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Abstract. It is well-known that the index of a Dirac operator with augmented

Atiyah-Patodi-Singer (= APS) boundary conditions on a compact manifold

with boundary can be identified with the L2 index of a corresponding operator

on a manifold with cylindrical ends. The augmented APS condition is a specific

example of an “ideal boundary condition,” which is a boundary condition that
differs from the APS condition by a projection on the kernel of the boundary
Dirac operator. Following Melrose and Piazza [42] we show that the index
and eta invariants of a Dirac operator on a compact manifold with boundary
with any ideal boundary condition can be identified with parallel invariants
of a perturbation of the corresponding Dirac operator on the manifold with
cylindrical ends with L2 domain by a b-smoothing operator constructed from

the ideal boundary condition. In this sense, the “b-category” of objects is able
to give a complete description of index and eta invariants for all ideal boundary

conditions, and not just the augmented APS condition.

1. Introduction

Two of the most basic and most studied invariants describing to different de-
grees the spectral asymmetry of Dirac operators are the index and eta invariants.
The index describes the asymmetry of the kernel and the eta invariant describes the
asymmetry of the entire spectrum of Dirac operators. The purpose of this article is
to relate these invariants on manifolds with boundary to corresponding invariants
on manifolds with cylindrical ends.

1.1. Ideal boundary conditions and the index theorem. The seminal
papers [4, 5] by Atiyah, Patodi, and Singer created immense investigations into
index theory on manifolds with boundary and singularities; to name only a few
extensions of their work, see for instance, Cheeger [14], Atiyah, Donnelly, and
Singer [3], Müller [43], Stern [57], Brüning [11], Bismut and Cheeger [7, 8], Grubb
and Seeley [22] and many others; for survey articles treating various aspects of
index theory, see Müller [46], Piazza [49], Seeley [55], or Loya [32]. In this paper
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we shall focus our attention on Melrose’s [39, 40] b-calculus reinterpretation of the
Atiyah, Patodi, and Singer (henceforth APS) index theorem, especially in regards
to the so-called “ideal boundary conditions”, which we now review.

We first set the stage by stating our assumptions and then we recall the aug-
mented APS boundary condition. Let D : C∞(M,E) −→ C∞(M,F ) be an admis-
sible (also called compatible) Dirac operator associated to a Z2-graded Hermitian
Clifford module E ⊕ F →M over a compact, even-dimensional, Riemannian man-
ifold with boundary. We assume that all the geometric structures are of product
type on a collar [0, 1)x×Y of the boundary Y of M , where x is a boundary defining
function which is everywhere positive on the interior of M . Therefore, on this collar
we assume that E ∼= E|x=0, F ∼= F |x=0, the metric g on M takes the form

g = dx2 + h

with h a metric on Y , and finally,

(1.1) D = Γ(∂x +DY ),

where Γ : E|x=0 −→ F |x=0 is a unitary isomorphism (Clifford multiplication by
dx) and where DY is a Dirac operator on Y . Since DY is a self-adjoint elliptic first
order differential operator on a compact manifold without boundary, it has discrete
spectrum consisting of real numbers extending above and below zero to ±∞. Let
Π+ denote the orthogonal projection of L2(Y,EY ), where EY := E|x=0, onto the
eigenspaces of DY corresponding to the positive eigenvalues.

Let V = kerDY and let Π0 denote the orthogonal projection of L2(Y,EY )
onto V . Then there is a distinguished subspace ΛC of V (see Melrose [40], Müller
[45, 44]) defined by

(1.2) ΛC :=
{
Π0u|x=0 ; u ∈ H1(M,E), Du = 0, Π+u|x=0 = 0

}
.

If ΠC is the orthogonal projection onto ΛC , then C := 2ΠC − Id, acting on V ,
is a unitary map on V with eigenvalues ±1 and with +1 eigenspace exactly ΛC .
The unitary map C is called the scattering matrix and ΛC is called the scattering
Lagrangian.1 This subspace is also known as the subspace corresponding to the
“limiting values of extended L2 solutions of Du = 0” for the following reason. Let

M̂ be the manifold formed by taking the infinite cylinder (−∞, 0]x × Y and gluing
it onto the end of the collar [0, 1)x × Y of M :

M̂ = (−∞, 0]x × Y t∂M M.

Since all the geometric structures and the Dirac operator are of product type on the

collar of M , they all have natural extensions to the manifold M̂ . We denote these

extended structures on M̂ using the same notations used for the original objects on

M ; however, since the extended Dirac operator on M̂ acts on a different domain

than the Dirac operator on M , namely sections on M̂ rather than on M , we denote

the extension of the Dirac operator by D̂. Then [40], [45]

(1.3) ΛC =
{

lim
x→−∞

u(x, y) ; u ∈ C∞(M̂,E) is bounded and D̂u = 0
}
.

The manifold M̂ will play very important roles as our story unfolds.

1This is really “half” of the true Lagrangian, which is ΛC ⊕ΓΛC ⊂ E ⊕F for the symplectic

structure given by the L2 inner product and the Clifford action Γ ⊕ (−Γ∗) : E ⊕ F −→ F ⊕ E.
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We now define the augmented APS boundary condition. The Dirac operator
D with domain

(1.4) Dom(DAPS) := {u ∈ H1(M,E) ; (Π+ + ΠC)u|x=0 = 0}
defines the Dirac operator DAPS with the augmented APS boundary condition. The
APS index theorem can then be written as

indDAPS =

∫

M

AS − 1

2
η(DY ),

where AS is the Atiyah-Singer index density manufactured from the Clifford mod-
ules and connection and where η(DY ) is the eta invariant of DY , to be discussed
more fully in Section 1.2.

Although C is in some sense canonical, it is possible, of course, to choose
other projections onto subspaces in V in (1.4) to define Dirac operators with other
domains. Let T be a self-adjoint isomorphism on V with T 2 = Id. Then T has ±1
eigenvalues. We define DT as the Dirac operator D with domain

(1.5) Dom(DT ) := {u ∈ H1(M,E) ; ΠT
+u|x=0 = 0},

where ΠT
+ := Π+ + Π⊥

T with Π⊥
T the orthogonal projection onto the −1 eigenspace

of T . Such a boundary condition is called an ideal boundary condition. Thus, DAPS

is really just D−C with C the scattering matrix.
Before stating the first result in this paper we make a couple remarks about

some natural objects on M̂ . First, we remark that there is a natural scale of L2

based Sobolev spaces on M̂ , where square integrability means with respect to the

(extended) measure dg on M̂ . In particular, the natural domain of D̂ is H1(M̂,E),

which consists of those sections u on M̂ such that D̂u is L2. Second, we remark

that various classes of pseudodifferential operators on M̂ that preserve these Sobolev
spaces have been developed by many different authors, to name a few, Egorov and
Schulze [17], Melrose [40], Melrose and Mendoza [41], Plamenevskij [50], Rempel
and Schulze [52], and Schulze [54]. These operators are more or less the same (cf.
Lauter and Seiler [26]), but the operators we choose for the purposes of this paper
are the (small calculus of) b-pseudodifferential operators of Melrose, to be explained
in Section 2.2. Of these operators, the b-smoothing operators (b-pseudodifferential
operators of order −∞) will serve as a natural class of “perturbations” in the sequel.

With this background, we are ready to state the first theorem in this paper.

Theorem 1.1. Let D and D̂ be as above and let T be a self-adjoint isomorphism

on V with T 2 = Id. Then there exists a b-smoothing operator T̂ such that the L2

based operator D̂ − T̂ on the complete manifold M̂ and the operator DT on the
compact manifold M have the same index theoretic properties:

(a) ker(D̂ − T̂ ) ∼= kerDT and ker(D̂ − T̂ )∗ ∼= ker(DT )∗.
(b) The operators

D̂ − T̂ : H1(M̂,E) −→ L2(M̂, F ),

DT : Dom(DT ) −→ L2(M,F )

are Fredholm with (by (a)) equal indices.
(c) The following index formula holds:

ind(D̂ − T̂ ) = indDT =

∫

M

AS − 1

2
[η(DY ) − signT ].
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The equality in (a) was proved in joint work with Melrose [33]. In [42], Melrose
and Piazza prove a families index theorem, which in the simplest case when the base
manifold is a point, consists of statements (b) and (c) but with T a very general
finite rank operator (connected with the notion of a spectral section). Therefore,
the equality of indices and the index formula in Properties (b) and (c) are special
cases of Melrose and Piazza’s theorem. In Theorem 3.4, we shall extend the index

formula (c) for ind(D̂ − T̂ ) to a slightly more general class of perturbations.

1.2. Ideal boundary conditions and the eta invariant. The eta invariant
for self-adjoint Dirac operators on odd -dimensional manifolds shares many proper-
ties with the index (cf. Singer [56]) and has also become an area of much interest
since the publication of the seminal work of Atiyah, Patodi, and Singer [5]. Re-
cently, many authors have focused on understanding the decomposition of the eta
invariant under gluing of manifolds. Such “gluing problems” have been investigated
by, for instance, Dai and Freed [15], Müller [45], Wojciechowski [59, 60, 61], Bunke
[13], Lesch and Wojciechowski [27], Mazzeo and Melrose [36], Hassell, Mazzeo, and
Melrose [23], Brüning and Lesch [12], Kirk and Lesch [25], and Loya and Park [34].
For surveys on such “cut and paste” formulas of the eta invariant see Mazzeo and
Piazza [37] or Bleecker and Booß-Bavnbek [9]. One aspect of this gluing prob-
lem involves the eta invariant on a manifold with boundary and its dependence on
boundary conditions. Lagrangian subspaces and ideal boundary conditions come
into the picture in order to get a self-adjoint Dirac operator.

Let D be a Dirac operator as considered in Section 1.1, however we now assume
that E = F and M is odd-dimensional. Of course, we still assume product struc-
tures near the boundary as in (1.1), but now Γ is a unitary isomorphism on EY
only, since E = F . Moreover, Clifford and self-adjointness considerations impose
the following relations:

(1.6) Γ2 = −Id, Γ∗ = −Γ, ΓDY = −DY Γ.

As before, we set V := kerDY . Then the last equality in (1.6) implies that Γ
acts on V . The set of unitary isomorphisms T on V such that ΓT = −T Γ and
T 2 = Id is denoted by L(V ). Such isomorphisms can be constructed as follows.
First, observe that V = V + ⊕ V −, where V ± are the ±i eigenspaces of Γ. Note
that dimV + = dimV − by the cobordism invariance of the index, see Theorem 21.5
of Booß-Bavnbek and Wojciechowski [10]. Then given any unitary isomorphism
T+ : V + −→ V − and setting T− := (T+)−1, the map T := T+ + T− is in
L(V ). Conversely, every element of L(V ) arises in this way. Given T ∈ L(V ),
we denote the +1 eigenspace of T by ΛT . Note that ΓΛT is the −1 eigenspace of
T and that V = ΛT ⊕ ΓΛT is an orthogonal decomposition. One can check that
Ω(v, w) := Re(Γv, w)Y , where v, w ∈ V and where ( , )Y is the L2 inner product
on Y , is a symplectic form on V , and that the subspaces of V that are Lagrangian
with respect to Ω are exactly those of the form ΛT for some T ∈ L(V ). Moreover,
the scattering matrix C is an element of L(V ) with associated Lagrangian ΛC [45].

We now recall the definition of the eta invariant in the context of ideal boundary
conditions as presented in Appendix 1 of Douglas and Wojciechowski [16]. Given
T ∈ L(V ), recall that DT is the Dirac operator D with domain given in (1.5).
Because T ∈ L(V ) and therefore ΛT is Lagrangian, it turns out that the operator
DT is self-adjoint and has real discrete spectrum. If {λj} are the eigenvalues of
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DT , then the eta function of DT ,

(1.7) η(z,DT ) :=
∑

λj 6=0

signλj
|λj |z

,

extends from Re z >> 0 to be a meromorphic function of z ∈ C that is regular at
z = 0. The eta invariant, η(DT ), is defined as the number η(0,DT ). Thus, formally
speaking, “η(DT ) =

∑
λj 6=0 signλj” and hence, η(DT ) is a measure of the spectral

asymmetry of DT .
As the scattering Lagrangian is canonically associated to the Dirac operator,

one can argue that the eta invariant with the augmented APS condition, η(D−C),
provides an “origin” to which to compare eta invariants defined using other La-
grangian subspaces. To support this statement, in [45] Müller proves that η(D−C)

is equal to the b-eta invariant bη(D̂) of the Dirac operator D̂ on the corresponding

cylindrical end manifold M̂ . The b-eta invariant of D̂ is not defined via a formula

of the sort (1.7) because D̂ has continuous and not discrete spectrum (as M̂ is not

compact), but nevertheless is the natural generalization of the eta invariant to M̂ ,
see Section 4. Before presenting our second theorem, we need the following function
introduced by Lesch and Wojciechowski in [27]: For T, S ∈ L(V ), we define

(1.8) m(ΛT ,ΛS) := − 1

iπ

∑

eiθ∈spec(−T−S+)
θ∈(−π,π)

iθ.

Here, T− and S+ are the restrictions of T and S to the −i and +i eigenspaces of
Γ respectively. The second result of this note is the following.

Theorem 1.2. Let D and D̂ be as above and let T ∈ L(V ). Then there exists

a b-smoothing operator T̂ such that DT and the perturbed Dirac operator D̂ − T̂
have the same eta invariant theoretic properties:

(a) ker(D̂ − T̂ ) ∼= ker(DT ).

(b) bη(D̂ − T̂ ) = η(DT ).
(c) The following surgery formula holds:

bη(D̂ − T̂ ) = η(DT ) = η(D−C) +m(ΛT ,ΛC),

where C is the scattering matrix.

The equality
bη(D̂ − T̂ ) = η(D−C) +m(ΛT ,ΛC)

was proved in joint work with Melrose [33].
As a corollary of Theorem 1.2, we obtain a formula for the dependence of the

eta invariant on different Lagrangian subspaces. To this end, let τ denote the triple
Maslov index, defined on a triple (ΛA,ΛB ,ΛC) of Lagrangian subspaces of V by

τ(ΛA,ΛB ,ΛC) := m(ΛA,ΛB) +m(ΛB ,ΛC) +m(ΛC ,ΛA).

