k
x × Ũ where Ũ = [0, ε)`−k

ỹ × Rn−`
y is a

coordinate patch on M . Let ξ = (τ1, . . . , τk, η1, . . . , ηn−k). Then,

(2.9) KA =

∫ ( x

x′

)iτ
(

ỹ

ỹ′

)iη′

ei(y−y′)·η′′

a(x, ỹ, y, τ, η) d̄τ d̄η · dx′

x′

dỹ′

ỹ′
dy′,

where η′ = (η1, . . . , η`−k) and η′′ = (η`−k+1, . . . , ηn−k). Then by definition of the
normal operator, it seems reasonable, and in fact can be proved, that the Schwartz

kernel of NM (A)(τ) in a compact neighborhood in Ũ × Ũ is given by

KNM (A)(τ) =

∫ (
ỹ

ỹ′

)iη′

ei(y−y′)·η′′

a(0, ỹ, y, τ, η) d̄η · dỹ′

ỹ′
dy′,

Properties of the normal operator can be found in [22], [17], or [29]. From this
explicit description of the Schwartz kernel of NM (A)(τ) (at least near the diagonal
of M×M and with a similar analysis in coordinate patches away from the diagonal)
and the definition of our parameter-dependent operators above, it follows that
NM (A)(τ) ∈ Ψm

b,Ck(M). Moreover, it readily follows that

(2.10) NM (A∗)(τ) = NM (A)(τ)∗, NM (AB)(τ) = NM (A)(τ)NM (B)(τ)

for any B ∈ Ψm′

b (X) and all τ ∈ Ck. For instance, to prove the composition
property, let u be an extension of v as before, and note that

NM (AB)(τ)v =
(
x−iτABxiτu

)∣∣∣
M

=
(

x−iτAxiτ
(
x−iτBxiτu

))∣∣∣
M

= NM (A)(τ)
((

x−iτBxiτu
)∣∣∣

M

)

= NM (A)(τ)(NM (B)(τ)v).

The following convenient formula, which follows directly from the definition of
normal operator, is used throughout this paper. If α is a multi-index, then

(2.11) NM (ρ−αAρα)(τ) = %−βNM (A)(τ − iγ)%β

where γ = {αi1 , . . . , αik
}, β = {αj ; j 6= i1, . . . , ik}, and

(2.12) % =
∏

j 6=i1,...,ik

ρj |M , %β =
∏

j 6=i1,...,ik

ρ
αj

j |M .
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The normal operator also extends to the calculus with bounds. In the following
lemma we summarize some of the main properties of the normal operator.

Lemma 2.2. If M ∈ Mk(X), then for any ϑ,

∂ϑ
τ NM : Ψm,θ

b (X) −→
⋃

ε>0

Ψ
m−|ϑ|,θ
b,Sε

(M),

where Sε is the strip: −θ − ε < Im τj < θ + ε. Moreover, with ϑ = 0, NM is
surjective and satisfies the properties (2.10).

2.3. Fredholm properties and the b-trace. In this section we list some Fred-
holm properties of b-pseudodifferential operators. Proofs can be found in the appen-
dix of [22]. The following theorem characterizes Fredholm operators on nonweighted
Sobolev spaces.

Theorem 2.3. Let A ∈ Ψm
b (X), m ∈ R+. Then the following are equivalent:

(1) A: Hm
b (X) −→ L2

b(X) is a Fredholm.
(2) A is elliptic and for each H ∈ M1(X), NH(A)(τ) is invertible for all τ ∈ R, in

which case NH(A)(τ)−1 ∈ Ψ−m,ε
b,S (H) for some ε > 0 and some horizontal strip

S containing R (cf. Lemma 2.1).
(3) A is elliptic and for each M ∈ Mk(X), k ≥ 1, NM (A)(τ) is invertible for all

τ ∈ Rk, in which case NM (A)(τ)−1 ∈ Ψ−m,ε
b,S (M) for some ε > 0 and some

horizontal strip S containing Rk (cf. Lemma 2.1).

We note again that by convention, the words ‘Fredholm’ or ‘invertible’ mean with
respect to the natural, that is unweighted, Sobolev space domains unless explicitly
stated otherwise. The next theorem describes the generalized inverse of Fredholm
operators.

Theorem 2.4. If A ∈ Ψm
b (X), m ∈ R+, be Fredholm. Then its generalized inverse,

G, is in the full calculus: G ∈ Ψ−m,ε
b (X) for some ε > 0. Here, the generalized

inverse is defined by the equations

AG = Id − Π1, GA = Id − Π0,

where Π0 and Π1 are the orthogonal projections onto the null space and off the range
in Hm

b (X) and L2
b(X), respectively. Moreover, ker A ⊂ ρεH∞

b (X), and coker A ∼=
ker A∗ ⊂ ρεH∞

b (X).

Finally, we describe the b-integral and b-trace. It turns out that elements of
Ψ−∞

b (X) are not trace class. Indeed, consider the Schwartz kernel of an element

R ∈ Ψ−∞
b (X) given in the coordinates (2.3),

KR = k
(
x,

x

x′
, y, y′

)
m(x′, y′).

Then restricting to the diagonal, we see that

KR

∣∣∣
Diag

= k
(
x,1, y, y

)
m(x, y), 1 = (1, . . . , 1) (k ones).

Because k(x, z, y, y′) is only assumed to be smooth at x = 0 and m has factors of
x−1

i , the integral
∫

X
KR

∣∣
Diag

, where we identity the diagonal with X, in general

does not exist. However, such operators do have a b-trace as we now define. Let

C
N
+ = {z = (z1, . . . , zN ) ∈ C

N ; Re zi > 0 for all i}.
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Given any function u ∈ C∞(X), it is straightforward to prove that the integral
∫

X

ρzu m, ρz = ρz1 · · · ρzN ,

is well-defined for z ∈ CN
+ and extends to be a meromorphic function of z for z

in all of CN . We define the b-integral of u over X to be the regular value of this
family at z = 0,

∫b

X

u m := Regz=0

∫
ρzu m.

Given R ∈ Ψ−∞
b (X), we define the b-trace of R by

bTr R :=

∫b

X

KR

∣∣∣
Diag

.

The b-trace is also defined on elements of Ψm
b (X) with m < −n = −dim X. The

following theorem is proved in [22], and it gives a formula for the defect in the
b-trace of a commutator.

Theorem 2.5. If A ∈ Ψm
b (X) and B ∈ Ψm′

b (X) with m + m′ < −n, then

(2.13) bTr[A,B] = −
∑

M∈M ′(X)

∫

Rk

bTr(Dk
τNM (A)(τ)NM (B)(τ) ) d̄τ,

where d̄τ = dτ/(2π)k and Dk
τ = Dτ1

· · ·Dτk
with Dτj

= 1
i ∂τj

, and the sum is over
every k ≥ 1 and M ∈ Mk(X).

3. An index formula for b-pseudodifferential operators

In Section 3.1 we prove sufficiency in Theorem 1.1. Then in Section 3.2 we state
the index theorem giving a precise description of each term in the formula. Finally,
in Section 3.3 we give various applications of the index formula.

3.1. The Fredholm condition on weighted Sobolev spaces. In Proposition
3.3 below, we give a sufficient condition on which an operator is Fredholm on
weighted Sobolev spaces. In Section 5, we show that this condition is also necessary.
Proposition 3.3 was given in [22], but as the lemmas used in its proof are needed
later we provide a complete proof here. We begin with the following lemma.

Lemma 3.1. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic. Let M ∈ Mk(X) with

k ≥ 1 and let % be the function in (2.12). Then NM (A)(τ) ∈ Ψm
b (M,E,F ) is

elliptic for any τ ∈ Ck and given any c > 0,

NM (A)(τ): %βHm
b (M,E) −→ %βL2

b(M,F )

is invertible for all τ ∈ Ck for |Re τ | sufficiently large with | Im τ |, |β| ≤ c.

