
Arguing as before, we find that (4) holds, and from it we again infer that

f (x) f (−y) = f (y) f (−x)

for all real x and y.
Now setting y = t and x = −t yields f (−t)2 = 1, so f (−t) = ±1. The choice

f (−t) = 1 leads to the conclusion that f is even and g is constant, which is not the
case. Thus f is odd and (17) and (4) become the “−” half of (3) and (2), respectively.
This furnishes a solution to Klee’s problem. Note that we have used the conditions
f (t) = 1, g(t) = 0 a couple of times.

As remarked at the end of the solution of E1079, the usual formula for cos(x ± y)

and sin(x ± y) follow purely algebraically from the formula for cos(x − y).
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Green’s Theorem and the
Fundamental Theorem of Algebra

Paul Loya

One proof of the fundamental theorem of algebra uses Liouville’s theorem, which fol-
lows from Cauchy’s theorem, which in turn can be derived from Green’s theorem; see,
for instance, the beautiful book [1]. The purpose of this note is to show that Green’s
theorem is sufficient. The proof does not use any topology or analytic function theory.
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Let p(w) be a polynomial in w = x + iy of degree n ≥ 1 with complex coefficients.
We show that p(w) must have a zero. As usual we proceed by contradiction, assuming
that p(w) is not zero for any w. Then f (x, y) := ln |p(x + iy)| is a smooth function
of (x, y) in R2. For r > 0, let Dr be the disk of radius r centered at the origin, and let
Cr be the boundary of Dr oriented counterclockwise. We will work out both sides of
Green’s formula ∫

Cr

P dx + Q dy =
∫∫

Dr

(∂x Q − ∂y P) dx dy, (1)

with P = −∂y f and Q = ∂x f . We first work out the right-hand side.
In fact, we show that the right-hand side is zero. Note that ∂x Q − ∂y P = ∂2

x f +
∂2

y f . Since f (x, y) = (1/2) ln |p(x + iy)|2, we have

∂x f = 1

2

∂x |p(x + iy)|2
|p(x + iy)|2 , ∂y f = 1

2

∂y|p(x + iy)|2
|p(x + iy)|2 . (2)

Thus,

∂2
x f = 1

2

∂2
x |p|2
|p|2 − 1

2

(∂x |p|2)2

|p|4 , ∂2
y f = 1

2

∂2
y |p|2
|p|2 − 1

2

(∂y|p|2)2

|p|4 . (3)

We claim that ∂y p = i∂x p and ∂y p = −i∂x p. Indeed, by linearity of derivatives, it
suffices to prove these identities for q = (x + iy)k . In this case, q = ∑k

l=0

(k
l

)
xk−l i l yl

by the binomial theorem. Hence, ∂yq = ∑k
l=1

(k
l

)
l xk−l i l yl−1. Setting l = j + 1 and

noting that

(
k

j + 1

)
( j + 1) =

(
k

j

)
(k − j)

gives

∂yq =
k−1∑
j=0

(
k

j

)
(k − j) xk− j−1 i j+1 y j ,

which is just i∂x q. The second of these identities is proved similarly or can be proved
by taking the complex conjugate of the first identity. Now employing these identities
and Leibniz’s rule on |p|2 = p p, the reader can verify with a straightforward com-
putation using the equations for ∂2

x f and ∂2
y f found in (3) that ∂2

y f = −∂2
x f . Thus,

∂x Q − ∂y P = 0 and so the right-hand side of (1) is zero.
We now estimate the left-hand side of (1). Without loss of generality, we assume

that the leading coefficient of p(w) is one. Then p(x + iy) is of the form (x + iy)n

plus a polynomial in x + iy of degree at most n − 1. Hence, we can write

|p(x + iy)|2 = p(x + iy) p(x + iy) = (x2 + y2)n + p̃(x, y), (4)

where p̃(x, y) is a polynomial in the variables x and y of degree at most 2n − 1.
Taking the partials of |p(x + iy)|2 = (x2 + y2)n + p̃(x, y) with respect to x and y
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and plugging the results into (2), we see that

P = −∂y f = − ny

x2 + y2
+ P̃, Q = ∂x f = nx

x2 + y2
+ Q̃,

where

P̃ = − (x2 + y2) ∂y p̃(x, y) − 2ny p̃(x, y)

2|p(x + iy)|2 (x2 + y2)
,

Q̃ = (x2 + y2) ∂x p̃(x, y) − 2nx p̃(x, y)

2|p(x + iy)|2 (x2 + y2)
.

Using the curve cr (t) := (r cos t, r sin t), which traces out Cr for 0 ≤ t ≤ 2π , a direct
computation gives ∫

Cr

−ny

x2 + y2
dx + nx

x2 + y2
dy = 2πn.

Thus, ∫
Cr

P dx + Q dy = 2πn + g(r), (5)

where

g(r) =
∫

Cr

P̃ dx + Q̃ dy.

We analyze g(r) as follows. Since p̃(x, y) is a polynomial in x and y of degree at
most 2n − 1, ∂x p̃(x, y) and ∂y p̃(x, y) are polynomials in x and y of degree at most
2n − 2. Hence, the numerators of P̃ and Q̃ are polynomials in x and y of degree
at most 2n. As a result, these numerators are each bounded, in absolute value, by
a constant times (x2 + y2)n . Since P̃ and Q̃ contain |p(x + iy)|2 (x2 + y2) in their
denominators, in view of (4) it follows that |P̃| and |Q̃| are each bounded by a constant
times (x2 + y2)−1. These estimates on |P̃| and |Q̃| imply that |g(r)| is bounded by a
constant times r−1. Since the right-hand side of (1) was shown to be zero, letting
r → ∞ in (5) gives the contradiction 0 = 2πn. Thus, our original assumption that
p(w) has no zero must be false.

ACKNOWLEDGMENT. The author was supported by a Ford Foundation Fellowship administered by the
National Research Council.

REFERENCES

1. B. Fine and G. Rosenberger, The Fundamental Theorem of Algebra, Springer-Verlag, New York, 1997.

Department of Mathematics, Binghamton, NY 13902
paul@math.binghamton.edu

946 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110