Although the function m is real-valued, the triple index is integer-valued, see Bunke
[13] and Lion and Vergne [29]. Theorem 1.2, the definition of τ , and the fact that
m is antisymmetric, imply the following corollary.
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Corollary 1.3. For any T, S ∈ L(V ), we have

η(DT ) − η(DS) = m(ΛT ,ΛS) + τ(ΛT ,ΛC ,ΛS),

where C is the scattering matrix.

1.3. Final remarks and outline of paper. The proofs of Theorem 1.1 and
1.2 use the so-called heat kernel method which relies on taking traces of suitable
heat operators, cf. Mckean and Singer [38], Patodi [48], Atiyah, Bott, and Patodi

[2], and Gilkey [19]. However, since M̂ is not compact, it turns out that the

relevant heat operators are not trace class on M̂ . To overcome this obstacle, we
utilize a regularized trace called the b-trace2 developed by Melrose [40]. In many
respects, the b-trace is the “hero” of this paper: We use it to make non-trace class
heat operators “(b-) trace class;” give a direct derivation of the APS index formula
with the eta invariant emerging as a direct computation from the b-trace’s key
feature, the trace-defect formula; we use it to define the b-eta invariant (without
requiring the Dirac operators to have discrete spectrum), and finally, we use it and
the trace-defect formula to prove the variation formula for the eta invariant via a
direct computation.

The outline of this paper is as follows. We begin this paper in Section 2 by
proving a simplified version of Theorem 1.1 in the case that the boundary Dirac
operator is invertible. We also delve into a detailed study of b-pseudodifferential
operators and we introduce the b-trace and derive its key feature: the trace-defect

formula. In Section 3, we define the b-smoothing perturbation T̂ in Theorem 1.1 and
we prove this theorem via the general index theorem 3.4. The proof of Theorem
1.2 is based on Vishik’s technique of rotating boundary conditions, see Section
1 of [58], originally developed to prove gluing formulas for torsion invariants on
manifolds with boundary. In Section 4, we review this technique as refined by
Brüning and Lesch [12] for the study of eta invariants to prove Theorem 1.2.

In conclusion, I wish to thank Richard Melrose for sharing his insights into
many of these problems, Paolo Piazza for looking over parts of the manuscript, and
Krzysztof Wojciechowski for his support and encouragement in proving Theorem
1.2. I also thank the referee for thoughtful comments, finding many mistakes, and
for very helpful suggestions all of which led to many improvements. Finally, I
thank the organizers of the conference, Bernhelm Booß-Bavnbek, Gerd Grubb, and
Krzysztof Wojciechowski, for allowing me to participate.

2. Transformation to b-objects I

In this section we prove a simplified version of Theorem 1.1 in the case that
the boundary Dirac operator is invertible, which is a special case of Atiyah, Patodi,
and Singer’s classic result [5]. We begin by reviewing the necessary ingredients
and then we move into a detailed study of b-pseudodifferential operators. Next, we
introduce the hero of this paper, the b-trace and its main feature: the trace-defect
formula. Finally, we prove the index formula for the case that the boundary Dirac
operator is invertible. Here we see our first instance of the trace-defect formula in
action in the direct manner in which the eta invariant appears in APS formula.

2The b-trace is almost the same as the relative trace found in Müller [47].
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Figure 1. Attaching the infinite cylinder (−∞, 0]x×Y to M pro-

duces the manifold with cylindrical end M̂ .

2.1. APS and cylindrical ends. We shall work under the same assumptions
and notations introduced in Section 1.1. Thus, letD : C∞(M,E) −→ C∞(M,F ) be
an admissible Dirac operator associated to a Z2-graded Hermitian Clifford module
E⊕F →M over a compact, even-dimensional, Riemannian manifold with boundary
and we assume product structures near the boundary such as in (1.1). We also
assume, for simplicity at least for this section, that DY is invertible (which is
equivalent to saying that it has no kernel). Let Π+ denote the orthogonal projection
onto the eigenspaces of DY corresponding to the positive eigenvalues. Then the
operator D acting on the domain

Dom(DΠ+
) := {u ∈ H1(M,E) ; Π+u|x=0 = 0}

defines the operator DΠ+
with APS boundary conditions.

As noted in [5], we can view the APS boundary condition as an L2 condition

on an enlarged noncompact manifold with cylindrical end M̂ which we now review.

Let M̂ be the manifold formed by taking the infinite cylinder (−∞, 0]x × Y and
gluing it onto the end of the collar [0, 1)x × Y of M as shown in Figure 1:

M̂ = (−∞, 0]x × Y t∂M M.

Then all the geometric structures have natural extensions to the manifold M̂ and
are denoted by the same notations used for the original objects on M except for

the Dirac operator which we denote by D̂. Recall that the natural domain of

D̂ is H1(M̂,E), which consists of those sections u on M̂ such that D̂u is square

integrable with respect to the measure dg on M̂ .

We now show how the L2 kernel of D̂ (the noncompact problem) relates to the

kernel of DΠ+
(the compact problem). With this in mind, let u ∈ C∞(M̂,E) with

D̂u = 0. Let {λj} be the set of eigenvalues of DY , which are real and nonzero, with
corresponding eigenvectors {ϕj} so that DY ϕj = λj ϕj . On the collar (−∞, 0]x×Y
we can expand u in terms of {ϕj} as u =

∑
j uj(x)ϕj(y), and therefore on the collar,

0 = D̂u = Γ(∂x +DY )
( ∑

j

uj(x)ϕj(y)
)

= Γ
∑

j

(
u′j(x) + λjuj(x)

)
ϕj(y),

which implies that for each j, u′j(x) + λj uj(x) = 0, or uj(x) = cje
−λjx for some

constant cj . Since

lim
x→−∞

e−λjx =

{
∞ λj > 0,

0 λj < 0,

it follows that

u ∈ L2(M̂,E) ⇐⇒ cj = 0 for λj > 0 ⇐⇒ Π+u|x=0 = 0.



8 PAUL LOYA

Thus,

(2.1) ker D̂ ∼= kerDΠ+
,

where the left-hand side is the kernel of D̂ on its natural domain. Similarly, one

can show that the kernels of the adjoints are isomorphic: ker D̂∗ ∼= kerD∗
Π+

.

Before stating the APS index theorem for the operators D̂ and DΠ+
, we go into

more depth on the eta invariant than was described in Section 1.2. The original
way to define the eta invariant was through the eta function, η(z), which is defined
as the meromorphic function

(2.2) η(z) =
∑

j

signλj
|λj |z

.

In the general case when DY has a kernel, we only sum over λj 6= 0. Weyl asymp-
totics show that η(z) is holomorphic for Re z > dimY , but one of the main accom-
plishments of [5] was the proof that η(z) in fact defines a meromorphic function on
C that is regular at z = 0. The eta invariant of DY is the value of the eta function
at zero, η(DY ) = η(0), which represents a formal signature of the operator DY :

“ η(DY ) =
∑

j

signλj
|λj |z

∣∣∣∣
z=0

=
∑

j

signλj = #{λj > 0} − #{λj < 0}. ”

The reason for the quotation marks is that there are an infinite number of positive
and negative eigenvalues, so this equation really reads ∞−∞! Nonetheless, η(DY )
can be interpreted as a measurement of the signature or spectral asymmetry of DY .
We can also express the eta function in terms of the heat operator via

(2.3) η(z) =
1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 Tr(DY e
−tD2

Y ) dt,

where Γ(z) is the Gamma function. To see this, we notice that

Tr(DY e
−tD2

Y ) =
∑

j

λj e
−tλ2

j

and that

1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 λj e
−tλ2

j dt =
λj

|λj |z+1
· 1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 e−t dt =
signλj
|λj |z

,

where we made the change of variables t 7→ t/|λj |2. In particular, according to [6],
we can set z = 0 in (2.3) to obtain the following important formula:

(2.4) η(DY ) =
1√
π

∫ ∞

0

t−1/2 Tr(DY e
−tD2

Y ) dt.

The advantage of this formula is that it naturally falls out of the heat kernel proof
of the APS index formula as we shall see in Section 2.5.

We are now ready to state the (simplified) Atiyah-Patodi-Singer index theorem,
which is a special case of Theorem 1.1 when DY is invertible, and hence V = kerDY

is just the zero vector space. The following statement is not how their theorem
originally appeared, but all its content were part of the original paper [5].

Theorem 2.1. Let D be a Dirac operator on an even-dimensional, compact,
oriented, Riemannian manifold with boundary with product type structures specified
as in Section 1.1 and such that the boundary operator DY is invertible. Then
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(a) ker D̂ ∼= kerDΠ+
and ker D̂∗ ∼= kerD∗

Π+
.

(b) The operators

D̂ : H1(M̂,E) −→ L2(M̂, F ),

DΠ+
: Dom(DΠ+

) −→ L2(M,F )

are Fredholm with (by (a)) equal indices.
(c) The following index formula holds:

ind D̂ = indDΠ+
=

∫
AS − 1

2
η(DY ).

We already proved Part (a) around (2.1). For Part (b), the Fredholm property

of D̂ follows from Lemma 2.3 below; for the Fredholm properties of DΠ+
, see [5] or

Booß-Bavnbek and Wojciechowski [10]. We shall prove Part (c) in Section 2.5. To
do so, we use the machinery of Melrose’s b-calculus [40] which we describe next.

2.2. b-pseudodifferential operators. We only describe the so-called “small
over-blown” calculus of b-pseudodifferential operators. There are also “big” calculi
which are useful for establishing Fredholm properties of b-pseudodifferential oper-
ators or for obtaining precise information concerning Green operators, but for the
goals of this paper, these larger calculi are unnecessary.

So what exactly is a b-pseudodifferential operator? Perhaps the best way to
think of a b-pseudodifferential operator is as a usual pseudodifferential operator on

M̂ that is exponentially uniform as x → −∞ on the cylindrical end. As with all
algebras of operators defined on noncompact manifolds, cf. Lockhart and McOwen
[30], Rabinovič [51], and Schrohe [53], we need to have control in asymptotic
behavior at infinity in order to get a well-behaved class of operators. This is no
different in our situation, where we require “exponential asymptotics”. Therefore,
before describing the small calculus, we need to fix the notion of exponential decay.
Later, we shall see that these conditions can be interpreted quite naturally as C∞

conditions on a related compact manifold.
We say that a smooth function u(x, y) on the infinite cylinder (−∞, 0]x × Y

can be expanded exponentially on the cylindrical end if

(2.5) u(x, y) ∼
∞∑

k=0

ekx uk(y) = u0(y) + ex u1(y) + e2x u2(y) + · · · ,

where uk ∈ C∞(Y ) for each k. This asymptotic sum means that for any N ,

(2.6) u(x, y) −
N−1∑

k=0

ekx uk(y) = eNx rN (x, y),

where all derivatives of the remainder rN (x, y) in x and y are bounded. In par-
ticular, u(x, y) = u0(y) modulo an exponentially decaying term. We say that u
vanishes to infinite exponential order on the cylindrical end if u can be expanded
exponentially as x → −∞ with all the uk(y)’s zero; equivalently, u with all its
derivatives vanish faster on the cylindrical end than any exponential power.

Let S(M̂) denote the set of all smooth functions on M̂ that vanish to infinite
exponential order on the cylindrical end. A b-pseudodifferential operator A of order

m ∈ R is a continuous linear map on S(M̂) that has the following properties: Given

any compactly supported ψ ∈ C∞
c (M̂) equal to 1 on M , and smooth ϕ ∈ C∞(M̂)
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supported on the cylindrical end (−∞, 0]x × Y with ϕ(x, y) = 1 for x sufficiently
negative with support disjoint to ψ, we have

(I) (1 − ϕ)A(1 − ϕ) is a usual pseudodifferential operator of order m on M̂ .
(II) ϕAψ is a smoothing operator with an integral kernel KϕAψ(x, y, q), where

(x, y) ∈ (−∞, 0] × Y and q ∈ M̂ , that vanishes to infinite exponential order

as x→ −∞ and is compactly supported in q ∈ M̂ .
(III) ψAϕ is a smoothing operator with an integral kernel KψAϕ(p, x, y), where

p ∈ M̂ and (x, y) ∈ (−∞, 0] × Y , that is compactly supported in p ∈ M̂ and
vanishes to infinite exponential order as x→ −∞.

(IV) Ã = (1−ψ)A(1−ψ) is a pseudodifferential operator on (−∞, 0]×Y satisfying
two “lacunary” type conditions (cf. Hörmander [24]) that we now describe.

First, given a coordinate neighborhood Rn−1
y on the cross section Y and

a compactly supported smooth function ω on Rn−1, for any u ∈ S(M̂) sup-
ported on U = (−∞, 0] × Rn−1, we can write

(2.7)
(
ωÃω

)
u =

∫
ei(x,y)·(τ,η) a(x, y, τ, η) û(τ, η) d̄τ d̄η,

where d̄( ) means to divide by as many 2π’s as there are variables in ( ),
û(τ, η) is the Fourier transform of u(x, y):

û(τ, η) =

∫
e−i(x,y)·(τ,η) u(x, y) dxdy,

and where a(x, y, τ, η) is a symbol in (τ, η) of order m. However, a(x, y, τ, η)
is no standard symbol, we require it to be entire in τ such that given any
constant R, for τ in the strip | Im τ | ≤ R, the following properties hold:
(1) a(x, y, τ, η) is a symbol of order m:

(2.8)
∣∣∣
(
∂x∂y

)α(
∂τ∂η

)β
a(x, y, τ, η)

∣∣∣ ≤ C(1 + |τ | + |η|)m−|β|

where this estimate holds for all (x, y) ∈ U , | Im τ | ≤ R, and η ∈ Rn−1.
(2) a(x, y, τ, η) can be expanded exponentially on the cylindrical end where

the coefficients of ekx and remainder in (2.6) are also symbols of order
m satisfying estimates of the sort (2.8).
Second, given any compactly supported smooth functions ω and ω̃ on

Y with supports in disjoint coordinate patches with coordinates y and ỹ,

respectively, for any u ∈ S(M̂) supported on (−∞, 0] × Y , we can write

(2.9)
(
ωÃ ω̃

)
u =

∫
eix τ a(x, y, ỹ, τ) û(τ, ỹ) d̄τ dh(ỹ),

where û(τ, ỹ) is the Fourier transform of u(x, ỹ) in only the x-variable and
where a(x, y, ỹ, τ) is a symbol in τ of order −∞ satisfying properties (1) and
(2) above (of course, for arbitrary m, and now there are derivatives in the
extra variable ỹ).
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The set of all such operators is denoted3 by Ψm
b (M̂). A b-smoothing operator

is a b-pseudodifferential operator of order −∞. Just like the usual class of pseu-
dodifferential operators on compact manifolds without boundary, the space of all
b-pseudodifferential operators forms a ∗-filtered algebra of operators with the filtra-
tion determined by the principal symbol. One can also define a corresponding space
of classical operators. See [40] for more information. Also, there exist natural

Sobolev spaces Hs(M̂) on M̂ with H0(M̂) = L2(M̂) and if A ∈ Ψm
b (M̂), then A

defines a continuous linear map,

(2.10) A : Hs(M̂) −→ Hs−m(M̂).