Proof. Being elliptic, A has a small parametrix B ∈ Ψ−m
b (X,F,E) such that Id −

AB = R1 ∈ Ψ−∞
b (X,F ) and Id − BA = R2 ∈ Ψ−∞

b (X,E). Hence,

NM (A)(τ)NM (B)(τ) = Id − NM (R1)(τ)

NM (B)(τ)NM (A)(τ) = Id − NM (R2)(τ).
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Since NM (R1)(τ) (and NM (R2)(τ)) is an operator of order −∞, it follows that
NM (A)(τ) is elliptic for all τ ∈ Ck. Conjugating the above equations with appro-
priate factors of %±β , we see that

{
%−βNM (A)(τ)%β

}{
%−βNM (B)(τ)%β

}
= Id − %−βNM (R1)(τ)%β

{
%−βNM (B)(τ)%β

}{
%−βNM (A)(τ)%β

}
= Id − %−βNM (R2)(τ)%β .

(3.1)

Now we know that as |Re τ | → ∞ with | Im τ |, |β| ≤ c, %−βNM (Ri)(τ)%β → 0
uniformly in the topology of Ψ−∞

b , and hence, in the topology of L2
b . Thus, we can

invert each operator on the right in (3.1) on L2
b for |Re τ | sufficiently large with

| Im τ | ≤ c. Our lemma follows. �

Lemma 3.2. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic and suppose that for each

M ∈ M2(X), NM (A)(τ) is invertible for all τ ∈ R2. Then there is an ε > 0 having
the following properties:

(1) Let M ∈ Mk(X) with k ≥ 2. Then for all τ ∈ Ck and β with | Im τ |, |β| < ε,

(3.2) %−βNM (A)(τ)%β : Hm
b (M,E) −→ L2

b(M,F )

is invertible, where % is the function in (2.12).
(2) Let M ∈ M1(X). Then for |β| < ε, the operator (3.2) has a meromorphic

inverse on the strip | Im τ | < ε with finitely many poles on the real line defined
independent of β with finite rank residues of the form %−βK%β where K is the
corresponding residue of NM (A)(τ)−1.

Proof. First of all, given M ∈ Mk(X) with k > 2, we show that NM (A)(τ) is
invertible all real τ . To see this, choose M ′ ∈ M2(X) such that M ⊂ M ′ and for
any v ∈ R2, define Av := NM ′(A)(v). Then by assumption, Av is invertible and
hence Fredholm, so by Theorem 2.3, all its normal operators are invertible for all
real parameters. In particular, its normal operator at M ⊂ M ′, NM (Av)(u) =
NM (NM ′(A)(v))(u), is invertible for all real u. Since NM (NM ′(A)) = NM (A), it
follows that NM (A)(τ) is invertible all real τ .

Applying Lemma 3.1 with c = 1 to each face of X, we see that there is an r > 0
such that for each k ≥ 1, the map (3.2) is invertible if | Im τ |, |β| ≤ 1 and |Re τ | > r.
Let M ∈ Mk(X) with k ≥ 2. Then we know that NM (A)(τ) is invertible for all
real τ . Since the invertible operators form an open set and NM (A)(τ) depends
continuously on τ , it follows that there is a 0 < δM ≤ 1 such that the map (3.2) is
invertible if |Re τ | ≤ r and | Im τ |, |β| ≤ δM . Now let M = H ∈ M1(X). We claim
that NH(A)(τ) is Fredholm for all τ ∈ R. To see this, let M ′ be a hypersurface of H.
Then M ′ ∈ M2(X) and so by assumption, NM ′(NH(A)) = NM ′(A) is invertible for
all real normal parameters. Thus by Theorem 2.3, NH(A)(τ) is Fredholm for all real
τ ; hence, by analytic Fredholm theory (cf. Theorem 2.4), for some 0 < δH ≤ 1, with
|β| < δH , %−βNH(A)(τ)%β is a meromorphic function on a rectangle | Im τ | ≤ δH ,
|Re τ | ≤ r with finitely many poles on the real line defined independent of β with
finite rank residues of the form %−βK%β where K is the corresponding residue of
NH(A)(τ)−1. Let ε be the minimum of all the δM ’s chosen for each M ∈ Mk(X),
k ≥ 1. This ε has all the properties requested and completes our proof. �

Proposition 3.3. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic and suppose that

for each M ∈ M2(X), NM (A)(τ) is invertible for all τ ∈ R2. For ε > 0 given in
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Lemma 3.2,
A: ραHm

b (X,E) −→ ραL2
b(X,F )

is Fredholm for all multi-indices α with 0 < |α| < ε.

Proof. Let ε > 0 be the number given in Lemma 3.2. We shall prove that for
any H ∈ M1(X), NH(ρ−αAρα)(τ) is invertible for all real τ from Hm

b (H,E) onto
L2

b(H,F ) for all multi-indices α such that 0 < |α| < ε. If H = Hj , then with the
notation of (2.11), we have

NH(ρ−αAρα)(τ) = %−βNH(A)(τ − iαj)%
β .

By Lemma 3.2, this operator is invertible for all real τ and 0 < |α| < ε, which implies
that ρ−αAρα: Hm

b (X,E) −→ L2
b(X,F ) is Fredholm and proves the proposition. �

3.2. Statement of the index theorem. We repeat the index formula presented
in the introduction, but now spelling out all the terms. See Section 4 for the proof.

Theorem 3.4. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic. Suppose that for each

M ∈ M2(X), NM (A)(τ) is invertible for all τ ∈ R2. Then for ε > 0 given in
Lemma 3.2, for all multi-indices α with 0 < |α| < ε,

A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm. Moreover,

indα A =

∫b

X

ωA − 1

2

∑

H∈M1(X)

{
bη̃H + sgn(αH) ·

∑

z∈specH(A)

rkH(z) + βH

}

− 1

2

∑

M∈Mk(X)
k≥2

bηM .

We now explain the meaning of each term. As we already know, ωA is the
‘analytic’ Atiyah-Singer density of A manufactured from the local symbols of A.
The other terms are defined as follows. To describe the last sum, let M ∈ Mk(X)
where k ≥ 2 and define

(3.3) bηM (t) = 2

∫

Rk

bTr(Dk
τNM (A)(τ)NM (A)(τ)−1 NM (e−tAA∗

)(τ) ) d̄τ,

where d̄τ = dτ/(2π)k and Dk
τ = Dτ1

· · ·Dτk
with Dτj

= 1
i ∂τj

. In Lemma 4.2 we

show that bηM (t) has an asymptotic expansion as t → 0 in powers and log-powers
of t1/2m. We define

(3.4) bηM := constant term in the expansion of bηM (t) as t → 0.

We now describe the middle term. Let H ∈ M1(X). Then by Lemma 3.2, the
inverse NH(A)(τ)−1 is meromorphic on the strip | Im τ | < ε with finitely many
poles on the real line with finite rank residues. We define specH(A) ⊂ R as the set
of poles of NH(A)(τ)−1 on the real line. In particular, we can write

(3.5) DτNH(A)(τ)NH(A)(τ)−1 = S(τ) + G(τ),

where G(τ) is holomorphic on the strip and S(τ) is of the form

S(τ) =
∑

z

Sz(τ), Sz(τ) =
ν−1∑

j=0

Kz,j

(τ − z)j+1
,
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where the first sum is a finite sum over z in specH(A), and in the second sum, ν
is an integer depending on z and the Kz,j ’s are finite rank operators. The rank of
the pole at z is the dimension of the singular range of DτNH(A)(τ)NH(A)(τ)−1,

(3.6) rkH(z) :=
ν−1∑

j=0

dim Im

( ν−1∑

k=j

Kz,k

)
.

