Arguing as before, we find that (4) holds, and from it we again infer that

$$f(x)f(-y) = f(y)f(-x)$$

for all real *x* and *y*.

Now setting y = t and x = -t yields $f(-t)^2 = 1$, so $f(-t) = \pm 1$. The choice f(-t) = 1 leads to the conclusion that f is even and g is constant, which is not the case. Thus f is odd and (17) and (4) become the "-" half of (3) and (2), respectively. This furnishes a solution to Klee's problem. Note that we have used the conditions f(t) = 1, g(t) = 0 a couple of times.

As remarked at the end of the solution of E1079, the usual formula for $cos(x \pm y)$ and $sin(x \pm y)$ follow purely algebraically from the formula for cos(x - y).

ACKNOWLEDGMENT This paper is dedicated to Professor Z. Moszner on the occasion of his 73rd birthday.

REFERENCES

- 1. J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York, 1966.
- J. Aczél and J. Dhombres, *Functional Equations in Several Variables*, Cambridge University Press, Cambridge, 1989.
- 3. T. S. Chihara, Solution to E1079, this MONTHLY **61** (1954) 197.
- 4. PL. Kannappan, The functional equation $f(xy) + f(xy^{-1}) = 2f(x)f(y)$ for groups, *Proc. Amer. Math. Soc.* **19** (1968) 69–74.
- 5. _____, *Theory of Functional Equations*, Matscience Report, no. 48, Institute of Math. Sciences, Chennai, India, 1969.
- 6. V. L. Klee, E1079, this MONTHLY 60 (1953) 479.
- 7. S. Kurepa, On some functional equations in Banach spaces, Studia Math. 19 (1960) 149-158.
- 8. S. Parameswaran, Trigonometry retold, Math. Gazette 42 (1958) 81-83.
- 9. A. L. Rukhin, The solution of the functional equation of d'Alembert's type for commutative groups, *Internat. J. Math. Sci.* **5** (1982) 315–355.
- L. Vietoris, Zur Kennzeichnung des Sinus und verwandter Funktionen durch Funktionalgleichungen, J. Reine Angew. Math. 186 (1944) 1–15.
- 11. W. H. Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1919–1920) 300–312.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1 plkannappan@pythagoras.uwaterloo.ca

Green's Theorem and the Fundamental Theorem of Algebra

Paul Loya

One proof of the fundamental theorem of algebra uses Liouville's theorem, which follows from Cauchy's theorem, which in turn can be derived from Green's theorem; see, for instance, the beautiful book [1]. The purpose of this note is to show that Green's theorem is sufficient. The proof does not use any topology or analytic function theory. Let p(w) be a polynomial in w = x + iy of degree $n \ge 1$ with complex coefficients. We show that p(w) must have a zero. As usual we proceed by contradiction, assuming that p(w) is not zero for any w. Then $f(x, y) := \ln |p(x + iy)|$ is a smooth function of (x, y) in \mathbb{R}^2 . For r > 0, let D_r be the disk of radius r centered at the origin, and let C_r be the boundary of D_r oriented counterclockwise. We will work out both sides of Green's formula

$$\int_{C_r} P \, dx + Q \, dy = \iint_{D_r} (\partial_x Q - \partial_y P) \, dx \, dy, \tag{1}$$

with $P = -\partial_y f$ and $Q = \partial_x f$. We first work out the right-hand side.

In fact, we show that the right-hand side is zero. Note that $\partial_x Q - \partial_y P = \partial_x^2 f + \partial_y^2 f$. Since $f(x, y) = (1/2) \ln |p(x + iy)|^2$, we have

$$\partial_x f = \frac{1}{2} \frac{\partial_x |p(x+iy)|^2}{|p(x+iy)|^2}, \quad \partial_y f = \frac{1}{2} \frac{\partial_y |p(x+iy)|^2}{|p(x+iy)|^2}.$$
 (2)

Thus,

$$\partial_x^2 f = \frac{1}{2} \frac{\partial_x^2 |p|^2}{|p|^2} - \frac{1}{2} \frac{(\partial_x |p|^2)^2}{|p|^4}, \quad \partial_y^2 f = \frac{1}{2} \frac{\partial_y^2 |p|^2}{|p|^2} - \frac{1}{2} \frac{(\partial_y |p|^2)^2}{|p|^4}.$$
 (3)