We now describe the normal operator, which captures the dominant behavior

of A ∈ Ψm
b (M̂) as x→ −∞. Let a0(y, τ, η) be the first term in the expansion (2.5)

for b(x, y, τ, η) on the cylindrical end. Then b(x, y, τ, η) = a0(y, τ, η) modulo an
exponentially decaying term as x → −∞. The normal or indicial operator of A is
the entire family N(A)(τ) ∈ Ψm(Y ) defined locally by

(2.11) N(A)(τ)ψ =

∫
eiy·η a0(y, τ, η) ψ̂(η) d̄η;

there is a similar formula in disjoint coordinate patches using (2.9). The normal
operator preserves composition:

N(AB)(τ) = N(A)(τ) ◦N(B)(τ)

and in a certain respect, adjoints:

N(A∗)(τ) = N(A)(τ)∗,

where τ is the complex conjugate of τ . Finally, we remark that the normal operator
governs the Fredholm properties of b-pseudodifferential operators, see Mazzeo [35],
Melrose [40], or Loya and Melrose [33]:

Theorem 2.2. Let A ∈ Ψm
b (M̂) with m ∈ R. Then

A : Hm(M̂) −→ L2(M̂)

is Fredholm if and only if A is elliptic and for all τ ∈ R,

N(A)(τ) : Hm(Y ) −→ L2(Y )

is invertible.

Of course, everything that we have said so far for operators on functions works
equally well for operators mapping between sections of vector bundles. We now
consider the Dirac operator, our main example of a b-pseudodifferential operator.

In this case, it is easy to see that D̂ is a first order b-pseudodifferential operator.

Indeed, since D̂ = Γ(∂x +DY ) on the cylinder, given any u supported on a coordi-
nate patch with local coordinates (x, y), writing u as the inverse Fourier transform

3This space usually has a subscript “ob”, Ψm

ob
(M̂), for “over-blown.” When the cross section

Y is disconnected, this is a slightly larger class of operators than described by Melrose in [40];

when Y is connected, this over-blown space is exactly the same as in loc. cit. Finally, we remark

that “over-blown” has to do with the blown-up space X2
b

to be described in Section 2.3.
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of its Fourier transform, we have

D̂u(x, y) = Γ(∂x +DY )

∫
ei(x,y)·(τ,η) û(τ, η) d̄τ d̄η

=

∫
ei(x,y)·(τ,η) Γ(iτ + b(y, η)) û(τ, η) d̄τ d̄η,

where b(y, η) = DY

(
eiy·η

)
is the symbol of DY in local coordinates. The function

Γ(iτ + b(y, η)) is certainly a symbol of order 1 satisfying all of (1) and (2) around

(2.8). Thus, D̂ ∈ Ψ1
b(M̂,E, F ). Moreover, by definition of the normal operator

(2.11),

N(D̂)(τ)ψ =

∫
eiy·η Γ(iτ + b(y, η)) ψ̂(η) d̄η = Γ(iτ +DY )ψ.

Thus,

(2.12) N(D̂)(τ) = Γ(iτ +DY ),

a formula that we shall use later in our proof of the APS theorem. Let EY = E|x=0

and FY = F |x=0. Since DY is self-adjoint,

iτ +DY : Hm(Y,EY ) −→ L2(Y,EY )

is automatically invertible for τ 6= 0 and is invertible at τ = 0 if and only if DY is
invertible. It follows that

N(D̂)(τ) = Γ(iτ +DY ) : Hm(Y,EY ) −→ L2(Y, FY )

is invertible for all τ ∈ R if and only if DY is invertible. Although we have been
working under the even-dimensional assumption, this whole argument works for any
dimensional manifold. Thus, Theorem 2.2 immediately gives the following theorem,
which proves the first part in Part (b) of Theorem 2.1.

Lemma 2.3. Let D be a Dirac operator on a compact Riemannian manifold

with boundary with product type structures near the boundary. Then D̂ is Fredholm
on its natural (that is, Sobolev) domain if and only if DY is invertible.

Of course, in this section we have been assuming that DY is invertible, but the
proof of this lemma does not require this assumption.

2.3. The compact picture. Now what is all this stuff about exponential
asymptotics? Isn’t there a more natural way to describe these operators? There is
such a way, which we now explain. First we need to make a simple campactification

of our noncompact manifold M̂ . On the cylindrical end (−∞, 0]x×Y of M̂ we make
the change of variables r = ex. Notice that as x → −∞, r → 0. Thus, under this

change of variables, M̂ transforms into the interior of the compact manifold with

boundary X, where X has the same compact end as M̂ but with the cylindrical
end (−∞, 0]x × Y replaced with the compact end [0, 1]r × Y , see Figure 2.

Observe that under the change of variables r = ex, the asymptotic expansion
(2.5) transforms to

(2.13) u(x, y) ∼
∞∑

k=0

ekx uk(y)  ũ(r, y) ∼
∞∑

k=0

rk uk(y), ũ(r, y) = u(log r, y);

in other words, ũ(r, y) is smooth in the usual sense at r = 0! (We do have to think
a little about the remainders in (2.6), but this is not difficult.) In particular, u
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compactify

cylindrical end

�

�

Y

M̂

M̂ ∼= (−∞, 0]x × Y X ∼= [0, 1]r × Y

X

x = log r ⇐⇒ r = ex

Figure 2. The compact manifold with boundary X is the com-

pactification of the manifold with cylindrical end M̂ .

vanishes to infinite exponential order just means that ũ vanishes to infinite order
in the usual sense at r = 0! Thus, the “exponential asymptotics” as x → −∞
corresponds to the usual smoothness regularity at r = 0.

We now see how the geometry on M̂ transform to X. Since r = ex, we have
dx = dr/r and ∂x = r∂r, therefore under this change of variables,

g = dx2 + h  g =
(dr
r

)2

+ h,

dg = dx dh  dg =
dr

r
dh,

where the objects on the right are referred to as an (exact) b-metric and b-measure
or b-density, respectively. Also, the Dirac operator transforms to

D̂ = Γ(∂x +DY )  D̂ = Γ(r∂r +DY ),

where the object on the right is referred to as a (first order) b-differential or totally
characteristic operator. Thus, the geometric objects on the manifold with cylin-

drical end M̂ transform into corresponding singular geometric “b-objects” on the
compact manifold with boundary X.

Let us see how b-pseudodifferential operators transform to X. It is customary

to concentrate on the Schwartz kernels. Let A ∈ Ψm
b (M̂). Then, from (2.7), we see

that the Schwartz kernel of A on the product of the cylindrical ends is given by

(2.14) KA(x, y, x′, y′) =

∫
ei(x−x

′,y−y′)·(τ,η) a(x, y, τ, η) d̄τ d̄η,

where a(x, y, τ, η) is a symbol of order m satisfying the “lacunary” type conditions
we discussed and where (x, y) and (x′, y′) denote the same coordinates on the left

and right factors of M̂2. Setting z = (x−x′, y−y′), which define normal coordinates
to the diagonal {z = 0} = {x = x′, y = y′}, we can write

KA =

∫
eiz·(τ,η) a(x, y, τ, η) d̄τ d̄η.

Because z defines normal coordinates to the diagonal, using the terminology of
distributions, we say that KA is conormal to the diagonal. Now making the sub-
stitutions r = ex and r′ = ex

′

, we can transform KA to X2, obtaining

(2.15) KA =

∫
eiw·(τ,η) ã(r, y, τ, η) d̄τ d̄η, w = (s, y − y′), s = log(r/r′),

where ã(r, y, τ, η) = a(log r, y, τ, η) is smooth at r = 0 (see (2.13)). Note that
we cannot interpreted KA as conormal to the diagonal {r = r′, y = y′} since
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r′

r�
�

�
�
�
{r = r′}

CCO “blow up” r = r′ = 0

X2

   

s = log( r

r′
) = log cot θ

k
U

s < 0

s > 0ff

lb = {s = −∞}

rb = {s = ∞}

�
�

�
�
{s = 0}

logarithmic projective coordinates

X2

b

Figure 3. The manifold X2
b is obtained from X2 by blowing-up

(introducing polar coordinates at) r = r′ = 0.

w = (s, y − y′) fails to define normal coordinates to the diagonal at {r = r′ = 0}
where s = log(r/r′) has a “nasty” singularity. However, Melrose [40] showed that
after blowing up the “nasty” set {r = r′ = 0}, the kernel (2.15) can be interpreted
as a conormal distribution. To explain this, we first write X2 near r = r′ = 0:

X2 ∼= [0, 1]r × [0, 1]r′ × Y 2.

We define the b-stretched product X2
b by blowing up the origin {r = r′ = 0} in the

[0, 1]r × [0, 1]r′ factor of X2, which geometrically is just replacing the origin with a
quarter circle, called the front face and denoted by ff ; see Figure 3. Analytically
speaking, X2

b is obtained from X2 by simply introducing polar coordinates at the
origin in the [0, 1]r × [0, 1]r′ factor of X2:

r = ρ cos θ, r′ = ρ sin θ,

where ρ ≥ 0 and 0 ≤ θ ≤ π/2. The right boundary and left boundary, denoted rb
and lb, are where θ = 0 and θ = π/2, respectively. In summary, X2

b ≡ X2 away
from r = r′ = 0 and near r = r′ = 0, by definition, we have

X2
b
∼= [0, ε)ρ × [0, π/2]θ × Y 2, ε > 0.

The face {ρ = 0} × [0, π/2]θ × Y 2 (the quarter circle in Figure 3) is the front face
of X2

b . There are other coordinates we can use instead of polar coordinates. For
instance, instead of using θ = arccot (r/r′), we can use s = log(r/r′), because

s = log
( r
r′

)
= log cot θ ⇐⇒ θ = arccot

( r
r′

)
= arccot(es)

implies that we can use s instead of θ as the angular variable, at least away from
θ = 0. Note that s = 0 corresponds to θ = π/4, s = ∞ to rb, and s = −∞ to
lb. Also, one can check that away from rb and lb, (r, s) can be used as coordinates
instead of (ρ, θ), and in the coordinates (r, s), the coordinate s represents an angular
variable and r the boundary defining function to the front face. Moreover, in view
of Figure 3, it follows that s can be considered a normal coordinate to the set
{r = r′}, considered as a subset of X2

b . This implies that w = (s, y − y′) defines
normal coordinates to the diagonal considered as a subset of X2

b , which we denote
by ∆b. Therefore, in view of the formula (2.15), we see that the Schwartz kernel KA

can be considered conormal to the diagonal ∆b in X2
b ! Furthermore, directly from

the expression (2.15) one can check that KA is smooth at r = 0 and the “lacunary”
condition implies that KA vanishes to infinite order at lb and rb. Summarizing our
discussion (modulo some details that need to be checked), we conclude:
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Geometric definition: Ψm
b (M̂) consists of operators whose

Schwartz kernels are distributions onX2
b conormal to ∆b, smooth

at ff , and vanishing to infinite order at lb and rb.

In this paper we shall work with M̂ leaving the interested reader to check out
Melrose [40] or Mazzeo [35] for this conormal distribution viewpoint.

2.4. The b-trace. We now introduce the star of the show: The b-trace. By

(2.10) any A ∈ Ψ−∞
b

(M̂) defines a continuous linear map

A : L2(M̂) −→ L2(M̂),

but we note that this map is in general not trace class (or even compact). The
b-trace is designed to make b-smoothing operators (b-pseudodifferential operators
of order −∞) trace-class even though they are really not trace-class! Indeed, we
would like to define the trace of A via a Lidskĭı type formula, cf. [28]:

“ Tr(A) =

∫

M̂

KA|∆, ”

where KA denotes the Schwartz kernel of A and ∆ is the diagonal in M̂ × M̂ and

we make the identification M̂ ≡ ∆. The reason for the quotation marks is that
this integral does not exist because the integral over the cylindrical end actually
diverges (in general)! To see this, note that by the definition of b-pseudodifferential
operators, in coordinates (x, y) on the cylindrical end we can write

(2.16) KA|∆ = a0(y) + a1(x, y),

where both a0 and a1 are smooth and a1(x, y) decays like ex as x→ −∞. Therefore,

since
∫ 0

−∞ dx diverges, the integral
∫

M̂

KA|∆ =

∫

(−∞,0]x×Y
KA|∆ dx dh+

∫

M

KA|∆

=

∫

(−∞,0]x×Y
a0(y) dx dh+

∫

(−∞,0]x×Y
a1(x, y) dx dh+

∫

M

KA|∆(2.17)

in general diverges since the first integral on the right does not exist in general,
except of course when a0(y) = 0. This discussion shows that the function a0(y) is
the problem to the non-trace class nature of A. As we all know, one way to solve
a problem is to simply get rid of it, and this is exactly what we shall do in our
situation: We throw out a0(y) in (2.17) to get a convergent integral, which we call
the b-trace of A:

bTrA :=

∫

(−∞,0]x×Y
a1(x, y) dx dh+

∫

M

KA|∆.