The eta term bη̃H is defined like the terms bηM but replacing the meromorphic
operator DτNH(A)(τ)NH(A)(τ)−1 by its holomorphic part G(τ). Thus, setting

(3.7) bη̃H(t) = 2

∫

R

bTr(G(τ)NH(e−tAA∗

)(τ) ) d̄τ,

in Lemma 4.4 we show that bη̃H(t) has an asymptotic expansion as t → 0 in powers
and log-powers of t1/2m (up to a term vanishing at t = 0); then we define

(3.8) bη̃H := constant term in the expansion of bη̃H(t) as t → 0.

Finally, we describe the third hypersurface term βH , which depends on the prin-
cipal symbol of A and the singular term S(τ). First define the inclusion

ιH : bN∗H ↪→ bT ∗X, ιH

(dρH

ρH

)
=

dρH

ρH
,

where bN∗H is the span of dρH/ρH on the hypersurface H. Let am denote the
principal symbol of A and set

(3.9) bH :=
1

π

∫b

R

e−ι∗H(ama∗

m)(τ) dτ

τ
∈ C∞(H,hom(F )),

where the b-integral means that the integral is regularized at τ = 0 as follows:

∫b

R

e−ι∗H(ama∗

m)(τ) dτ

τ
=

∫ r

−r

e−ι∗H(ama∗

m)(τ) − 1

τ
dτ

+

(∫ −r

−∞

+

∫ ∞

r

)
e−ι∗H(ama∗

m)(τ) dτ

τ
.

One can check that the right-hand side is defined independent of r. The function
bH is described locally as follows. If [0, ε)x ×Rn,k−1

y are local coordinates on X and
H = {x = 0} in this coordinate patch with x representing the boundary defining
function for H, then

bH =
1

π

∫b

R

e−am(0,y,τ,0) am(0,y,τ,0)∗ dτ

τ
,

where am(x, y, τ, η) is the principal symbol of A in the coordinates. From this
formula it is clear that bH is a smooth hom(F )-valued function on H. We define

(3.10) βH :=
∑

z∈specH(A)

Tr(bHKz,0),

where Kz,0 is the finite rank residue of DτNH(A)(τ)NH(A)(τ)−1 at τ = z.
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3.3. Various applications. Before presenting the proof of Theorem 3.4 in Section
4, we give some applications. The following theorem is an immediate consequence
of Theorem 3.4. The formula (3.11) below is called the relative index formula.

Theorem 3.5. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic. Suppose that for each

M ∈ M2(X), NM (A)(τ) is invertible for all τ ∈ R2. Then for ε > 0 given in
Lemma 3.2, for all multi-indices α with 0 < |α| < ε,

A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm. Moreover, given any two such multi-indices α, α′, we have

(3.11) indα A − indα′ A = −
∑

sgn αH 6=sgn α′

H ,
z∈specH(A), H∈M1(X)

sgn(αH − α′
H) · rkH(z).

The βH terms vanish for many operators. For instance, consider the following.

Lemma 3.6. If ι∗H(ama∗
m)(τ) is an even function in τ , then bH = 0. In particular,

if m is a positive integer and ι∗Ham(τ) is a polynomial in τ of order m, then bH = 0.

Proof. If ι∗H(ama∗
m)(τ) is even, then e−ι∗H(ama∗

m)(τ)/τ is odd; hence, the integral
defining bH vanishes. �

In particular, the βH terms vanish if A is of the form P + R where P is a b-
differential operator and R is a b-pseudodifferential operator of order −∞. Here,
R can be thought of as a ‘perturbation’ of P . In this case, we also have ωA = ωP

since the index density only depends on finitely many homogeneous terms in the
local symbols of the operator. Therefore, Theorem 3.4 implies the following.

Theorem 3.7. Let P ∈ Diffm
b (X,E, F ) be an elliptic b-differential operator of

positive order and let R ∈ Ψ−∞
b (X,E, F ) be such that for each M ∈ M2(X),

NM (P + R)(τ) is invertible for all τ ∈ R2. Then for some ε > 0, for all multi-
indices α with 0 < |α| < ε,

P + R: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm. Moreover,

indα(P + R) =

∫b

X

ωP − 1

2

∑

H∈M1(X)

{
bη̃H + sgn(αH) ·

∑

z∈specH(P+R)

rkH(z)

}

− 1

2

∑

M∈Mk(X)
k≥2

bηM ,

where ωP is local index density of P , and where bη̃H , rkH(z), and bηM are defined
with respect to the normal operators of A = P + R.

In joint work with Melrose [22], we prove a similar index formula for P a Dirac
operator and R specific b-pseudodifferential operators of order −∞; in this case
all the terms in the index formula involve only the Dirac operator and certain
Lagrangian subspaces of the null spaces of the corner Dirac operators. For now we
shall consider Theorem 3.7 in case P is a Dirac operator and R = 0. For more on
the subject of perturbed Dirac operators, we refer the reader to [22].
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Assume now that X is even-dimensional. A metric on the b-tangent bundle bTX
is said to be exact if it takes the form

g =

N∑

i=1

(dρi

ρi

)2

+ g′,

where g′ ∈ C∞(X,T ∗X ⊗ T ∗X). Let ð+: C∞(X,E+) −→ C∞(X,E−) be a Dirac
operator associated to g, where E+ and E− are the chiral parts of a Clifford bundle
over X. Let M ∈ M2(X) be defined by ρi1 and ρi2 with i1 < i2, and let X ∼=
[0, ε)2x×M near M where xj = ρij

and where E± are isomorphic to their restrictions
on M . Then modulo a b-differential operator that vanishes on M , we can write

ð
+ = σ1 x1Dx1

+ σ2 x2Dx2
+ BM , Dxj

=
1

i
∂xj

,

where σj is Clifford multiplication by dxj/xj and BM is the restriction of ð+ to
sections on M . By definition of the normal operator, we have

NM (ð+)(τ) =
(
x−iτ

ð
+xiτ

)∣∣∣
M

= σ1τ + σ2τ2 + BM .

We call ðM = iσ2BM the induced Dirac operator on M . Using properties of Dirac
operators, it follows that NM (ð+)(τ) is invertible for all τ ∈ R2 if and only if
BM is invertible, if and only if ðM is invertible. Consider now a hypersurface
H = Hj ∈ M1(X). Let X ∼= [0, ε)x ×H be a collar neighborhood of H in X where
x = ρj and let BH be the restriction of ð+ to sections on H. Then we can write

(3.12) NH(ð+)(τ) = στ + BH = Γ
[
iτ + ðH

]
,

where σ is Clifford multiplication by dx/x, Γ = σ/i, and ðH = iσBH is, by defini-
tion, the induced Dirac operator on H.

The following theorem contains the direct analog of the formula (1.2).

Theorem 3.8. If M ∈ M2(X), then NM (ð+)(τ) is invertible for all τ ∈ R2 if and
only if ðM is invertible. Suppose that ðM is invertible for each M ∈ M2(X). Then
for some ε > 0, for all multi-indices α with 0 < |α| < ε,

ð
+: ραH1

b (X,E+) −→ ραL2
b(X,E−)

is Fredholm, and if we denote its index by indαð+, then

indα ð
+ =

∫b

X

AS − 1

2

∑

H∈M1(X)

{
bη(ðH) + sgn(αH) · dim ker ðH

}
,

where AS is the Atiyah-Singer density of E, and where

bη(ðH) =
1√
π

∫ ∞

0

t−1/2 bTr( ðHe−tð2
H ) dt.

Proof. We already discussed the equivalence of the statements that for each M ∈
M2(X), NM (ð+)(τ) is invertible for all real τ and the invertibility of ðM . Therefore,
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with the notation of Theorem 3.4, we have

indα ð
+ =

∫b

X

ωð+ − 1

2

∑

H∈M1(X)

{
bη̃H + sgn(αH) ·

∑

z∈specH(A)

rkH(z) + βH

}

− 1

2

∑

M∈Mk(X)
k≥2

bηM .