We claim that $\partial_y p = i \partial_x p$ and $\partial_y \overline{p} = -i \partial_x \overline{p}$. Indeed, by linearity of derivatives, it suffices to prove these identities for $q = (x + iy)^k$. In this case, $q = \sum_{l=0}^k {k \choose l} x^{k-l} i^l y^l$ by the binomial theorem. Hence, $\partial_y q = \sum_{l=1}^k {k \choose l} x^{k-l} i^l y^{l-1}$. Setting l = j + 1 and noting that

$$\binom{k}{j+1}(j+1) = \binom{k}{j}(k-j)$$

gives

$$\partial_y q = \sum_{j=0}^{k-1} \binom{k}{j} (k-j) x^{k-j-1} i^{j+1} y^j,$$

which is just $i\partial_x q$. The second of these identities is proved similarly or can be proved by taking the complex conjugate of the first identity. Now employing these identities and Leibniz's rule on $|p|^2 = p \overline{p}$, the reader can verify with a straightforward computation using the equations for $\partial_x^2 f$ and $\partial_y^2 f$ found in (3) that $\partial_y^2 f = -\partial_x^2 f$. Thus, $\partial_x Q - \partial_y P = 0$ and so the right-hand side of (1) is zero.

We now estimate the left-hand side of (1). Without loss of generality, we assume that the leading coefficient of p(w) is one. Then p(x + iy) is of the form $(x + iy)^n$ plus a polynomial in x + iy of degree at most n - 1. Hence, we can write

$$|p(x+iy)|^{2} = p(x+iy)\overline{p(x+iy)} = (x^{2}+y^{2})^{n} + \widetilde{p}(x,y),$$
(4)

where $\tilde{p}(x, y)$ is a polynomial in the variables x and y of degree at most 2n - 1. Taking the partials of $|p(x + iy)|^2 = (x^2 + y^2)^n + \tilde{p}(x, y)$ with respect to x and y

December 2003]

and plugging the results into (2), we see that

$$P = -\partial_y f = -\frac{ny}{x^2 + y^2} + \widetilde{P}, \qquad Q = \partial_x f = \frac{nx}{x^2 + y^2} + \widetilde{Q},$$

where

$$\widetilde{P} = -\frac{(x^2 + y^2) \,\partial_y \widetilde{p}(x, y) - 2ny \,\widetilde{p}(x, y)}{2|p(x + iy)|^2 \,(x^2 + y^2)},\\ \widetilde{Q} = \frac{(x^2 + y^2) \,\partial_x \widetilde{p}(x, y) - 2nx \,\widetilde{p}(x, y)}{2|p(x + iy)|^2 \,(x^2 + y^2)}.$$

Using the curve $c_r(t) := (r \cos t, r \sin t)$, which traces out C_r for $0 \le t \le 2\pi$, a direct computation gives

$$\int_{C_r} \frac{-ny}{x^2 + y^2} \, dx + \frac{nx}{x^2 + y^2} \, dy = 2\pi n.$$

Thus,

$$\int_{C_r} P \, dx + Q \, dy = 2\pi n + g(r), \tag{5}$$

where

$$g(r) = \int_{C_r} \widetilde{P} \, dx + \widetilde{Q} \, dy.$$

We analyze g(r) as follows. Since $\tilde{p}(x, y)$ is a polynomial in x and y of degree at most 2n - 1, $\partial_x \tilde{p}(x, y)$ and $\partial_y \tilde{p}(x, y)$ are polynomials in x and y of degree at most 2n - 2. Hence, the numerators of \tilde{P} and \tilde{Q} are polynomials in x and y of degree at most 2n. As a result, these numerators are each bounded, in absolute value, by a constant times $(x^2 + y^2)^n$. Since \tilde{P} and \tilde{Q} contain $|p(x + iy)|^2 (x^2 + y^2)$ in their denominators, in view of (4) it follows that $|\tilde{P}|$ and $|\tilde{Q}|$ are each bounded by a constant times $(x^2 + y^2)^{-1}$. These estimates on $|\tilde{P}|$ and $|\tilde{Q}|$ imply that |g(r)| is bounded by a constant times r^{-1} . Since the right-hand side of (1) was shown to be zero, letting $r \to \infty$ in (5) gives the contradiction $0 = 2\pi n$. Thus, our original assumption that p(w) has no zero must be false.

ACKNOWLEDGMENT. The author was supported by a Ford Foundation Fellowship administered by the National Research Council.

REFERENCES

1. B. Fine and G. Rosenberger, The Fundamental Theorem of Algebra, Springer-Verlag, New York, 1997.

Department of Mathematics, Binghamton, NY 13902 paul@math.binghamton.edu