In particular, if a0(y) = 0, which happens if A vanishes exponentially at the end of
the cylinder, then KA|∆ = a1(x, y) on the cylinder, so in this case bTrA equals

∫

(−∞,0]x×Y
KA|∆ dx dh+

∫

M

KA|∆ =

∫

M̂

KA|∆,

the trace of A in the usual sense. In the following lemma we show how the b-trace
is related to elementary complex analysis.
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Lemma 2.4. Let A ∈ Ψ−∞
b (M̂). Then for all complex numbers z with Re z > 0,

the operator ezxA is trace class and the integral

F (z) =

∫

M̂

ezxKA|∆

exists. Moreover, F (z) extends from Re z > 0 to be a meromorphic function on the
half-plane Re z > −1 with only a simple pole at z = 0.4 Furthermore, the regular
value of F (z) at z = 0 is just the b-trace of A,

(2.18) bTrA = Regz=0 F (z),

and the residue of F (z) at z = 0 is given in terms of the normal operator of A via

(2.19) Resz=0 F (z) =
1

2π

∫

R

Tr(N(A)(τ)) dτ.

Proof. Let Re z > 0. To see that ezxA is trace class, we write

(2.20) ezxA = ezx/2 ·
(
ezx/2Ae−zx/2

)
· ezx/2.

Now the Schwartz kernel of A in local coordinates on the infinite cylinder is of the
form, see (2.14)

(2.21) KA(x, y, x′, y′) =

∫
ei(x−x

′,y−y′)·(τ,η) a(x, y, τ, η) d̄τ d̄η,

where the primes denote the same coordinates (x, y) but on the right factor of

M̂ × M̂ , and where a(x, y, τ, η) is a symbol of order −∞ satisfying properties (1)
and (2) around (2.8). In these coordinates, it follows that the Schwartz kernel of
Az := ezx/2Ae−zx/2 is given by

KAz
= ezx/2KA(x, y, x′, y′)e−zx

′/2 = e(x−x
′)z/2KA

=

∫
ei(x−x

′)(τ−iz/2)ei(y−y
′)·η a(x, y, τ, η) d̄τ d̄η

=

∫
ei(x−x

′)τei(y−y
′)·η a(x, y, τ + iz/2, η) d̄τ d̄η,(2.22)

where we used the fact that the symbol is entire in τ . It follows that Az is also a
b-smoothing operator. In view of (2.20), the Schwartz kernel of ezxA is given by

KezxA(x, y, x′, y′) = ezx/2 ·KAz
· ezx′/2,

which vanishes exponentially like ezx/2 on the cylinders in both factors of M̂ × M̂ .
Therefore, ezxA is trace class for Re z > 0.

We now verify the properties of F (z). Assuming that Re z > 0, the function
ezx is integrable on (−∞, 0]x and for such z,

∫ 0

−∞
ezx dx =

ezx

z

∣∣∣∣
x=0

x=−∞
=

1

z
.

4It turns out that F (z) extends to be meromorphic on C with only simple poles at the points

0,−1,−2, . . ., but we don’t need this fact.
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Hence, writing KA|∆ as in (2.16), we see that

F (z) =

∫

M̂

ezxKA|∆

=

∫

(−∞,0]x×Y
ezx(a0(y) + a1(x, y)) dx dh+

∫

M

ezxKA|∆

=
1

z

∫

Y

a0(y) dh+

∫

(−∞,0]x×Y
ezxa1(x, y) dx dh+

∫

M

ezxKA|∆,

where both a0 and a1 are smooth and a1(x, y) vanishes like ex as x → −∞. It
follows that F (z) extends to be a meromorphic function on the strip Re z > −1,
with regular value at z = 0 equal to bTrA, and with only a simple pole at z = 0
with residue given by ∫

Y

a0(y) dh.

To show that this integral is related to the normal operator of A, observe that
setting (x, y) = (x′, y′) in (2.21), we obtain

KA(x, y, x, y) =

∫
a(x, y, τ, η) d̄τ d̄η,

so if a0(y, τ, η) is the limiting term in the expansion (2.5) for a(x, y, τ, η) as x→ −∞,
then

(2.23)

∫

Y

a0(y) dh =

∫

Y

∫
a0(y, τ, η) d̄τ d̄η dh(y).

On the other hand, by definition of N(A)(τ) (see (2.11)), we have

KN(A)(τ)(y, y
′) =

∫
ei(y−y

′)·η a0(y, τ, η) d̄η,

which implies that

(2.24) TrN(A)(τ) =

∫

Y

KN(A)(τ)(y, y) dh(y) =

∫

Y

∫
a0(y, τ, η) d̄η dh(y).

Equating (2.23) and (2.24) proves (2.19) and completes the proof. �

It is well-known that the trace functional on genuine (not b-) smoothing opera-
tors on a compact manifold is the unique functional, up to multiplicative constant,
that vanishes on commutators. The formula (2.25) below is sometimes called the
trace-defect formula because it gives a formula for the nonvanishing of the b-trace
on commutators, and hence measures the “non-trace like nature” of the b-trace.

Theorem 2.5. If A ∈ Ψm
b (M̂) and B ∈ Ψm′

b (M̂) with m+m′ = −∞, then

bTr[A,B] =
i

2π

∫

R

Tr ( ∂τN(A)(τ) ◦N(B)(τ) ) dτ(2.25)

= − i

2π

∫

R

Tr (N(A)(τ) ◦ ∂τN(B)(τ) ) dτ.

Proof. Integration by parts shows that the two integrals on the right are
equal. Throughout this proof we assume that A is of order −∞ and we shall prove
the first equality. To prove this theorem, we use Lemma 2.4, which states that

bTr[A,B] = Regz=0 Tr(ezx[A,B]
)
.
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To evaluate the right-hand side, we first rewrite ezx[A,B] as

ezx[A,B] = [ezx, A]B + [A, ezxB].

Since the trace vanishes on commutators when one operator is a bounded operator
and the other is trace class, we have Tr([A, ezxB]) = 0 for Re z > 0, and hence its
analytic continuation at z = 0 is zero also. Therefore, since

[ezx, A]B = ezx[AB − e−zxAezxB] = ezx{AB −A(z)B},
where A(z) = e−zxAezx, we have

(2.26) bTr[A,B] = Regz=0 Tr
(
ezx{AB −A(z)B}

)
.

Writing the Schwartz kernel of A as in (2.21) and using the same computation
found around (2.22), we can write the Schwartz kernel of A(z) as

KA(z) =

∫
ei(x−x

′)τei(y−y
′)·η a(x, y, τ − iz, η) d̄τ d̄η.

It follows that A(z) = e−zxAezx is also a b-pseudodifferential operator of order
−∞ that is holomorphic in z such that A(0) = A. Moreover, if A′(z) denotes the
derivative of A(z) with respect to z, then

KA′(z) = −i
∫
ei(x−x

′)τei(y−y
′)·η ∂τa(x, y, τ − iz, η) d̄τ d̄η,

therefore, by definition of the normal operator,

(2.27) KN(A′(0))(τ) = −i
∫
ei(y−y

′)·η ∂τa(0, y, τ, η) d̄η = −iK∂τN(A)(τ).

Since A(0) = A, expanding A(z) in Taylor series at z = 0, we can write

AB −A(z)B = −zA′(0)B − z2C(z),

where C(z) is a b-smoothing operator that is holomorphic in z. In view of (2.26),
we have

bTr[A,B] = −Regz=0

{
zTr(ezxA′(0)B) + z2 Tr(ezxC(z))

}
.

By Lemma 2.4, the traces on the right have at most simple poles at z = 0, so in
particular, the second term z2 Tr(ezxC(z)) vanishes at z = 0, while for the first
term, by Lemma 2.4, we obtain

bTr[A,B] = −Regz=0 zTr(ezxA′(0)B) = −Resz=0 Tr(ezxA′(0)B)

= − 1

2π

∫

R

TrN(A′(0)B)(τ) dτ = − 1

2π

∫

R

Tr(N(A′(0))(τ)N(B)(τ)) dτ.

By (2.27), we see that N(A′(0))(τ) = −i∂τN(A)(τ), which finishes our proof. �

2.5. The b-proof of the index theorem. We now give Melrose’s proof of
the APS index formula in Theorem 2.1. For this we need the heat operators

e−tD̂
∗D̂ and e−tD̂D̂

∗

,

both of which exist via the usual arguments and moreover, are b-smoothing oper-
ators for t > 0 (see Melrose [40] and Loya [31]). The key idea behind the heat
kernel proof of the index formula is to consider the difference of the heat traces:

“ h(t) = Tr(e−tD̂
∗D̂) − Tr(e−tD̂D̂

∗

). ”
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The reason for the quotation marks is that, as we observed earlier, b-smoothing
operators are in general not trace class; this is true in the present situation too for
the heat operators. However, the following b-object is well-defined:

h(t) = bTr(e−tD̂
∗D̂) − bTr(e−tD̂D̂

∗

),

and we shall use this object instead of the ill-defined one above. We now indicate
how h(t) has the following amazing properties (however, we really only focus on
Property (3)):

(1) lim
t→∞

h(t) = ind D̂

(2) lim
t→0

h(t) =

∫

M

AS

(3) h′(t) = − 1

2
√
π
t−1/2Tr(DY e

−tD2
Y ).

These three facts together with the basic fundamental theorem of calculus easily
prove the APS formula:

ind D̂ = h(∞) = h(0) +

∫ ∞

0

h′(t) dt

=

∫

M

AS +

∫ ∞

0

− 1

2
√
π
t−1/2Tr(DY e

−tD2
Y ) dt

=

∫

M

AS − 1

2
√
π

∫ ∞

0

t−1/2Tr(DY e
−tD2

Y ) dt

=

∫

M

AS − 1

2
η(DY ).

It turns out that the proofs of Property (1) and Property (2) follow basically
the same lines of reasoning as for the corresponding statements in the compact
manifold without boundary case. For this reason, we shall not discuss them in
detail and leave the reader to check Chapters 8 and 9 in [40] for the arguments.
However, we remark that Property (2) follows from the the so-called local index

theorem, which states that for p ∈ M̂ ,

lim
t→0

{
tr e−tD̂

∗D̂(p, p) − tr e−tD̂D̂
∗

(p, p)
}

= AS(p)

uniformly in t, where the lower case tr denotes the fiber-wise trace, and where the
right-hand side really represents the coefficient of the volume form component of
the differential form AS(p), cf. McKean and Singer [38], Gilkey [19], Patodi [48],
Alvarez-Gaumé [1], and Getzler [18]. Note that AS vanishes on the cylindrical end
by our product type hypothesis.

We now prove (3), which is where we see our hero, the b-trace, in action in
the direct manner by which (3) is derived. First, recalling the elementary identity5

5This identity follows from uniqueness of solutions to the heat equation, cf. [40, p. 271].
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D̂∗D̂e−tD̂
∗D̂ = D̂∗e−tD̂D̂

∗

D̂, we take the derivative of h(t):

h′(t) =
d

dt

(
bTr(e−tD̂

∗D̂) − bTr(e−tD̂D̂
∗

)
)

= bTr(−D̂∗D̂e−tD̂
∗D̂ ) + bTr( D̂D̂∗e−tD̂D̂

∗

)

= bTr(−D̂∗e−tD̂D̂
∗

D̂ ) + bTr( D̂D̂∗e−tD̂D̂
∗

)

= bTr( [D̂, D̂∗e−tD̂D̂
∗

] ),

(2.28)

where [D̂, D̂∗e−tD̂D̂
∗

] is the commutator of D̂ and D̂∗e−tD̂D̂
∗

. Second, by the
trace-defect formula, we find

h′(t) = bTr( [D̂, D̂∗e−tD̂D̂
∗

] )

=
i

2π

∫

R

Tr
(
∂τN(D̂)(τ)N(D̂∗)(τ)N(e−tD̂D̂

∗

)(τ)
)
dτ.

Third, we complete the verification of (3) by directly computing the right-hand side

of h′(t) to equal − 1
2
√
π
t−1/2Tr(DY e

−tD2
Y ). To see this, observe that for τ ∈ R, by

the formula (2.12) for the normal operator of D̂, we have

N(D̂)(τ) = Γ(iτ +DY ) and N(D̂∗)(τ) = −(−iτ +DY )Γ∗.

It follows that

N(D̂D̂∗)(τ) = N(D̂)(τ)N(D̂∗)(τ) = Γ(τ2 +D2
Y )Γ∗.

Now it is easily proved from the continuity properties of the normal operator that

N(e−tD̂D̂
∗

)(τ) = e−tN(D̂D̂∗)(τ) = Γe−tτ
2

e−tD
2
Y Γ∗.

Multiplying this with ∂τN(D̂)(τ) = iΓ and N(D̂∗)(τ), we obtain

∂τN(D̂)(τ)N(D̂∗)(τ)N(e−tD̂D̂
∗

)(τ) = iΓ(−iτ +DY )e−tτ
2

e−tD
2
Y Γ∗.

Finally, using the facts that
∫

R
τe−tτ

2

dτ = 0,
∫

R
e−tτ

2

dτ = t−1/2
√
π, and Γ is

unitary, we get our desired result:

h′(t) = bTr( [D̂, D̂∗e−tD̂D̂
∗

] ) =
i

2π

∫

R

Tr
(
∂τN(D̂)(τ)N(D̂∗)(τ)N(e−tD̂D̂

∗

)(τ)
)
dτ

=
i

2π

∫

R

Tr( iΓ(−iτ +DY )e−tτ
2

e−tD
2
Y Γ∗ ) dτ

=
i2

2π
t−1/2

√
π Tr(DY e

−tD2
Y ).

= − 1

2
√
π
t−1/2 Tr(DY e

−tD2
Y ).

3. Transformation to b-objects II

In this section we prove Theorem 1.1. Needless to say, we now drop all as-
sumptions about the invertibility of DY . We start this section by defining the b-

smoothing perturbation T̂ in Theorem 1.1 and then we relate the kernels of D̂− T̂
and DT . One of the main goals in this section is to prove the general index theorem
3.4 from which the index formula in Theorem 1.1 follows. The direct (but somewhat
complicated) computation of the eta invariant portion of the general index formula
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(3.8) boils down once again to the trace-defect formula. We end this section by
proving this general index formula.

3.1. Definition of T̂ . We begin by defining the b-smoothing perturbation T̂

in Theorem 1.1. Let D and D̂ be as in Section 1.1 and let T be a self-adjoint
isomorphism on V = kerDY with T 2 = Id.