We analyze each term on the right as follows. To start with, since for any M ∈
Mk(X), NM (ð+)(τ) is a degree one polynomial in τ , we have Dk

τNM (ð+)(τ) = 0 if
k ≥ 2, and so bηM = 0 for k ≥ 2. The analysis in [24] extends from manifolds with
boundary to manifolds with corners showing that ωð+ = AS. From Lemma 3.6
we know that the βH terms vanish. Now by (3.12) and the definition of boundary
spectrum and rank, we have specH(ð+) = {0} and rkH(0) = dim ker ðH . Finally, it
remains to prove that bη̃H = bη(ðH). To see this, let Π0 be the orthogonal projection
onto ker ðH and observe that

∫ ∞

t

Π⊥
0 e−s(τ2+ð

2
H) ds = Π⊥

0 (τ2 + ð
2
H)−1 e−t(τ2+ð

2
H).

As DτNH(ð+)(τ)NH(ð+)(τ)−1 = Γ(iτ + ðH)−1Γ−1, using the notation of (3.5),
we have G(τ) = Π⊥

0 Γ(iτ + ðH)−1Γ−1, and therefore

bη̃H(t) = 2

∫

R

bTr(Π⊥
0 (iτ + ðH)−1 e−t(τ2+ð

2
H) ) d̄τ

= 2

∫

R

bTr( (−iτ + ðH)Π⊥
0 (τ2 + ð

2
H)−1 e−t(τ2+ð

2
H) ) d̄τ

= 2

∫

R

bTr( ðHΠ⊥
0 (τ2 + ð

2
H)−1 e−t(τ2+ð

2
H) ) d̄τ

= 2

∫

R

∫ ∞

t

bTr( ðHΠ⊥
0 e−s(τ2+ð

2
H) ) ds d̄τ

=
1√
π

∫ ∞

t

s−1/2 bTr( ðHe−sð
2
H ) ds.

The ‘odd-dimensional local index theorem’ [24, Th. 8.36] extends to manifolds with
corners and implies that the last integral displayed is continuous at t = 0. This
shows that bη̃H = bη(ðH) and our proof is complete. �

4. Proof of the index formula

We now prove Theorem 3.4. Let A ∈ Ψm
b (X,E, F ), m ∈ R+, be elliptic with

NM (A)(τ) invertible at all corners M of X of codimension two and for all τ ∈ R2.
Choose ε > 0 as in Lemma 3.2. Throughout this section, we shall henceforth fix a
multi-index α with 0 < |α| < ε. Then setting Aα = ρ−αAρα,

Aα: Hm
b (X,E) −→ L2

b(X,F )

is Fredholm and indα A = indAα. The merit of working with Aα is that Aα has a
constant domain while the domains of the weighted Sobolev spaces change with α.
We shall break up the proof of the index formula into three parts: First, in Section
4.1 we use the heat kernel method to find a formula for indα A in terms of the local
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index density of Aα and its eta invariants. Second, we analyze these terms as the
weight parameter tends to zero, which we accomplish in Sections 4.2 and 4.3.

4.1. The heat kernel proof of the index theorem. Since the index is stable
under continuous variations, it follows that

indα A = indAα = indAa,

where Aa = ρ−aAρa and a is a multi-index with 0 < |a| < ε and sgn(a) = sgn(α);
that is, sgn(aH) = sgn(αH) for each H.

Step 1: We compute ind Aa = indα A in the usual way by considering the
“McKean-Singer” function:

(4.1) ha(t) = bTr(e−tA∗

aAa) − bTr(e−tAaA∗

a).

According to Lemma 7.3 in [20], we have

lim
t→∞

ha(t) = indAa = indα A.

Thus by the Fundamental Theorem of Calculus, for any t > 0,

indα A − ha(t) =

∫ ∞

t

h′
a(s) ds.

Since A∗
aAae−sA∗

aAa = A∗
ae−sAaA∗

aAa, we have

h′
a(s) = bTr(−A∗

aAae−sA∗

aAa + AaA∗
ae−sAaA∗

a )

= bTr(−A∗
ae−sAaA∗

aAa + AaA∗
ae−sAaA∗

a )

= bTr[Aa, A∗
ae−sAaA∗

a ].

To evaluate this expression, we use the trace-defect formula (2.13):

h′
a(s) = −

∑

M∈M ′(X)

∫

Rk

bTr(Dk
τNM (Aa)(τ)NM (A∗

a)(τ)NM (e−sAaA∗

a)(τ)) d̄τ,

where Dk
τ = Dτ1

· · ·Dτk
with Dτj

= i−1∂τj
. Properties of the normal operator

imply that NM (e−sAaA∗

a)(τ) = e−sNM (AaA∗

a)(τ) (cf. Lemma 4.4 in [19] for manifolds
with corners or equation (7.91) in [24] for the manifold with boundary case), and
that e−sNM (AaA∗

a)(τ) → 0 exponentially as s → ∞ since NM (AaA∗
a)(τ) is invertible

for all real τ . Thus,
∫ ∞

t

NM (e−sAaA∗

a)(τ)ds = NM (AaA∗
a)(τ)−1NM (e−tAaA∗

a)(τ),

and so
∫ ∞

t

∫

Rk

bTr(Dk
τNM (Aa)(τ)NM (A∗

a)(τ)NM (e−sAaA∗

a)(τ) ) d̄τ ds

=

∫

Rk

bTr(Dk
τNM (Aa)(τ)NM (Aa)(τ)−1 NM (e−tAaA∗

a)(τ) ) d̄τ.

Hence, for any t > 0,

(4.2) indα A = ha(t) − 1

2

∑

M∈M ′(X)

bηM (a, t),
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where for M ∈ Mk(X),

(4.3) bηM (a, t) = 2

∫

Rk

bTr(Dk
τNM (Aa)(τ)NM (Aa)(τ)−1 NM (e−tAaA∗

a)(τ)) d̄τ.

The analysis leading up to [21, Cor. 6.4] or [20, Cor. 5.54] imply that ha(t) has
an asymptotic expansion as t → 0 in powers and log-powers of t1/2m and the
constant term is given by b

∫
ωAa

where ωAa
denotes the ‘analytic’ index density

of Aa manufactured from the local symbols of Aa. Also, by Proposition 4.1 to be
proved shortly, see equation (4.8), bηM (a, t) has an asymptotic expansion as t → 0
in powers and log-powers of t1/2m; we denote the constant term by bηM,0(a). Thus,
taking the constant term in the expansion as t → 0 on the right-hand side of (4.2),
we obtain

indα A =

∫b

X

ωAa
− 1

2

∑

M∈M(X)

bηM,0(a).

Step 2: We now take a → 0:

indα A = lim
a→0

{∫b

X

ωAa
− 1

2

∑

M∈M ′(X)

bηM,0(a)

}
,

where the limit as the multi-index a → 0 is taken so that 0 < |a| < ε and sgn(a) =
sgn(α). Since ωAa

is constructed from the local symbols of Aa = ρ−aAρa, we have
lima→0 ωAa

= ωA, which implies that

(4.4) indα A =

∫b

X

ωA − 1

2
lim
a→0

{ ∑

M∈M ′(X)

bηM,0(a)

}
.

Step 3: Finally, we analyze the limits of the eta invariants, which is done in
Section 4.3. In particular, in Lemma 4.2 we prove that if M ∈ Mk(X) with k ≥ 2,
then

lim
a→0

bηM,0(a) = bηM ,

where bηM is defined in (3.4), and if M = H ∈ M1(X), then in Lemma 4.4 we prove
that

lim
a→0

bηH,0(a) = bη̃H + sgn(αH) ·
∑

z∈specH(A)

rkH(z) + βH ,

where bη̃H is defined in (3.8), rkH(z) in (3.6), and βH in (3.9). These two limits
together with the formula (4.4) establish our Index Theorem 3.4. The proofs of the
limits of bηM,0(a) and bηH,0(a) as a → 0 turn out to be quite technical, and can be
skipped over without losing continuity in the paper.

