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In this note we prove the Fundamental Theorem of Algebra without using any
topology or analytic function theory. The only requirements are familiarity with
complex numbers (including the complex exponential for pure imaginary argu-
ments), properties of differentiation and integration of complex-valued functions
with respect to real variables, and Leibniz’s rule for integrals [1, p. 222]: If f(t, x)
and ∂tf(t, x) are continuous functions on [a, b]× [c, d], then F (t) =

∫ d

c
f(t, x) dx is

differentiable on [a, b], and

F ′(t) =
∫ d

c

∂tf(t, x) dx.

See the beautiful book [2] for other proofs of the fundamental theorem.
Let p(z) = zn + an−1z

n−1 + · · ·+ a0 be a polynomial with complex coefficients,
n ≥ 1, and suppose, as usual, that p has no roots. For real numbers t and x, define

(1) f(t, x) =
1

p(teix)
=

1
tn einx + · · ·+ a1t eix + a0

.

Since, by assumption, the bottom is never zero and is a continuously differentiable
function of t and x in R×R, the function f(t, x) is also a continuously differentiable
function on R× R. Define

F (t) =
∫ 2π

0

f(t, x) dx.

By Leibniz’s rule for integrals, F (t) is a differentiable function of t, and

F ′(t) =
∫ 2π

0

∂tf(t, x) dx.

We claim that F ′ = 0, which shows that F is constant. Indeed, using the quotient
(or reciprocal) rule, we obtain

∂tf(t, x) = − ntn−1 einx + · · ·+ a1e
ix

(tn einx + · · ·+ a1t eix + a0)2
.

On the other hand, differentiating with respect to x, we find

∂xf(t, x) = − tn einx · in + · · ·+ a1t eix · i
(tn einx + · · ·+ a1t eix + a0)2

= it ∂tf(t, x).

Thus,

F ′(t) =
1
it

∫ 2π

0

∂xf(t, x) dx =
1
it

f(t, x)
∣∣∣x=2π

x=0
=

1
it

[
1

p(tei2π)
− 1

p(tei0)

]
= 0,
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since e2πi = ei0 = 1. Hence, F (t) is constant. Setting t = 0, we see that

F (0) =
∫ 2π

0

f(0, x) dx =
∫ 2π

0

1
p(0)

dx =
2π

p(0)
,

so F is some nonzero constant. However, the expression (1) for f(t, x) implies
that F (t) → 0 as t → ∞. This shows that F must be the constant zero, which is
impossible because we just said that F is equal to a nonzero constant. Thus, our
assumption that p has roots must have been false.

References

[1] K. Davidson and A. Donsig. Real analysis with real applications. Prentice Hall, Upper Saddle

River, NJ, 2002.
[2] B. Fine and G. Rosenberger, The Fundamental Theorem of Algebra, Springer-Verlag, New

York, 1997.

Department of Mathematics, Binghamton, NY 13902

E-mail address: paul@math.binghamton.edu