The b-smoothing operator T̂ is really very simple to define. First, we define an
auxiliary b-smoothing operator on the half-line (−∞, 0]. Let χ ∈ C∞(R), where
χ(x) = 1 for x ≤ −2 and χ(x) = 0 for x ≥ −1. Let ϕ ≥ 0 be a smooth compactly
supported even function on R with ϕ(0) > 0. Then ϕ̂(τ) is an even entire function.
Define Q ∈ Ψ−∞

b ((−∞, 0]) by

(3.1) Qu = χ(x)

∫

R

eixτ ϕ̂(τ) χ̂u(τ) d̄τ,

where χ̂u is the Fourier transform of χu:

χ̂u(τ) =

∫

R

e−ixτ χ(x)u(x) dx.

The Schwartz kernel of Q is

KQ = χ(x) ·
∫

R

ei(x−x
′)τ ϕ̂(τ) d̄τ · χ(x′).

Since ϕ is compactly supported, ϕ̂(τ) vanishes to infinite order as |τ | → ∞ for
| Im τ | within any fixed bound and therefore, Q ∈ Ψ−∞

b ((−∞, 0]) by definition of

this space. Moreover, since ϕ is even, ϕ̂(τ) is also even, so KQ(x, x′) = KQ(x′, x),
which implies that Q is self-adjoint. Finally, by definition of the normal operator,
we have

N(Q)(τ) = ϕ̂(τ).

Second, we note that T is a smoothing operator. To see this, observe that we
can identify T : V −→ V with T ◦ π : L2(Y,EY ) −→ V , with π the orthogonal
projection of L2(Y,EY ) onto V . Since V ⊂ C∞(Y,EY ) is finite dimensional it
follows that T is a (finite rank) smoothing operator.

Third, we define the b-smoothing operator T̂ ∈ Ψ−∞
b (M̂,E, F ) supported on

the cylindrical end (−∞, 0]x × Y by

(3.2) T̂ = ΓQ2T ∈ Ψ−∞
b (M̂,E, F ),

where Q is the self-adjoint operator given in (3.1). Note that T acts on the cross
section Y while Q acts on the cylinder part (−∞, 0]x, and Γ simply maps E to F .

The normal operator of T̂ is given by

(3.3) N(T̂ )(τ) = N(ΓQ2T )(τ) = ΓN(Q)(τ)2T = Γ ϕ̂(τ)2T.

Now to the proof of Theorem 1.1. We shall prove Property (a) of Theorem 1.1
in Section 3.2 and then Properties (b) and (c) in Section 3.3.

3.2. Relation of kernels and indices of D̂− T̂ and DT . Throughout this

section we denote the +1 eigenspace of T by ΛT . To prove that ker(D̂−T̂ ) ∼= kerDT

and ker(D̂ − T̂ )∗ ∼= kerD∗
T , we start off with the following lemma.
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Lemma 3.1. If T is a self-adjoint linear map on V and W is a subspace of V ,
then given any v0 ∈W , the boundary value problem

v ∈ H1((−∞, 0], V ),
(
∂x −Q2T

)
v = 0, v|x=1 = v0,

has a non-trivial solution if and only if v0 ∈ ΛT ∩W , in which case, the solution is
unique and also takes values in ΛT ∩W .

Proof. We can decompose ΛT as ΛT = U0 ⊕ U1, where U0 = ΛT ∩W and
U1 is the orthogonal complement in ΛT of U0. Thus, we can decompose the vector
space V and matrix T as

V = U0 ⊕ U1 ⊕ Λ⊥
T , T = Id ⊕ Id ⊕−Id.

Since we can decompose any element of H1((−∞, 0], V ) into functions taking values
in U0, U1, and Λ⊥

T , our lemma is proved once we show that there are exactly dim(U0)
non-trivial solutions to the boundary value problem

(3.4) v ∈ H1((−∞, 0], V ),
(
∂x −Q2T

)
v = 0, v|x=1 ∈W

if v takes values in U0, and has no solutions otherwise. First suppose that v takes
values in Λ⊥

T . Since T = −1 on Λ⊥
T , we have

(3.5)
(
∂x +Q2

)
v(x) = 0.

By choosing a basis for W , we may assume that v is a scalar function. Also, since
∂x and Q are real, we may assume that v is a real-valued function. Since v is an L2

solution of (3.5), elementary use of the Fourier transform can be used to show that

v(x) → 0 as x → −∞. This implies that
∫ 0

−∞ v′ vdx = 1
2v(0)2. Thus, multiplying

(3.5) by v dx, integrating from −∞ to 0, and using that Q is self-adjoint, we obtain

(3.6)
1

2
v(0)2 +

∫
|Qv|2dx = 0.

Thus, v(0) = 0 and Qv = 0. Setting Qv = 0 in (3.5), we see that v must be
constant. As v(0) = 0, v must be the constant 0.

Now suppose that v takes values in U1. Since U1 ∩W = 0 and since v(0) ∈W ,
we have v(0) = 0. By choosing a basis for U1, we may assume that v is a scalar
function, and assuming as before that v is real, a similar argument used to prove
(3.6) shows that

1

2
v(0)2 −

∫
|Qv|2dx = 0.

Since v(0) = 0, Qv = 0. Arguing as in the previous case shows that v = 0.
Thus, we are left with the case that v takes values in U0. As before, we may

assume that v is a scalar function by choosing a basis for U0, in which case v is in
the kernel of the one-dimensional operator

A = ∂x −Q2 on (−∞, 0].

So, once we show that dim kerA = 1 on H1((−∞, 0]), our proof is complete. More-
over, since Q = 0 near x = 0, a function in kerA must be constant near x = 0, so
for purposes of investigating kerA, we can put Neumann boundary conditions at
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x = 0. Recall that the normal operator of A is invertible for all real parameters.
Thus, Theorem 2.2 implies that6

A : H1((−∞, 0]) −→ L2((−∞, 0])

is Fredholm. Now observe that

A∗ = −∂x −Q2,

as an operator, together with the Dirichlet boundary condition at x = 0. The same
argument used to prove that there are no solutions to (3.5) proves that kerA∗ = {0}.
Since A is Fredholm, it follows that indA = dim kerA. Thus, it remains to show
that indA = 1. To see this, consider equation (3.1) for Q:

Qu = χ(x)

∫

R

eixτ ϕ̂(τ) χ̂u(τ) d̄τ

and consider the following deformation of Q:

Qtu = χ(x)

∫

R

eixτ ϕ̂(tτ)2 χ̂u(τ) d̄τ, t ∈ [0, 1].

Then, since N(∂x−Qt)(τ) = −iτ−ϕ̂(tτ)2 is invertible for all 0 ≤ t ≤ 1 and τ ∈ R, it
follows that ∂x−Qt is a continuous family of Fredholm operators for each 0 ≤ t ≤ 1.
Equating the indices at t = 1 and t = 0, we obtain indA = ind(∂x − χ2). Again
using the fact that the index is stable under compact perturbations, we can replace
χ2 with H, where H(x) = 1 for x ≤ −1, and H(x) = 0 for x > −1 and conclude

that indA = ind Ã, where Ã = ∂x −H. Since Ã∗ = −∂x −H, the same argument
used to prove that there are no solutions to (3.5) proves that ker Ã∗ = {0}. Suppose

that Ãf = 0. Then,
∂xf −H(x)f = 0.

Solving this equation, we find that for some c ∈ C, f = c ex for x ≤ −1 and
f = c e−1 for x > −1. Thus, dim ker Ã = 1. Hence, indA = 1. �

We now come to the main theorem in this section.

Theorem 3.2. The kernels DT and D̂− T̂ are canonically isomorphic. In fact,
each is canonically isomorphic to (ΛT ∩ ΛC) ⊕ kerD−C . In particular,

dim kerDT = dim ker(D̂ − T̂ ) = dim(ΛT ∩ ΛC) + dim kerD−C .

Proof. We first prove that kerDT is isomorphic to (ΛT ∩ΛC)⊕kerD−C , then

we prove the same for D̂ − T̂ .
Proof for DT : If u ∈ kerDT , then Du = 0 and ΠT

+u|x=0, so that Π+u|x=0 = 0

and Π⊥
T u|x=0 = 0. In particular, Π0u|x=0 ∈ ΛT . On the other hand, since Du = 0

and Π+u|x=0 = 0, by definition of ΛC , Π0u|x=0 ∈ ΛC . Thus, Π0u|x=0 ∈ ΛT ∩ ΛC .
The previous paragraph implies that kerDT can be identified with the space

of pairs (v, w) in

(ΛT ∩ ΛC) ⊕ {w ∈ H1(M,E) ; Dw = 0, Π+w|x=0 = 0}
such that v = ΠCw|x=0. Denote this space by U . To see that U ∼= (ΛT ∩ ΛC) ⊕
kerD−C , consider the map A 3 (v, w)

π17−→ v ∈ ΛT ∩ ΛC . Since v = ΠCw|x=0,
and since ΠC = Π⊥

−C , the kernel of this map is exactly kerD−C . This map is also

6Of course, here we have an extra boundary at x = 0 but this is the “compact end” where Q

vanishes and the usual elliptic theory can be implemented.
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surjective, for if v ∈ ΛT ∩ ΛC , then by definition of ΛC , there is a w ∈ H1(M,E)
with Dw = 0 and Π+w = 0 such that v = ΠCw|x=0. Thus, the following sequence
is exact:

0 −→ kerD−C −→ U
π1−→ ΛT ∩ ΛC −→ 0.

This proves our theorem for DT .

Proof for D̂ − T̂ : Suppose that u ∈ ker D̂. Let {ϕj} ⊂ C∞(Y,EY ) be the
eigenvectors of DY with corresponding real eigenvalues {λj}. Then on the product

decomposition, M̂ ∼= (−∞, 0]x × Y , we can write u =
∑
j fj(x)ϕj(y) for some

fj ∈ L2((−∞, 0]). Since D̂ = Γ[∂x + DY ] on the collar and since D̂u = 0, one
concludes that fj(x) = 0 if λj ≥ 0, and fj(x) = cje

−λjx if λj < 0, where cj is a
constant. Thus, u =

∑
λj<0 cje

−λjxϕj(y) on the collar. Since T acts only on V ,

and since T̂ is supported on the collar, it follows that T̂ u = 0. Thus, (D̂− T̂ )u = 0

and u ∈ ker(D̂ − T̂ ).

Suppose that u ∈ ker(D̂ − T̂ ) \ ker D̂. Then, as D̂ − T̂ = Γ[∂x + DY ] − T̂

and T̂ acts only on the kernel of DY , as in the previous paragraph one can show
that on the collar, u = v(x, y) +

∑
λj<0 cje

−λjxϕj(y), where v(x, y) 6= 0 takes

values in V and [Γ(∂x) − T̂ ]v = 0. Since T̂ is supported on (−∞,−1], v(x, y)

must be constant off the support of T̂ . Now define v̂ = u off of the collar and

v̂ = v(0, y) +
∑
λj<0 e

−λjxcjϕj(y) on the collar. Then v̂ and D̂v̂ = 0. Thus,

by definition of the scattering Lagrangian, v(0, y) ∈ ΛC . Thus, v is a non-trivial
solution to the boundary value problem

[Γ(∂x) − T̂ ]v = 0, v|x=0 ∈ ΛC .

By Lemma 3.1, there are exactly dim(ΛT ∩ ΛC) independent solutions to this
boundary value problem, occurring only when v ∈ ΛT ∩ ΛC . It follows that

ker(D̂ − T̂ ) \ ker D̂ ≡ ΛT ∩ ΛC . Finally, by definition of the scattering Lagrangian

(see (1.3)) it follows that ker D̂ ≡ kerD−C . Thus, ker(D̂−T̂ ) ≡ (ΛT∩ΛC)⊕kerD−C
and our proof is now complete. �

Remark 3.3. A similar proof can be used to show that the kernels of the

adjoints (DT )∗ and (D̂ − T̂ )∗ are canonically isomorphic. The exact same proof
gives the same result in case M is odd-dimensional.

3.3. Proof of Theorem 1.1 and a general index theorem. We are now
ready to prove Theorem 1.1. We begin by recalling Theorem 1.1, which states

that there exists a b-smoothing operator T̂ such that DT and the perturbed Dirac

operator D̂ − T̂ have the same index theoretic properties:.

(a) ker(D̂ − T̂ ) ∼= kerDT and ker(D̂ − T̂ )∗ ∼= ker(DT )∗.
(b) The operators

D̂ − T̂ : H1(M̂,E) −→ L2(M̂, F ),

DT : Dom(DT ) −→ L2(M,F )

are Fredholm with (by (a)) equal indices.
(c) The following index formula holds:

(3.7) ind(D̂ − T̂ ) = indDT =

∫

M

AS − 1

2
[η(DY ) − signT ].
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Theorem 3.2 (see also Remark 3.3) proves Part (a), so we just need to prove
Parts (b) and (c). The statement about DT in Property (b) follows from work in,
for instance, Atiyah, Patodi, and Singer [5] or Booß-Bavnbek and Wojciechowski

[10], so we shall omit the proof of this fact. The Fredholm property of D̂ − T̂ in
Property (b) and the formula (3.7) follow from the next theorem, whose proof is
found in Sections 3.4 and 3.5.

Theorem 3.4. Let R ∈ Ψ−∞
b (M̂,E, F ) and suppose that N(R)(τ) = ΓR̃(τ),

where R̃(τ) ∈ Ψ−∞(Y,EY ) is self-adjoint for τ ∈ R, and if RY = R̃(0), then
DY +RY is invertible. Then

D̂ +R : H1(M̂,E) −→ L2(M̂, F )

is Fredholm and its index is given by

(3.8) ind(D̂ +R) =

∫

M

AS − 1

2
η(DY +RY ),

where AS is the Atiyah-Singer density and η(DY + RY ) is the eta invariant of
DY +RY , defined through any of the definitions (2.2), (2.3), (2.4), for instance,7

(3.9) η(DY +RY ) =
1√
π

∫ ∞

0

t−1/2 Tr( (DY +RY )e−t(DY +RY )2 ) dt.

Remark 3.5. The index formula (3.8) is similar to Melrose and Piazza’s cel-
ebrated families index theorem [42, Th. 1] in the simplest case when the base
manifold is a point. In this case (cf. Lemmas 8 and 9 in [42]), they consider a

b-smoothing operator of the form like our T̂ in (3.2), but where T in (3.2) is a
very general finite rank operator adapted to a finite rank perturbation of the APS
projection Π+ connected with the notion of a spectral section.