4.2. Parameter-dependent trace expansions. In this section we prove a gen-
eral result that will be used in the next section to analyze the smoothness properties
of the functions bηM,0(a) in the multi-index a.

Proposition 4.1. Let M ∈ Mk(X) with k ≥ 1 and let Cs(τ) ∈ Ψm′,δ
b,S (M,F ) depend

smoothly on a parameter s, where m′ ∈ R, δ > 0, and S is a strip containing Rk.
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Let Bs ∈ Ψm
b (X,F ), m ∈ R+, be elliptic, depend smoothly on the same parameter

s, and have a positive definite principal symbol. Then as t → 0 we have

∫

Rk

bTr(Cs(τ)NM (e−tBs)(τ) ) d̄τ ∼
∞∑

j=−n

t(j+m′)/2m ξj(s)

+

∞∑

j=0

(ηj(s) + ζj(s) log t) tj ,

where ξj(s), ηj(s), and ζj(s) depend smoothly on s, and where the log coefficient
ζj(s) is nonzero only if 2mj − m′ + n ∈ N0.

Proof. First of all, by [21] the heat operator e−tBs exists. It suffices to prove this
proposition for s restricted to any compact neighborhood in its parameter space.

In this case we can choose Cs ∈ Ψm′,δ′

b (X,F ), for some δ′ > 0, depending smoothly
in s such that NM (Cs)(τ) = Cs(τ) for real τ (cf. Lemma 2.2). Since the normal
operator preserves composition,

∫

Rk

bTr(Cs(τ)NM (e−tBs)(τ) ) d̄τ =

∫

Rk

bTr(NM (Cs e−tBs )(τ) ) d̄τ.

If M is a component of Hi1 ∩ · · · ∩ Hik
, then it follows from the definition of the

b-trace (see [22] or [19, Lem. 6.5]) that

(4.5)

∫

Rk

bTr(NM (Cs e−tBs )(τ)) d̄τ = Regz=0zi1 · · · zik

∫

X

( ρz Cs e−tBs )|Diag.

Since Cs ∈ Ψm′,δ′

b (X,F ), by Corollary 6.4 in [21],

(4.6) (Cs e−tBs )|Diag ∼
∞∑

j=−n

t(j+m′)/2m ξj(s, x) +

∞∑

j=0

(ηj(s, x) + ζj(s, x) log t) tj ,

for some smooth functions ηj(s, x), η′
j(s, x), η′′

j (s, x) of x ∈ X, where the log coef-
ficient ζj(s, x) is nonzero only if 2mj −m′ + n ∈ N0. Moreover, since the operators
Cs and Bs are smooth in s, the analysis in [21] shows that the coefficients in the
asymptotic expansion are also smooth functions in the parameter s. Substituting
the expansion (4.6) into the equation (4.5) now proves the result. �

4.3. Analysis of the eta invariants. We now compute the limits

lim
a→0

bηM,0(a), where M ∈ Mk(X) with k ≥ 1,

of the eta invariants appearing in (4.4). Recall that ε > 0 is chosen as in Lemma 3.2
and a multi-index α is fixed with 0 < |α| < ε. If 0 < |a| < ε and sgn(a) = sgn(α),
then by definition,

(4.7) bηM (a, t) = 2

∫

Rk

bTr(Dk
τNM (Aa)(τ)NM (Aa)(τ)−1 NM (e−tAaA∗

a)(τ)) d̄τ,

where M ∈ Mk(X) with k ≥ 1. By Theorem 2.3 and the composition properties

in Lemma 2.1, Ca(τ) = Dk
τNM (Aa)(τ)NM (Aa)(τ)−1 is an element of Ψ−k,δ

b,S (M,F )

for some δ > 0 and some strip S containing Rk. Therefore, applying Proposition
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4.1 with Ba = AaA∗
a, whose principal symbol is ama∗

m where am is the principal
symbol of A, we see that for fixed a, we have an expansion as t → 0,

(4.8) bηM (a, t) ∼
∑

−n≤j<k

t(j−k)/2m bξM,j(a) +

∞∑

j=0

(bηM,j(a) + bζM,j(a) log t) tj .

In the following lemma we prove that bηM (a, t) extends from the a priori assumptions
that |a| > 0 and sgn(a) = sgn(α), to define a smooth function of the multi-index
a where |a| < ε without any conditions on sgn(a). If k ≥ 2, then we prove that
bηM,0(a)|a=0 = bηM , where bηM is defined in (3.4). If k = 1, then bηM,0(a)|a=0 is
much harder to analyze and we leave this case to Lemma 4.4.

Lemma 4.2. Let bηM (a, t) be the function in (4.7) where M ∈ Mk(X) with k ≥ 1,
0 < |a| < ε, and sgn(a) = sgn(α). Then bηM (a, t) and the coefficients bξM,j(a),
bηM,j(a), and bζM,j(a), extend from the a priori conditions that |a| > 0 and sgn(a) =
sgn(α) to define smooth functions of the multi-index a where |a| < ε. In particular,
bηM,0(a) defines a smooth function of a with |a| < ε. Moreover, if k ≥ 2, then

bηM,0(a)|a=0 = bηM , k ≥ 2,

where bηM is defined in (3.4).

Proof. Using the notation of (2.11), if M ∈ Mk(X) is defined by ρi1 , . . . , ρik
, then

we can write NM (ρ−aAρa)(τ) = %−βNM (A)(τ − iγ)%β where β and γ depend on
the multi-index a by γ = {ai1 , . . . , aik

} and β = {aj ; j 6= i1, . . . , ik}. Assume that
k ≥ 2. Then by Lemma 3.2, %−βNM (A)(τ − iξ)%β is invertible for all τ, ξ ∈ Rk with
|ξ| < ε. Thus, for a restricted to any compact subset of |a| < ε, even without the
a priori assumptions that |a| > 0 and sgn(a) = sgn(α), the operator

Ca(τ) = Dk
τNM (Aa)(τ)NM (Aa)(τ)−1,

is, according to Theorem 2.3 and the composition properties in Lemma 2.1, an

element of Ψ−k,δ
b,S (M,F ) for some δ > 0 and some strip S containing Rk. Applying

Proposition 4.1 with this Ca(τ) and Ba = AaA∗
a, we see that bηM (a, t) has the

expansion (4.8) with coefficients smooth in a.
Assume now that k = 1 and let us again start with the assumption that 0 <

|a| < ε and sgn(a) = sgn(α). In this case, the above argument doesn’t apply to
prove the smoothness of bηM (a, t) or the trace coefficients, since NM (A)(τ) is not
invertible on R. However, we can argue as follows. Using our usual notation for β
and γ, observe that NM (ρ−aAρa)(τ) = %−βNM (A)(τ − iγ)%β and

%βNM (e−tAaA∗

a)(τ)%−β = NM (e−tBa)(τ),

where Ba = ρβAaA∗
aρ−β . Therefore,

bηM (a, t) = 2

∫

R

bTr(DτNM (Aa)(τ)NM (Aa)(τ)−1 NM (e−tAaA∗

a)(τ)) d̄τ

= 2

∫

R

bTr(DτNM (A)(τ − iγ)NM (A)(τ − iγ)−1 NM (e−tBa)(τ)) d̄τ.(4.9)

Recall that γ = aM has the same sign as αM . Assume that sgn(αM ) > 0 so that
γ > 0; the opposite sign is handled similarly. Fix any γ0 with 0 < γ0 < ε. We shall
prove that bηM (a, t) and the trace coefficients with 0 < |a| < γ0 and sgn(a) = sgn(α)
extend to define smooth functions of the multi-index a where −(ε− γ0) < |a| < γ0;
this will complete our proof. So, assume for the moment that 0 < |a| < γ0 and
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sgn(a) = sgn(α). In particular, since 0 < aM = γ < γ0 < ε, we can shift the contour
Im τ = 0 (the real line) in the integral for bηM (a, t) down to Im τ = −(ε − γ0):

bηM (a, t)=2

∫

Im τ=−(ε−γ0)

bTr(DτNM (A)(τ − iγ)NM (A)(τ − iγ)−1NM (e−tBa)(τ)) d̄τ.