To see that D̂ +R is Fredholm, we observe that

N(D̂ +R)(τ) = Γ(iτ +DY ) + ΓR̃(τ) = Γ(iτ +DY + R̃(τ)).

For τ ∈ R, the operator DY + R̃(τ) is self-adjoint, so N(D̂+R)(τ) is automatically
invertible for τ ∈ R not zero and is invertible at τ = 0 if and only if

DY +RY : Hm(Y,EY ) −→ L2(Y,EY )

is invertible. But this is invertible by assumption, therefore D̂ + R is Fredholm.
The proof of the index formula (3.8) is given in Section 3.5 after we prove some
preliminary lemmas in Section 3.4.

Let us apply Theorem 3.4 to prove (b) and (c) above. Recall from (3.3) that

N(T̂ )(τ) = Γ ϕ̂(τ)2T.

Then ϕ̂(τ)2T ∈ Ψ−∞(Y,EY ) is self-adjoint for τ ∈ R and since ϕ̂(0) =
∫
ϕ(x) dx >

0 (recall that ϕ ≥ 0 with ϕ(0) > 0) and T is an isomorphism on V = kerDY ,

DY − ϕ̂(0)2T : Hm(Y,EY ) −→ L2(Y,EY )

is invertible. Thus, according to Theorem 3.4, D̂ − T̂ is Fredholm and

ind(D̂ − T̂ ) =

∫

M

AS − 1

2
η(DY − ϕ̂(0)2T ).

7It may not be entirely obvious that the integral (3.9) is well-defined, but we shall see this

integral is well-defined in Proposition 3.9.
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If {λj} denotes the eigenvalues of DY and {µj} those of the finite dimensional
matrix T , then the eta function of DY − ϕ̂(0)2T is

∑

λj 6=0

signλj
|λj |z

−
∑

j

signµj
|µj |z

,

which implies that

η(DY − ϕ̂(0)2T ) = η(DY ) − signT.

This completes the proof of Theorem 1.1.

Remark 3.6. The proof that D̂ − T̂ is Fredholm also works when M is odd-

dimensional. However, in this case D̂ − T̂ is self-adjoint so has trivial index.

3.4. Preliminary lemmas for the general index formula. The following
lemmas will be used in the next section to prove the general index formula (3.8).

Lemma 3.7. Given any S ∈ Ψ−∞(Y,EY ), we have

e−t(D
2
Y +S) = e−tD

2
Y + t T (t),

where T (t) ∈ C∞([0,∞);Ψ−∞(Y,EY )). Moreover, if S depends continuously on
parameters, then so does T (t).

Proof. With F (t) = e−t(D
2
Y +S) − e−tD

2
Y , we obtain

(∂t + (D2
Y + S))F (t) = −Se−tD2

Y .

As F (0) = 0, by Duhamel’s Principle, F (t) = −
∫ t
0
e−(t−s)(D2

Y +S)Se−sD
2
Y ds. Since

S ∈ Ψ−∞(Y,EY ), we have Se−sD
2
Y ∈ C∞([0,∞)s; Ψ

−∞(Y,EY )) by the proper-

ties of the heat operator e−sD
2
Y . It follows that F (t) = t T (t), where T (t) ∈

C∞([0,∞);Ψ−∞(Y,EY )). By our proof, it follows that if S depends continuously
on parameters, then so does T (t). �

Remark 3.8. We have stated this theorem for operators on Y because we will
use this lemma immediately in Lemma 3.10, but this argument works equally well

on M̂ : Given any S ∈ Ψ−∞
b (M̂,E), we have

e−t(D̂
∗D̂+S) = e−tD̂

∗D̂ + t T (t),

where T (t) ∈ C∞([0,∞);Ψ−∞
b (M̂,E)). Moreover, if S depends continuously on

parameters, then so does T (t). A similar statement holds for e−t(D̂D̂
∗+S) when

S ∈ Ψ−∞
b (M̂, F ).

Proposition 3.9. If S ∈ Ψ−∞(Y,EY ) is self-adjoint, then the eta integral

(3.10) η(DY + S) =
1√
π

∫ ∞

0

t−1/2 Tr( (DY + S)e−t(DY +S)2 ) dt

is absolutely convergent.

Proof. Since DY +S is elliptic and Y is compact without boundary, DY +S is

Fredholm, so the usual arguments [40, Ch. 9] show that Tr( (DY + S)e−t(DY +S)2 )
decays exponentially as t→ ∞.

We now prove that t−1/2 Tr ((DY +S)e−t(DY +S)2) is also absolutely integrable

near t = 0. If S̃ = DY S + SDY + S2 ∈ Ψ−∞(Y,EY ), then e−t(DY +S)2 =
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e−t(D
2
Y +S̃). Thus, by Lemma 3.7, e−t(DY +S)2 = e−tD

2
Y + t T (t), where T (t) ∈

C∞([0,∞);Ψ−∞(Y,EY )). Therefore,

(DY + S)e−t(DY +S)2 = DY e
−tD2

Y +K(t),

whereK(t) = Se−tD
2
Y +t(DY +S)T (t). Note thatK(t) ∈ C∞([0,∞);Ψ−∞(Y,EY )),

which implies that Tr(K(t)) ∈ C∞([0,∞)t), and therefore t−1/2 Tr(K(t)) is abso-
lutely integrable near t = 0. By the ‘local index theorem for odd-dimensional

manifolds’, see Bismut and Freed [6] or Melrose [40, Th. 8.36], Tr(DY e
−tD2

Y ) ∈
t1/2C∞([0,∞)t). Thus, t−1/2 Tr ((DY +S)e−t(DY +S)2) is integrable near t = 0. �

We need two more lemmas before presenting the proof of the general index
formula (3.8). These proofs can be skipped without losing continuity.

Lemma 3.10. Let A(r, τ) = DY +T (r, τ), where T (r, τ) is continuous in (r, τ) ∈
[0, 1]×R and bounded as a function with values in Ψ−∞(Y,EY ). Assume that T (r, τ)
is self-adjoint and A(r, τ) is invertible for all (r, τ) ∈ [0, 1] × R. Let

(1) B(r, τ) = A(r, τ), or let
(2) B(r, τ) be continuous in (r, τ) ∈ [0, 1]×R and bounded as a function with values

in Ψ−∞(Y,EY ).

Then for all (r, τ) ∈ [0, 1] × R, the integral

η(r, t) =

∫

R

Tr(B(r, τ)e−tτ
2

e−tA(r,τ)2) dτ

exists as an absolutely convergent integral and η(r, t) decays exponentially as t→ ∞
and is O(t−1/2) as t→ 0, both uniformly in r ∈ [0, 1].

Proof. We begin by splitting up the integral into the parts where the inte-
gration variable is bounded and unbounded:

η(r, t) = η1(r, t) + η2(r, t),

where, provided the following integrals exist,

η1(r, t) =

∫

|τ |≥1

Tr(B(r, τ)e−tτ
2

e−tA(r,τ)2) dτ,

η2(r, t) =

∫

|τ |≤1

Tr(B(r, τ)e−tτ
2

e−tA(r,τ)2) dτ.

We shall analyze each of these integrals separately. Consider first the analysis of

η1. For this, we need some bounds on the heat operator e−tτ
2

e−tA(r,τ)2 . Since
A(r, τ) = DY + T (r, τ) is self-adjoint and invertible, the operator (DY + T (r, τ))2

is positive, so we can write

(3.11) e−tA(r,τ)2 =
i

2π

∫

Υ

e−tλ
(
(DY + T (r, τ))2 − λ

)−1

dλ

where Υ is any counter-clockwise contour in the complex plane around the positive
real axis. Since T (r, τ) is continuous in (r, τ) ∈ [0, 1] × R and is bounded as a
function with values in Ψ−∞(Y,EY ), the explicit resolvent construction in, for
example Grubb [20], Grubb and Seeley [21], or Loya [31], shows that we can write

((DY + T (r, τ))2 − λ)−1 = Q(λ) +R(r, τ, λ),

where Q(λ) is a pseudodifferential operator of order −2 living in an appropriate
parameter-dependent pseudodifferential calculi, and where R(r, τ, λ) is continuous
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in (r, τ) ∈ [0, 1] × R and is bounded as a function with values in Ψ−∞(Y,EY ) and
decays in λ to order −1 uniformly as |λ| → ∞ in sectors bounded away from the
positive real axis. Using the contour integral (3.11) and repeated integration by

parts, one can show that for any ε > 0, the heat operator e−tA(r,τ)2 is of the form
eεt× a function that is continuous in (r, τ) ∈ [0, 1]×R and is bounded as a function
with values in Ψ−∞(Y,EY ). With this fact established, we can now analyze η1(r).
Observe that∫

|τ |≥1

e−tτ
2

dτ =
2√
t

∫ ∞

√
t

e−τ
2

dτ ≤ 2√
t

∫ ∞

√
t

τe−τ
2

dτ =
2√
t
e−t.

It follows that for any 0 < ε < 1, for some constant C we have∣∣∣∣∣

∫

|τ |≥1

Tr(B(r, τ)e−tτ
2

e−tA(r,τ)2) dτ

∣∣∣∣∣ ≤
C√
t
e(ε−1)t.

The function on the right decays exponentially as t→ ∞ and is O(t−1/2) as t→ 0,
both uniformly in r ∈ [0, 1].

We now analyze η2:

(3.12) η2(r, t) =

∫

|τ |≤1

Tr(B(r, τ)e−tτ
2

e−tA(r,τ)2) dτdt.

First of all, we note that since A(r, τ) is by assumption continuous in (r, τ) ∈
[0, 1] × R and invertible, it follows that e−tA(r,τ)2 vanishes exponentially as t→ ∞
uniformly in (r, τ) ∈ [0, 1] × R. In particular, the integral (3.12) defining η2(r, t)
is absolutely convergent for t integrated over [1,∞). Thus, it remains to analyze
the integral (3.12) for t over the bounded interval [0, 1]. If B(r, τ) is continuous in
(r, τ) ∈ [0, 1] × R and is bounded as a function with values in Ψ−∞(Y,EY ), then
the integrand of η2(r, t) involves the trace of an operator of order −∞; this trace is
certainly a continuous function of (r, τ) ∈ [0, 1]× [−1, 1] and t ∈ [0, 1]. Suppose now
that B(r, τ) = A(r, τ) = DY +T (r, τ). Since A(r, τ)2 = D2

Y +R(r, τ) where R(r, τ)
is continuous in (r, τ) ∈ [0, 1] × R with values in Ψ−∞(Y,EY ), according to our
Lemma 3.7, for some S(r, τ, t) that is continuous in (r, τ, t) ∈ [0, 1] × ×R × [0,∞)
with values in Ψ−∞(Y,EY ), we can write

e−tA(r,τ)2 = e−tD
2
Y + t S(r, τ, t).

Hence, we can write

Tr(A(r, τ)e−tA(r,τ)2) = Tr(DY e
−tD2

Y ) + t S̃(r, t, τ),

where S̃(r, τ, t) is continuous in (r, t, τ) ∈ [0, 1]×R× [0,∞). Since Tr(DY e
−tD2

Y ) =
O(

√
t) near t = 0 (the ‘local index theorem for odd-dimensional manifolds’) it

follows that the integral (3.12) decays exponentially as t → ∞ and is O(t−1/2) as
t→ 0, both uniformly in r ∈ [0, 1]. Our proof is now complete. �

We need one more lemma.

Lemma 3.11. For r ∈ [0, 1] and t > 0, define

ζ(r, t) =

∫

R

Tr((DY + R̃(rτ))e−tτ
2

e−t(DY +R̃(rτ))2) dτ

−
∫

R

Tr(τ∂τ R̃(rτ) e−tτ
2

e−t(DY +R̃(rτ))2) dτ,
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where R̃(τ) is given in Theorem 3.4. Then

(3.13)
d

dr
ζ(r, t) =

d

dt

{
2tr

∫

R

Tr(τ∂τ R̃(rτ) e−tτ
2−t(DY +R̃(rτ))2 ) dτ

}
.

Proof. This proof is similar to that found in Melrose and Piazza [42, Prop.
13]. First of all, by Lemma 3.10, both integrals defining ζ(r, t) is absolutely con-

vergent. To simplify the above formulas, define B = B(r, t, τ) = t1/2(DY + R̃(rτ))
and L = 2t1/2∂t − t−1/2τ∂τ . Then it is a straightforward to show that LB =

DY + R̃(rτ) − (τ∂τR)(rτ). Hence, we can write

ζ(r, t) =

∫

R

Tr(LB e−tτ
2−B2

) dτ.

We now prove (3.13). To simplify notation, we shall denote derivatives with respect
to r by dots. Observe that

(3.14) ζ̇(r, t) =

∫

R

Tr(LḂ e−tτ
2−B2

) dτ +

∫

R

Tr

(
LB

d

dr
e−tτ

2−B2

)
dτ.

By Duhamel’s principle, the second term on the right is given by

(3.15)

∫

R

Tr

(
LB

d

dr
e−tτ

2−B2

)
dτ =

−
∫

R

∫ 1

0

e−tτ
2

Tr(LB e−uB
2

(Ḃ ·B +B · Ḃ)e−(1−u)B2

) dudτ.

Plugging in L = 2t1/2∂t − t−1/2τ∂τ and then integrating by parts in the τ variable
shows that the first term on the right-hand side of (3.14) is

∫

R

Tr(LḂ e−tτ
2−B2

) dτ =

d

dt

{∫

R

Tr(2t1/2Ḃ e−tτ
2−B2

) dτ

}
−

∫

R

Tr(Ḃ Le−tτ
2−B2

) dτ.

One can check that Le−tτ
2−B2

= e−tτ
2

Le−B
2

, so Duhamel’s principal applied to
the second term on the right of this equation gives

(3.16)

∫

R

Tr(LḂ e−tτ
2−B2

) dτ =
d

dt

{∫

R

Tr(2t1/2Ḃ e−tτ
2−B2

) dτ

}

+

∫

R

∫ 1

0

e−tτ
2

Tr(Ḃ e−uB
2

(LB ·B +B · LB)e−(1−u)B2

) dudτ.

Combining (3.16) and (3.15) and using the fact that the trace vanishes on commu-
tators, we arrive at

ζ̇(t, r) =
d

dt

{∫

R

Tr(2t1/2Ḃ e−tτ
2−B2

) dτ

}
.

Finally, using the definition of B, we get (3.13). �
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3.5. Proof of the general index theorem 3.4. The proof of the general

index formula (3.8) in Theorem 3.4 proceeds as in Section 2.5. Define A = D̂ + R
and consider the difference of the heat b-traces

h(t) = bTr(e−tA
∗A) − bTr(e−tAA

∗

).

We shall prove that h(t) has following amazing properties:

(1) lim
t→∞

h(t) = ind(D̂ +R)

(2) lim
t→0

h(t) =

∫

M

AS

(3)

∫ ∞

0

h′(t) dt = −1

2
η(DY +RY ).

We verify these properties one by one. Now just as in the invertible boundary
operator case (Section 2.5), Property (1) follows from the “standard” theory [33,
Appendix]. Consider Property (2). To prove this, we first observe that

A∗A = (D̂ +R)∗(D̂ +R) = D̂∗D̂ + S,

where S = R∗D̂ + D̂∗R + R∗R ∈ Ψ−∞
b (M̂,E). Second, we apply Remark 3.8 to

conclude that

e−tA
∗A = e−tD̂

∗D̂ + t T1(t),

where T1(t) ∈ C∞([0,∞);Ψ−∞
b (M̂,E)). Applying the same arguments to AA∗, we

obtain a similar conclusion:

e−tAA
∗

= e−tD̂D̂
∗

+ t T2(t),

where T2(t) ∈ C∞([0,∞);Ψ−∞
b (M̂, F )). It follows that

h(t) = bTr(e−tA
∗A) − bTr(e−tAA

∗

)

= bTr(e−tD̂
∗D̂) + t bTr(T1(t)) − bTr(e−tD̂D̂

∗

) − t bTr(T2(t))

= bTr(e−tD̂
∗D̂) − bTr(e−tD̂D̂

∗

) + O(t).

Therefore, by the local index theorem as discussed in Section 2.5, we obtain

lim
t→0

h(t) = lim
t→0

(
bTr(e−tD̂

∗D̂) − bTr(e−tD̂D̂
∗

)
)

=

∫

M

AS

as required, and (2) is proved.
It remains to prove Property (3) where we again see the b-trace in action.

Following the exact same argument as we did in (2.28), we obtain

h′(t) = bTr( [A,A∗e−tAA
∗

] ),

which, by the trace-defect formula, is given by

h′(t) =
i

2π

∫

R

η(t, τ) dτ = −1

2
· 1

iπ

∫

R

η(t, τ) dτ,

where

η(t, τ) = Tr
(
∂τN(A)(τ)N(A∗)(τ)N(e−tAA

∗

)(τ)
)
.
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Thus,

ind(D̂ +R) = h(∞) = h(0) +

∫ ∞

0

h′(t) dt

=

∫

M

AS − 1

2
· ηA with ηA =

1

iπ

∫ ∞

0

∫

R

η(t, τ) dτ dt.(3.17)

Therefore, it remains to directly work out the integral ηA and prove it is equal
to η(DY +RY ). This proves (3) and completes the proof of Theorem 3.4.

Lemma 3.12. We have

(3.18)
1

iπ

∫ ∞

0

∫

R

η(t, τ) dτ dt = η(DY +RY ).

Proof. In order to lessen confusion when we get to equation (3.19) below,

we first claim that we may assume R̃(τ) is even. To see this, we write R̃(τ) =
S(τ) + T (τ) where S(τ) is even in τ and T (τ) is odd in τ and both are self-adjoint
for τ ∈ R. We can choose a smooth family of b-smoothing operators Rt with

t ∈ [0, 1] such that R1 = R and N(Rt)(τ) = ΓR̃t(τ), and satisfies

R̃t(τ) = S(τ) + t T (τ).

Since T (τ) is odd in τ , T (0) = 0, so R̃t(0) = R̃(0) = RY . By the Fredholm part of
Theorem 3.4 (which we already proved) it follows that

D̂ +Rt : H1(M̂,E) −→ L2(M̂, F )

is a continuous family of Fredholm operators. Since the index is invariant under
continuous Fredholm perturbations, we have

ind(D̂ +Rt) = ind(D̂ +R)

for all t ∈ [0, 1] and therefore ind(D̂ + R0) = ind(D̂ + R). Applying the same

argument as we did to prove (3.17) but now to D̂+R0 and using that ind(D̂+R0) =

ind(D̂+R), we see that ηA = ηD̂+R0
. Thus, by proving that ηD̂+R0

= η(DY +RY ),

we may assume that R̃(τ) is even in τ .
Now back to our proof. First, we work out

η(t, τ) = Tr
(
∂τN(A)(τ)N(A∗)(τ)N(e−tAA

∗

)(τ)
)
.

Observe that for τ ∈ R, we have N(A)(τ) = Γ(iτ +DY + R̃(τ)) and N(A∗)(τ) =

(−iτ + DY + R̃(τ))Γ∗. Hence, ∂τN(A)(τ) = Γ(i + ∂τ R̃(τ)) and N(AA∗)(τ) =

Γ(τ2 + (DY + R̃(τ))2)Γ∗. Thus, after simplification, we can write

η(t, τ) = Tr((i+ ∂τ R̃(τ))(−iτ +DY + R̃(τ))e−tτ
2

e−t(DY +R̃(τ))2)

= Tr((DY + R̃(τ))e−tτ
2

e−t(DY +R̃(τ))2)

− Tr(τ∂τ R̃(τ)e−tτ
2

e−t(DY +R̃(τ))2) + ξ(t, τ),
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where ξ(t, τ) is odd in τ . Since the integral of an odd function over R is zero, we
have

(3.19) ηA =
1

π

∫ ∞

0

∫

R

Tr((DY + R̃(τ))e−tτ
2

e−t(DY +R̃(τ))2) dτdt

− 1

π

∫ ∞

0

∫

R

Tr(τ∂τ R̃(τ)e−tτ
2

e−t(DY +R̃(τ))2) dτdt.

By the way, according to Lemma 3.10, each of the integrands on the right are
absolutely integrable over (t, τ) ∈ [0,∞) × R. Second, we now use a homotopy
argument to complete our proof that ηA is the eta invariant of DY + RY . To this
end, for r ∈ [0, 1], let ζ(r, t) be the function in Lemma 3.11 and define

ζ(r) =
1

π

∫ ∞

0

ζ(r, t) dt =
1

π

∫ ∞

0

∫

R

Tr((DY + R̃(rτ))e−tτ
2

e−t(DY +R̃(rτ))2) dτdt

− 1

π

∫ ∞

0

∫

R

Tr(τ∂τ R̃(rτ)e−tτ
2

e−t(DY +R̃(rτ))2) dτdt.

Then η(1) = ηA and by Lemma 3.10, ζ(r) is a continuous function of r ∈ [0, 1].

Since the second term of ζ(r) vanishes at r = 0 and since
∫

R
e−tτ

2

dτ =
√
π/t, we

have η(0) = η(DY +R). Third, we shall prove that ζ(r) is in fact constant, which
implies that

ηA = ζ(1) = ζ(0) = η(DY +RY ).

To prove that ζ(r) is constant, we begin with the derivative formula (3.13) in
Lemma 3.11 which shows that for any a, ε > 0,

d

dr

∫ a

ε

ζ(r, t)dt =

∫ a

ε

d

dr
ζ(r, t)dt = 2ar

∫

R

Tr(τ∂τ R̃(rτ) e−aτ
2−a(DY +R̃(rτ))2 ) dτ

− 2εr

∫

R

Tr(τ∂τ R̃(rτ) e−ετ
2−ε(DY +R̃(rτ))2 ) dτ.

Now Lemma 3.10 shows that the two terms in this equation vanish as a→ ∞ and
as ε → 0, respectively, uniformly in r ∈ [0, 1]. Interchanging derivatives and limits
it follows that ζ(r) is differentiable in r, and

d

dr
ζ(r) =

1

π

d

dr

∫ ∞

0

ζ(r, t) dt =
1

π
lim

a→∞, ε→0

d

dr

∫ a

ε

ζ(r, t) dt = 0,

so ζ(r) is constant, and our proof is complete. �

4. The eta invariant

In this section we prove Theorem 1.2. We start this section by defining b-eta
invariants for Dirac operators perturbed by b-smoothing operators. We then review
Vishik’s technique of rotating boundary conditions as a means to prove Theorem
1.2. We end this section with one more presentation of the trace-defect formula in
action by deriving the variation formula for eta invariants.

4.1. b-eta invariants. Throughout this section we will use the same assump-

tions and notations from Section 1.2 of the introduction. Let D and D̂ be Dirac
operators on sections of a (single) vector bundle E = F over an odd-dimensional
Riemannian manifold with boundary as discussed in Section 1.2 and let T ∈ L(V ).
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Define a b-smoothing operator T̂ ∈ Ψ−∞
b (M̂,E,E) = Ψ−∞

b (M̂,E) just like in Sec-
tion 3.1. We shall prove that this operator satisfies the conditions of Theorem

1.2; namely that DT and the perturbed Dirac operator D̂ − T̂ have the same eta
invariant theoretic properties:

(a) ker(D̂ − T̂ ) ∼= ker(DT ).

(b) bη(D̂ − T̂ ) = η(DT ).
(c) The following surgery formula holds:

bη(D̂ − T̂ ) = η(DT ) = η(D−C) +m(ΛT ,ΛC),

where C is the scattering matrix.

By Theorem 3.2 in Section 3.2, see Remark 3.3, we conclude that Property
(a) holds. Before considering Parts (b) and (c), we first need to define the b-eta

invariant of the operator D̂ − T̂ , cf. Melrose [40, Sec. 9.7]. It turns out that the

operator D̂− T̂ , although Fredholm (see Remark 3.6), has continuous spectrum and

not discrete spectrum, due to the fact that M̂ has infinite volume. Thus, its eta
invariant cannot be defined in terms of a corresponding eta function in the same
way as in the case of a manifold with boundary with boundary condition as in (1.7)
or a manifold without boundary as in (2.2). However, we can still try to define the
eta invariant via the heat trace integral (2.4):

“ η(D̂ − T̂ ) =
1√
π

∫ ∞

0

t−1/2 Tr( (D̂ − T̂ )e−t(D̂−T̂ )2 ) dt. ”

For t > 0, the operator (D̂ − T̂ )e−t(D̂−T̂ )2 is a b-smoothing operator which is not
trace class, cf. our discussion in Section 2.4; thus, the quotation marks. However,

being a b-smoothing operator, the b-trace of (D̂−T̂ )e−t(D̂−T̂ )2 does exist. Replacing
the trace Tr with the b-trace bTr in the above formula defines what we call the b-eta
invariant of D̂ − T̂ :

Proposition 4.1. The integral

(4.1) bη(D̂ − T̂ ) :=
1√
π

∫ ∞

0

t−1/2 bTr( (D̂ − T̂ )e−t(D̂−T̂ )2 ) dt

is absolutely convergent. This integral defines the b-eta invariant of D̂ − T̂ .

Proof. By Remark 3.6, D̂ − T̂ is Fredholm, so the standard arguments [40,

Ch. 9] show that bTr( (D̂ − T̂ )e−t(D̂−T̂ )2 ) decays exponentially as t→ ∞.

The proof that bTr( (D̂− T̂ )e−t(D̂−T̂ )2 ) is also absolutely integrable near t = 0
follows the same argument used in Proposition 3.9. �

Now back to Parts (b) and (c). We already mentioned in the introduction that
the formula

bη(D̂ − T̂ ) = η(D−C) +m(ΛT ,ΛC)

is proved in Loya and Melrose [33]. Thus, to complete the proof of our theorem,
we just need to prove that

η(DT ) = η(D−C) +m(ΛT ,ΛC).

In order to prove this, we will employ Vishik’s technique of rotating boundary
conditions [58] as presented by Brüning and Lesch [12].
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4.2. Review of rotating boundary conditions. Fix T ∈ L(V ), and fix
0 < a < 1. We will denote the left half of x = a, {p ∈ M ; x(p) ≤ a}, by M1, and
the right half of x = a, {p ∈ M ; x(p) ≥ a}, by M2. (Here, we assume that x ≥ 1
off the collar.) Thus, M1

∼= [0, a]x × Y , and near ∂M2, we have M2
∼= [a, 1)x × Y .

The main idea in proving Theorem 1.2 is to separate the eta invariant η(DT ) into
an eta invariant on M1 and an eta invariant on M2. This separation is achieved
by “twisting off” the end M1 from the manifold M , and thus separating M into
the two parts M1 and M2. Analytically, this twisting is carried out by defining a
family of rotating boundary conditions at x = a as follows.

Given θ ∈ [0, π/4], we denote by D(θ), the Dirac operator D with domain
Dom(D(θ)) consisting of pairs of functions (u1, u2) ∈ H1(M1, EY ) ⊕ H1(M2, E),
where EY := E|x=0, such that at x = 0, we have

ΠT
+u1|x=0 = 0,(4.2)

and at x = a, we have

sin θΠ−C
+ u1|x=a = cos θΠ−C

+ u2|x=a,(4.3)

cos θΠC
−u1|x=a = sin θΠC

−u2|x=a.(4.4)

Here, C is the scattering matrix, and for any S ∈ L(V ), ΠS
± := Π± + Π⊥

S , where
Π± are the orthogonal projections of L2(Y,EY ) onto the positive and negative
eigenspaces of DY respectively, and where Π⊥

S the orthogonal projection onto ΓΛS .
Then,

D(θ) : Dom(D(θ)) −→ L2(M1, EY ) ⊕ L2(M2, E),

by restricting D to each of the factors H1(M1, EY ) and H1(M2, E).
To understand the boundary conditions above, let us consider them at the two

end points, θ = π/4 and θ = 0. Note that at θ = π/4, (4.3) and (4.4) imply
that u1|x=a = u2|x=a. Thus, (u1, u2) can be considered as a function on M that
is continuous across x = a. For this reason, the boundary condition at x = a for
θ = π/4 represents the continuous transmission condition. In particular, it follows
that Dom(D(π/4)) can be identified with Dom(DT ), and hence,

η(D(π/4)) = η(DT ).