This shift is valid because NM (A)(τ − iγ)−1 is holomorphic for −ε < Im τ − γ < 0,
which holds in particular for any τ with −(ε − γ0) = −ε + γ0 ≤ Im τ ≤ 0 since
0 < γ < γ0. We can write this integral as

bηM (a, t) = 2

∫

R

bTr(DτNM (A)(τ − i(γ + ε − γ0))·

NM (A)(τ − i(γ + ε − γ0))
−1 NM (e−tBa)(τ − i(ε − γ0)) ) d̄τ.

If B̃a = ρ
−(ε−γ0)
H Baρε−γ0

H , where ρH is the defining function for H, then we can
further write

bηM (a, t) = 2

∫

R

bTr(DτNM (A)(τ − i(γ + ε − γ0))·

NM (A)(τ − i(γ + ε − γ0))
−1 NM (e−tB̃a)(τ) ) d̄τ.

If −(ε − γ0) < ξ < γ0, then 0 < ξ + ε − γ0 < ε, so NM (A)(τ − i(ξ + ε − γ0))
−1 is

invertible for all τ ∈ R. Thus, for γ restricted to any compact subset of the interval
(−(ε − γ0), γ0), even without the a priori assumption that γ > 0, the operator

Ca(τ) = DτNM (A)(τ − i(γ + ε − γ0))NM (A)(τ − i(γ + ε − γ0))
−1,

is, according to Theorem 2.3 and the composition properties in Lemma 2.1, an

element of Ψ−1,δ
b,S (M,F ) for some δ > 0 and some strip S containing R. Applying

Proposition 4.1, we see that bηM (a, t) has the expansion (4.8) where the coefficients
have the required smoothness. �

Let H ∈ M1(X). We now analyze the constant term bηH,0(a) in (4.8) at a = 0
(here we change M in (4.8) to H). Recall that we are working under the assumption
that 0 < |a| < ε and sgn(a) = sgn(α). The key to analyzing bηH,0(a) is formula
(4.9) in the previous lemma (after changing M to H):

bηH(a, t)=2

∫

R

bTr(DτNH(A)(τ − iγ)NH(A)(τ − iγ)−1NH(e−tBa)(τ)) d̄τ,

where Ba = ρβAaA∗
aρ−β with γ = aH and β = {αH′ ; H ′ 6= H}. By Lemma 4.2,

bηH(a, t) and the coefficients in its trace expansion as t → 0 extend from the a
priori assumptions that |a| > 0 and sgn(a) = sgn(α), to be smooth functions of the
multi-index a where |a| < ε without any conditions on sgn(a). Now according to
(3.5), we can write

DτNH(A)(τ)NH(A)(τ)−1 = S(τ) + G(τ),

where G(τ) is holomorphic on the strip | Im τ | < ε and S(τ) is of the form

S(τ) =
∑

z

Sz(τ), Sz(τ) =
ν−1∑

j=0

Kz,j

(τ − z)j+1
,
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where the first sum is over z in specH(A), and in the second sum, ν is an integer
depending on z and the Kz,j ’s are finite rank operators. Thus,

(4.10) bηH(a, t) = 2

∫

R

Tr(S(τ − iγ)NH(e−tBa)(τ) ) d̄τ

+ 2

∫

R

bTr(G(τ − iγ)NH(e−tBa)(τ) ) d̄τ,

where we used the fact that S(τ) consists of finite rank operators, so the b-trace
in the first term is just the regular trace. In the following (unfortunately long and
technical, but) crucial lemma we analyze the first term on the right.

Lemma 4.3. We can write

(4.11) 2

∫

R

Tr(S(τ − iγ)NH(e−tBa)(τ) ) d̄τ

= βH + sgn(αH) ·
∑

z∈specH(A)

rkH(z) + f(a, t),

where rkH(z) is defined in (3.6), βH in (3.9), and where f(a, t) extends from the a
priori conditions that |a| > 0 and sgn(a) = sgn(α) to define a smooth function of
the multi-index a where |a| < ε and t ∈ (0,∞). Moreover, f(a, t) is continuous for
|a| < ε and t ∈ [0,∞) with f(a, 0) = 0 for all a with |a| < ε.

Proof. Assume that sgn(αH) > 0 so that γ > 0; we shall comment on the case
with the opposite sign at the end of the proof. Let 0 < γ < γ0 < ε. Then using
the same trick of shifting the contour as explained in the previous lemma, starting
from equation (4.9) and below, we can write the integral (4.10) as

(4.12) 2

∫

R

Tr(S(τ − i(γ + ε − γ0))NH(e−tB̃a)(τ) ) d̄τ,

where B̃a = ρ
−(ε−γ0)
H Baρε−γ0

H . This shows that the integral (4.11) extends to be a
smooth function of the multi-index a where −(ε − γ0) < |a| < γ0 for t > 0. The
arbitrariness of γ0 implies that the integral (4.11) extends to be a smooth function
of the multi-index a where |a| < ε for t > 0. We also need to prove that this integral
extends to define a continuous function of a with |a| < ε and of t down to t = 0,
with (4.11) holding.

Substituting in the formula for S(τ) in terms of the Kz,j ’s, and setting z̃ =
z + i{γ + ε − γ0}, the integral (4.12) becomes

∑

z,j

2

∫

R

Tr

(
Kz,j NH(e−tB̃a)(τ)

(τ − z̃)j+1

)
d̄τ,

where the sum of over all z ∈ specH(A) and where, for fixed z, the index j goes
from 0 to the order of the pole at z minus one. Because τ−2 integrable near |τ | = ∞
it follows that the sum over j ≥ 1 is continuous at t = 0 with

∑

z,j≥1

2

∫

R

Tr

(
Kz,j NH(e−tB̃a)(τ)

(τ − z̃)j+1

)
d̄τ

∣∣∣∣∣
t=0

=
∑

z,j≥1

2

∫

R

Tr

(
Kz,j

(τ − z̃)j+1

)
d̄τ = 0,
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where we used the fact that e−tB̃a = Id at t = 0 and TrKz,j = 0 for j ≥ 1 [10, eqn.
(2.6)]. Therefore, it remains to prove that

∑

z

2

∫

R

Tr

(
Kz,0 NH(e−tB̃a)(τ)

τ − z̃

)
d̄τ

is continuous at t = 0 with value equal to the right-hand side in (4.11) at t = 0. This
fact is not at all obvious because formally setting t = 0 into the integral results in
an integral that diverges logarithmically at |τ | = ∞! However, the integral actually
is continuous at t = 0 and to prove this we proceed as follows. First, we make the
change of variables, τ 7−→ t−1/2mτ , which results in the integral

(4.13)
∑

z

2

∫

R

Tr

(
Kz,0 f(a, t, τ)

τ − t1/2mz̃

)
d̄τ, f(a, t, τ) = NH(e−tB̃a)(t−1/2mτ).

We claim that for τ 6= 0 (see around (3.9) for the notation):

(4.14) f(a, t, τ) = e−ι∗H(ama∗

m)(τ) + g(a, t, τ), τ 6= 0,

where g(a, t, τ) is smooth in a, continuous in t ∈ [0, 1] and vanishing at t = 0,
vanishes like |τ |−1 as |τ | → ∞, and finally, is bounded uniformly for a within any
bounded set and for t ∈ [0, 1] and τ ∈ R \ 0. To prove this, note that according to

the construction of the heat kernel found in [21], we know that the heat kernel e−tB̃a

localizes near the diagonal in X2 as t → 0 up to a term supported off the diagonal
of order −∞ that vanishes at t = 0. It is also clear from the construction that the
heat kernel depends smoothly on the parameter a. Since the normal operator of an
operator of order −∞ vanishes to infinite order as |τ | → ∞, to prove the properties

of f(a, t, τ) it suffices to consider the Schwartz kernel of e−tB̃a near the diagonal on
a coordinate patch. Let U = [0, ε)s ×Vy be a coordinate patch on X where s = ρH .

Since the principal symbol of B̃a equals am a∗
m where am is the principal symbol

of A, by the structure of the heat kernel found in [21], we can write (cf. (2.7) and
(2.9)),

e−tB̃a |U2 =

∫
ei(log s−log s′,w)·(τ,η) h(a, t, s, y, τ, η) d̄τ d̄η,

where w is the normal to the diagonal in V
2 in logarithmic coordinates, and where

h(a, t, s, y, τ, η) is a symbol of order zero in (τ, η) uniformly in s, y and t ≥ 0 and
of order −∞ for t bounded below by any fixed, but arbitrary, positive constant.
Moreover,

h(a, t, s, y, τ, η) = e−t am(s,y,τ,η) am(s,y,τ,η)∗ + h1(a, t, s, y, τ, η),

where h1(t, s, y, τ, η) vanishes at t = 0 and is a symbol of order −1 in (τ, η) uniformly
in s, y. Thus, taking normal operators, we obtain

f(a, t, τ)|V2 =

∫
eiw·η h(a, t, 0, y, τ, η) d̄η.

Replacing τ with t−1/2mτ and using the homogeneity of the principal symbol am,
we get

f(a, t, τ)|V2 =

∫
eiw·η e−am(0,y,τ,t1/2mη) am(0,y,τ,t1/2mη)∗ d̄η

+

∫
eiw·η h1(a, t, 0, y, t−1/2mτ, η) d̄η.
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Using this equation, together with the properties of h1, and the fact that as t → 0,
∫

eiw·η e−am(0,y,τ,t1/2mη) am(0,y,τ,t1/2mη)∗ d̄η → e−am(0,y,τ,0) am(0,y,τ,0)∗

(since
∫

eiw·η d̄η is the Schwartz kernel of the identity operator in local coordinates)
we obtain the decomposition (4.14). Now we write (4.13) as

(4.15)
∑

z

2

(∫ −1

−∞

+

∫ ∞

1

)
Tr

(
Kz,0 f(a, t, τ)

τ − t1/2mz̃

)
d̄τ

+
∑

z

2

∫ 1

−1

Tr

(
Kz,0 {f(a, t, τ) − 1}

τ − t1/2mz̃

)
d̄τ +

∑

z

2

∫ 1

−1

Tr

(
Kz,0

τ − t1/2mz̃

)
d̄τ.

By elementary complex analysis, we see that

(4.16) 2

∫ 1

−1

Tr

(
Kz,0

τ − t1/2mz̃

)
d̄τ =

Tr(Kz,0)

π

{
log(1 − t1/2mz̃)

− log(−1 − t1/2mz̃)
}

t→0−→ Tr(Kz,0)

π
{0 − (−π)} = Tr(Kz,0),

where at this point we used the fact that z̃ = z+i{γ+ε−γ0} has positive imaginary
part under the assumption that we started with sgn(αH) > 0. Thus, taking t → 0
in (4.15) and using (4.14), the sum (4.15) approaches the following limit:

2
∑

z

Tr

(
Kz,0 ·

{(∫ −1

−∞

+

∫ ∞

1

)
e−ι∗H(ama∗

m)(τ) d̄τ

τ

+

∫ 1

−1

e−ι∗H(ama∗

m)(τ) − 1

τ
d̄τ

})
+
∑

z

Tr(Kz,0) = βH +
∑

z∈specH(A)

rkH(z),

by definition of βH and the fact that Tr(Kz,0) = rkH(z) [10, eqn. (2.5)]. If
sgn(αH) < 0, then the plus sign on the right becomes a minus sign in view of
our discussion following (4.16). Our lemma is now proved. �

Lemma 4.4. Let H ∈ M1(X) and let bη̃H(t) be defined as in (3.7). Then as t → 0,

bη̃H(t) ∼
∑

−n≤j<1

t(j−1)/2m bξH,j + bη̃H + bζH log t + o(t),

where (see (3.8)) bη̃H is by definition the constant coefficient in this expansion.
Let bηH,0(a) be the constant coefficient in the expansion (4.8) for M = H with
0 < |a| < ε and sgn(a) = sgn(α). Then,

bηH,0(a)|a=0 = bη̃H + sgn(αH) ·
∑

z∈specH(A)

rkH(z) + βH .

Proof. Since G(τ) is holomorphic on the strip | Im τ | < ε, taking a → 0 in (4.10)
and using our previous lemma, we obtain

(4.17) bηH(0, t) = βH + sgn(αH) ·
∑

z∈specH(A)

rkH(z) + f(t)

+ 2

∫

R

bTr(G(τ)NM (e−tAA∗

)(τ) ) d̄τ,
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where the limit is taken so that 0 < |a| < ε and sgn(a) = sgn(α), and where f(t) is
continuous in t ∈ [0,∞) vanishing at t = 0. By Lemma 4.2, we know that bηH(0, t)
has a full asymptotic expansion as t → 0 of the form

bηH(0, t) ∼
∑

−n≤j<1

t(j−1)/2m bξH,j(0) +

∞∑

j=0

(bηH,j(0) + bζH,j(0) log t) tj .

Substituting in this expansion for the left-hand side of (4.17) and solving for bη̃H(t)
proves our lemma. �

5. Characterization of Fredholm b-pseudodifferential operators

We begin with the following technical, but fundamental lemma, whose proof can
be skipped over without losing continuity in the paper.

Lemma 5.1. Let A ∈ Ψm
b (X,E, F ), m ∈ R+. Suppose that there is an ε > 0 such

that for all multi-indices α with 0 < |α| < ε,

(5.1) A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm, and for some fixed k ≥ 2, NM (A)(τ) is Fredholm for all M ∈ Mk(X)
and τ ∈ Rk. Then NM (A)(τ) is in fact invertible for all M ∈ Mk(X) and τ ∈ Rk.

Proof. Throughout this proof, we shall use formula (2.11): If M ∈ Mk(X) is defined
by ρi1 , . . . , ρik

where i1 < · · · < ik, in other words M is one of the connected
components of Hi1 ∩ · · · ∩ Hik

, then

(5.2) NM (ρ−αAρα)(τ) = %−βNM (A)(τ − iγ)%β ,

where γ = {αi1 , . . . , αik
} and β = {αj ; j 6= i1, . . . , ik}. The proof of our lemma is

based on the following inductive statement: We show that for ` = 1, 2, . . . , k and
for M ∈ Mk(X), using the notation (5.2),

(5.3) %−βNM (A)(τ − iξ)%β is invertible for all τ ∈ R
k, 0 < |β| < ε, and

0 ≤ |ξ| < ε where at most ` of the ξj ’s can be set to zero at once.

To start, we must prove that (5.3) holds where at most one of the ξj ’s can be zero.
Consider first the case when only ξ1 can be set to zero and when H1 ∩ · · · ∩ Hk

is nonempty; we shall prove (5.3) with ` = 1 and where ξ1 can be set to zero for
any component of this intersection. A similar argument proves this statement for
components of Hi1∩· · ·∩Hik

where i1 < · · · < ik and where at most one ξj can be set
to zero. Let M ′ ∈ Mk−1(X) be defined by ρ2, . . . , ρk such that the hypersurface H1

intersects M ′. Then M ′ is a manifold with corners whose boundary hypersurfaces
are elements of Mk(X), at least one of which is in H1∩· · ·∩Hk. Let r = ρ2 ·ρ3 · · · ρN

and for any multi-index α′ = {αj ; j 6= 1}, we define

Aα′,v := NM ′(r−α′

Arα′

)(v), v ∈ R
k−1.