Consider now D(0). Indeed, from (4.2), (4.3) and (4.4), we can write

Dom(D(0)) = {(u1, u2) ∈H1(M1, EY ) ⊕H1(M2, E) ;

ΠT
+u1|x=0 = 0, ΠC

−u1|x=a = 0, Π−C
+ u2|x=a = 0}.

Thus, Dom(D(0)) separates into two parts:

(4.5) Dom(D(0)) = Dom(D(T,C)) ⊕ Dom(D̃−C),

where D(T,C) is the Dirac operator D = Γ(∂x+DY ) restricted to M1 with domain

Dom(D(T,C)) = {u ∈ H1(M1, EY ) ; ΠT
+u|x=0 = 0, ΠC

−u|x=a = 0},
and where D̃−C is the Dirac operator D restricted to M2 with domain consisting
of those u ∈ H1(M2, E) such that Π−C

+ u|x=a = 0. Hence, the boundary conditions
(4.3) and (4.4) “twist” from the continuous transmission conditions to separation
boundary conditions as the parameter θ decreases from π/4 to 0. From (4.5), it
follows that η(D(0)) also splits into two pieces:

η(D(0)) = η(D(T,C)) + η(D̃−C).
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By Proposition 2.16 of Müller [45], we have η(D̃−C) = η(D−C), where D−C is
the Dirac operator on M with domain consisting of those u ∈ H1(M,E) such that

Π−C
+ u|x=0 = 0. Also, by Theorem 2.1 of Lesch and Wojciechowski [27], we have

η(D(T,C)) = m(ΛT ,ΛC). We will see in the next section that the eta invariant of
D(θ), for each θ ∈ [0, π/4], can be defined, and that η(D(θ)) is constant in θ. Thus,
once we show that η(D(θ)) is constant, Theorem 1.2 is proved:

η(D−C) +m(ΛT ,ΛC) = η(D(0)) = η(D(π/4)) = η(DT ).

We show that η(D(θ)) is constant in the next section.

4.3. Proof of Eta Invariant Theorem 1.2. The proof that

η(DT ) = η(D−C) +m(ΛT ,ΛC).

follows the basic outline found in Brüning and Lesch [12, Th. 3.9], which concerns
the eta invariant of the following problem. We will only present this result as it
pertains to our problem; the actual theorem is more general. Let D′ be a Dirac
operator associated to a Hermitian Clifford module E′ over a closed compact man-
ifold M ′ such that Y is a hypersurface in M ′. Suppose that Y = {x′ = a} for some
function x′ on M ′, and that M2 is on the right-hand side of Y in M ′ in the sense
that the set {x′ ≥ a} ⊂M ′ can be identified with M2, and such that over this set,
E′ ≡ E, and D′ ≡ D. Also suppose that Y has a collar (0, 1)x′ × Y in M ′ over
which D′ = Γ(∂x′ + DY ). Let M ′ = {x′ ≤ a} ⊂ M ′ be the left half of M ′. We
define D′(θ) to be the Dirac operator D′ with domain

Dom(D′(θ)) := {(u1, u2) ∈H1(M ′, E′) ⊕H1(M2, E) ;

u1, u2 satisfy (4.3) and (4.4) at x′ = a}.

In [12], the eta function (1.7) for D′(θ) is shown to exist as a meromorphic func-
tion on C. (Actually, in [12], the boundary conditions on V = kerDY were held
constant, unlike in (4.3) and (4.4) where the boundary conditions on V are also
rotating; however, the arguments in [12] also go through for the situation described
here.) For θ ∈ (0, π/4), the eta function will in general have a pole at z = 0. How-
ever, the eta invariant of D′(θ), for each θ ∈ [0, π/4], can still be defined as the
regular value of the eta function at z = 0. Then Theorem 3.9 of [12] states that if
dim kerD′(θ) is constant, then η(D′(θ)) is also constant.

The only difference between our problem considered in Section 4.2 and the
problem considered in [12] is that the compact manifold with boundary M ′ is
replaced by the compact cylinder M1 with a boundary condition at the left end of
the cylinder given by ΠT

+. For this reason, proving that the eta invariant of the
operator D(θ) considered in Section 4.2 can be defined for each θ ∈ [0, π/4], and
that η(D(θ)) is constant if dim kerD(θ) is constant, can proceed exactly as in [12].
The details will be omitted in order to avoid reproducing the arguments of [12].
Thus, to prove Theorem 1.2 we are left to prove that dim kerD(θ) is constant. This
is proved in the following lemma, which completes the proof of Theorem 1.2.

Theorem 4.2. For each θ ∈ [0, π/4], we have

dim kerD(θ) = dim(ΛT ∩ ΛC) + dim kerD−C .

In fact, kerD(θ) is canonically isomorphic to (ΛT ∩ ΛC) ⊕ kerD−C .
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Proof. Fix θ ∈ [0, π/4] and let u ∈ kerD(θ). Then we can write u = (u1, u2) ∈
H1(M1, EY ) ⊕H1(M2, E), where Du1 = 0, Du2 = 0, and

ΠT
+u1|x=0 = 0,(4.6)

sin θΠ−C
+ u1|x=a = cos θΠ−C

+ u2|x=a,(4.7)

cos θΠC
−u1|x=a = sin θΠC

−u2|x=a.(4.8)

To prove this lemma, we need to analyze exactly what these boundary conditions
imply. Thus, recall that D = Γ(∂x + DY ) on the collar [0, 1)x × Y in M . Since
Du1 = 0, it follows that u1 = v1 + w1, where v1 ∈ kerDY is constant in x, and
where w1(x) takes values in the nonzero eigenvectors of DY and satisfies (∂x +
DY )w1(x) = 0. Also, since Du2 = 0, on the collar [a, 1)x × Y in M2 we have
u2 = v2 + w2, where v2 ∈ kerDY is constant in x, and where w2(x) takes values
in the nonzero eigenvectors of DY and satisfies (∂x +DY )w2(x) = 0. To show that
kerD(θ) ≡ (ΛT ∩ ΛC) ⊕ kerD−C , we first show that w1 is determined by w2.

To see this, let Λ be the eigenspace of DY corresponding to a nonzero eigenvalue
λ. Then the equation (∂x + DY )w1(x) = 0 implies that when projected onto
Λ, we have w1(x) = e−xλw1λ where w1λ ∈ Λ is constant in x. Similarly, when
projected onto Λ, we have w2(x) = e−xλw2λ where w2λ ∈ Λ is constant in x. By
condition (4.6), we must have w1λ = 0 for λ > 0. Thus, by condition (4.7), we
also have w2λ = 0 for λ > 0. Now condition (4.8) implies that for λ < 0, we
have cos θ w1λ = sin θ w2λ, or w1λ = tan θ w2λ. Hence, w1 = tan θ w2, and w1 is
determined uniquely by w2. Moreover, we also proved that Π+w1 = Π+w2 = 0.

We now show that v2 ∈ ΛC . Indeed, define ũ2 ∈ H1(M,E) by ũ2 := v2 +w2 for
x ∈ [0, a), and ũ2 := u2 for x ≥ a. Then it follows that Dũ2 = 0 and Π+ũ2|x=0 = 0.
Thus, by definition of ΛC , v2 = Π0ũ2|x=0 ∈ ΛC .

We next show that v1 ∈ ΛT ∩ ΛC and sin θ v1 = cos θ v2. First, by (4.6), we
must have v1 ∈ ΛT . Hence, as Π⊥

Cv2 = 0 since v2 ∈ ΛC , by condition (4.8) we
obtain Π⊥

Cv1 = 0, or v1 ∈ ΛC . Thus, v1 ∈ ΛT ∩ ΛC . Finally, as Π⊥
−C = ΠC , we

have Π⊥
−Cv1 = v1 and Π⊥

−Cv2 = v2, and hence by (4.7), sin θ v1 = cos θ v2.
The previous three paragraphs imply that kerD(θ) can be identified with the

space of pairs (v, w) in

(ΛT ∩ ΛC) ⊕ {w ∈ H1(M,E) ; Dw = 0, Π+w|x=0 = 0}

such that sin θ v = cos θΠCw|x=0. Denote this space by U(θ). Observe that since
ΠC = Π⊥

−C , if θ = 0, then U(0) = (ΛT ∩ ΛC) ⊕ kerD−C . To see that U(θ) ∼=
(ΛT ∩ΛC)⊕kerD−C for θ ∈ (0, π/4], for such θ, consider the map U(θ) 3 (v, w)

π17−→
v ∈ ΛT ∩ ΛC . Since sin θ v = cos θΠCw|x=0, and since ΠC = Π⊥

−C , the kernel of
this map is exactly kerD−C . This map is also surjective, for if v ∈ ΛT ∩ ΛC , then
by definition of ΛC , there is a w ∈ H1(M,E) with Dw = 0 and Π+w = 0 such that
sin θ v = cos θΠCw|x=0. Thus, the following sequence is exact:

0 −→ kerD−C −→ U(θ)
π1−→ ΛT ∩ ΛC −→ 0.

Our lemma is now proved. �

4.4. Variation of the eta-invariant. In this last section we use the b-trace
and the identity bη(D̂ − T̂ ) = η(DT ) to derive the variation formula for the eta
invariant η(DT ).
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Theorem 4.3. Let T (r) ∈ L(V ), r ∈ [0, 1], be a smooth family such that

dim ker(D̂− T̂ (r)) is constant, where T̂ (r) is as in Section 3.1. Then bη(D̂− T̂ (r))
is smooth for r ∈ [0, 1], and

(4.9)
d

dr
bη(D̂ − T̂ (r)) =

1

iπ
tr(Ṫ+(r)T+(r)−1),

where Ṫ+(r) = d
drT

+(r).

Using the equality bη(D̂ − T̂ (r)) = η(DT (r)), we immediately get the following
variation result first proved by Lesch and Wojciechowski [27].

Corollary 4.4. Let T (r) ∈ L(V ), r ∈ [0, 1], be any smooth family such that
dim kerDT (r) is constant. Then η(DT (r)) is smooth for r ∈ [0, 1], and

(4.10)
d

dr
η(DT (r)) =

1

iπ
tr(Ṫ+(r)T+(r)−1),

where Ṫ+(r) = d
drT

+(r).

We can also use the surgery formula η(DT (r)) = η(D−C) +m(ΛT (r),ΛC) and
the variation of the matrix quantity m(ΛT (r),ΛC) to derive the same result, but
the proof of Theorem 4.3 might be of interest since the proof is independent of this
formula and it gives one last performance of our hero, the b-trace.8

The proof of this theorem is a consequence of the next two lemmas. In the

following two lemmas, we denote D̂ − T̂ (r) by A = A(r).

Lemma 4.5. With Ȧ = d
drA, we have

(4.11)
d

dr

{
t−1/2 bTr(Ae−tA

2

)
}

=
d

dt

{
2t1/2 bTr(Ȧe−tA

2

)
}

+ αr(t),

where αr(t) is given in terms of the b-trace of commutators via

(4.12) αr(t) = t−1/2

∫ t

0

bTr[Ae−(t−s)A2

, ȦAe−sA
2

]ds

− t−1/2

∫ t

0

bTr[A2e−(t−s)A2

, Ȧe−sA
2

]ds.

Proof. We follow the proof of Melrose [40, Prop. 8.39]. First, note that

(4.13)
d

dr

{
t−1/2 bTr(Ae−tA

2

)
}

= t−1/2 bTr(Ȧe−tA
2

) + t−1/2 bTr

(
A
d

dr
e−tA

2

)
.

Second, noting that

(∂t +A2)

(
d

dr
e−tA

2

)
= (ȦA+AȦ)e−tA

2

,

we use Duhamel’s principal to obtain

(4.14)
d

dr
e−tA

2

= −
∫ t

0

e−(t−s)A2

(ȦA+AȦ)e−sA
2

ds.

Plugging (4.14) into the second term on the right of (4.13), and then using the
trace identities

bTr(Ae−(t−s)A2

ȦAe−sA
2

) = bTr(ȦA2e−tA
2

) + bTr[Ae−(t−s)A2

, ȦAe−sA
2

];

8This technique might also be useful to those who find finite dimensional matrices difficult :)
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bTr(Ae−(t−s)A2

AȦe−sA
2

) = bTr(ȦA2e−tA
2

) + bTr[A2e−(t−s)A2

, Ȧe−sA
2

],

it follows that

d

dr

{
t−1/2 bTr(Ae−tA

2

)
}

=
d

dt

{
2t1/2 bTr(Ȧe−tA

2

)
}

t−1/2

∫ t

0

bTr[Ae−(t−s)A2

, ȦAe−sA
2

]ds− t−1/2

∫ t

0

bTr[A2e−(t−s)A2

, Ȧe−sA
2

]ds.

This proves our lemma. �

The following lemma proves Theorem 4.3.

Lemma 4.6. If r0, r1 ∈ [0, 1], then

bη(D̂ − T̂ (r1)) − bη(D̂ − T̂ (r0)) =
1

iπ

∫ r1

r0

tr(Ṫ+(r)T+(r)−1) dr.

Proof. Using the definition of the b-eta invariant, we can write

bη(A(r1)) − bη(A(r0)) = lim
a→∞
ε↓0

1√
π

∫ a

ε

∫ r1

r0

d

dr
t−1/2 bTr(Ae−tA

2

) dr dt.

Now by (4.11),
∫ a

ε

d

dr

{
t−1/2 bTr(Ae−tA

2

)
}
dt = 2a1/2 bTr(Ȧe−aA

2

)

− 2ε1/2 bTr(Ȧe−εA
2

) +

∫ a

ε

αr(t) dt,

where αr(t) is given in (4.12). Since A(r) is Fredholm and its kernel has constant
dimension by assumption, the proof used in Proposition 8.39 of [40] shows that

2a1/2 bTr(Ȧe−aA
2

) → 0 as a → ∞ and since Ȧ = d
dr T̂ (r) ∈ Ψ−∞

b (M̂,E), it follows

that 2ε1/2 bTr(Ȧe−εA
2

) → 0 as ε ↓ 0. Now the fact that
∫ ∞

0

αr(t) dt =
1

iπ
tr(Ṫ+(r)T+(r)−1)

is a direct computation using the explicit formula (4.12) for αr(t) in terms of b-
traces of commutators and the trace-defect formula in Theorem 2.5. The details of
this computation can be found in Loya and Melrose [33] or left for the reader. �
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