For any v ∈ Rk−1 and α with 0 < |α| < ε where α = {α1} ∪ α′, we claim that

ρ−α1

1 Aα′,vρ
α1

1 : Hm
b (M ′, E) −→ L2

b(M
′, F )

is Fredholm. Indeed, a hypersurface M ∈ M1(M
′) is just an element M ∈ Mk(X)

with M ⊂ M ′. It follows that NM (ρ−α1

1 Aα′,vρα1

1 )(u) = NM (ρ−αAρα)(u, v), which
is invertible for all (u, v) ∈ Rk, since by assumption the map (5.1) is Fredholm.
This proves our claim. Now by Lemma 3.1, for all α bounded by a fixed constant,
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ρ∓α1

1 Aα′,vρ±α1

1 is invertible for all v ∈ Rk−1 with |v| sufficiently large. Since the
index is invariant under continuous deformations, it follows that ind±α1

Aα′,v = 0
for all v ∈ Rk−1 and α1, α

′ with 0 < |α1|, |α′| < ε. In particular, by the relative
index formula (3.11), we have

(5.4) 0 = 0 − 0 = indα1
Aα′,v − ind−α1

Aα′,v = − sgn(α1)
∑

rkM (z),

where the sum is over those M ∈ M1(M
′) such that considered as elements of

Mk(X) are defined by ρ1, ρ2, . . . , ρk, and where rkM (z) denotes the rank of a pole

at u = z ∈ R of the inverse u 7−→ NM (Aα′,v)(u)−1 = NM (r−α′

Arα′

)(u, v)−1. Of

course, as the left hand side of (5.4) is zero, it follows that NM (r−α′

Arα′

)(u, v)−1

has no poles for any u ∈ R; that is, NM (r−α′

Arα′

)(u, v) is invertible for u ∈ R. In
view of (5.2), we conclude that %−βNM (A)(τ − iγ)%β is invertible for all τ ∈ Rk

with 0 < |γ|, |β| < ε and even with γ1 = 0. This proves (5.3) for ` = 1.
Assume that (5.3) holds for ` − 1; we prove that it holds for `. Again suppose

that H1 ∩ · · · ∩ Hk is nonempty. Fix any ` of these indices, say j1 < · · · < j`; we
shall prove that (5.3) holds for ` such that only ξjν

= 0 where ν = 1, . . . , ` and
M is a component of H1 ∩ · · · ∩ Hk. A similar argument proves this statement
for components of Hi1 ∩ · · · ∩ Hik

where i1 < · · · < ik. Let M ′ ∈ Mk−1(X) be
a component of

⋂
j 6=j1

Hj such that Hj1 intersects M ′. Then M ′ is a manifold

with corners whose boundary hypersurfaces are elements of Mk(X), at least one
of which is in H1 ∩ · · · ∩ Hk. Let r be the product of all the boundary defining
functions on X except ρj1 , . . . , ρj`

. For a multi-index α′ = {αj ; j 6= j1, . . . , j`}, we

define Aα′,v := NM ′(r−α′

Arα′

)(v) where v ∈ Rk−1. For any v ∈ Rk−1 and α with
0 < |α| < ε where α = {αj1} ∪ α′ (with αj2 , . . . , αj`

set equal to zero), we claim
that the operator

ρ
−αj1
j1

Aα′,vρ
αj1
j1

: Hm
b (M ′, E) −→ L2

b(M
′, F )

is Fredholm. Indeed, in view of (5.2), the normal operator of ρ
−αj1
j1

Aα′,vρ
αj1
j1

=

ρ
−αj1
j1

NM ′(r−α′

Arα′

)(v)ρ
αj1
j1

at any hypersurface of M ′ (which are codimension k

faces of X) will be of the form (5.3) with at most ` − 1 of the ξj ’s zero, namely
those corresponding to j2, j3, . . . , j`. By our induction hypothesis, these normal
operators are invertible and so proves our claim. Then by similar arguments found
in the previous paragraph for the ` = 1 case, it follows that for v ∈ Rk−1 and

0 < |α| < ε, ρ
−αj1
j1

Aα′,vρ
αj1
j1

has index zero and using the relative index theorem

exactly as we did in (5.4), one proves that for each component M ∈ Mk(X) of

H1 ∩ · · · ∩Hk, the inverse NM (r−α′

Arα′

)(τ)−1 has no poles for τj1 ∈ R. Using the
notation of (5.2) for β and γ, we conclude that %−βNM (A)(τ−iγ)%β is invertible for
all τ ∈ Rk with 0 < |γ|, |β| < ε and even with γj1 = 0. Hence, %−βNM (A)(τ − iξ)%β

is invertible for all τ ∈ Rk, 0 < |β| < ε, and 0 ≤ |ξ| < ε where only ξj1 , . . . , ξj`
can

be set to zero. This proves (5.3) for each ` = 1, . . . , k.
We now finish our proof. Setting ` = k in (5.3), we conclude that for each

M ∈ Mk(X), %−βNM (A)(τ)%β is invertible for all τ ∈ Rk and 0 < |β| < ε. We
need to prove that NM (A)(τ) is invertible for all τ ∈ Rk. To see this, we know
by Lemma 3.2 that NM (A)(τ) is invertible for all τ ∈ Rk sufficiently large. By
assumption, NM (A)(τ) is Fredholm, so by the invariance of the index, NM (A)(τ)
has index zero for all τ ∈ Rk. Thus, NM (A)(τ) is invertible if and only if it has
no null space. So, suppose that NM (A)(τ0)u = 0 for some u and τ0 ∈ Rk. Then
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by Theorem 2.4, we know that u ∈ %δH∞
b (M) for some δ > 0, and by taking δ

smaller if necessary we may assume that δ < ε. In particular, we can write u = %δv
for some v ∈ H∞

b (M). This implies that %−δNM (A)(τ0)%
δv = 0, which implies

that v = 0 since %−δNM (A)(τ0)%
δ is known to be invertible. Thus, u = 0 and so

NM (A)(τ0) is invertible. Our proof is now complete. �

Theorem 5.2. Let A ∈ Ψm
b (X,E, F ), m ∈ R+. Then there is an ε > 0 such that

for all multi-indices α with 0 < |α| < ε,

A: ραHm
b (X,E) −→ ραL2

b(X,F )

is Fredholm, if and only if, A is elliptic and NM (A)(τ): Hm
b (M,E) −→ L2

b(M,F )
is invertible for each M ∈ M2(X) and τ ∈ R2.

Proof. By Proposition 3.3, we need only prove necessity. By Theorem 2.3, ρ−αAρα

is elliptic. Since the principal symbol of ρ−αAρα equals the symbol of A, it follows
that A is elliptic. In particular, by Lemma 3.1, NM (A)(τ) is elliptic for all M ∈
M ′(X) and all normal parameters τ .

Let n′ = codim(X) with n′ ≤ 2 and let M ∈ Mn′(X). Since NM (A)(τ) is
elliptic and M has no boundary, NM (A)(τ) is a family of Fredholm operators on M .
Therefore by our lemma, NM (A)(τ) is invertible for all real τ . Let M ∈ Mn′−1(X)
and assume now that n′ < 2. Then NM (A)(τ) is elliptic for all real τ and by the fact
proved in the previous paragraph, all normal operators of NM (A)(τ) are invertible
for all real normal parameters. It follows that NM (A)(τ) is Fredholm for all real τ ,
and hence by our lemma, invertible. Using our lemma, we can continue by induction
on k = n′−2, n′−3, . . . , 2 proving that for each M ∈ Mk(X), NM (A)(τ) is invertible
for all real normal parameters. This completes the proof of our theorem. �
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