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Abstract. The goal of this paper is to establish a geometric program to study

elliptic pseudodifferential boundary problems which arise naturally under cut-

ting and pasting of geometric and spectral invariants of Dirac type operators

on manifolds with corners endowed with multi-cylindrical, or b-type, metrics

and ‘b-admissible’ partitioning hypersurfaces. We show that the Cauchy data

space of a Dirac operator on such a manifold is Lagrangian for the self-adjoint

case, the corresponding Calderón projector is a b-pseudodifferential operator

of order 0, characterize Fredholmness, prove relative index formulæ, and solve

the Bojarski conjecture.

1. Introduction

The purpose of this paper is to establish the geometric theory of elliptic pseudo-
differential boundary problems for Dirac type operators on manifolds with multi-
cylindrical end boundaries. The main impetus for this theory is to develop Fred-
holm and spectral theory and derive gluing formulas for the index, eta invariant,
and ζ-determinant of Dirac type operators on such manifolds. In this paper, we
focus on the Fredholm theory. We show that the Cauchy data space of such a
Dirac operator is Lagrangian for the self-adjoint case, the corresponding Calderón
projector is a b-pseudodifferential operator of order 0, and we prove relative index
formulæ and solve the Bojarski conjecture for such manifolds. In the forthcom-
ing articles [20], [21] we study the relative and gluing formulæ for the spectral
invariants, respectively, for such manifolds.

We begin by describing geometrically our class of manifolds. An n-dimensional
compact manifold with corners X is a compact topological space locally modelled
on [0,∞)k

x×R
n−k
y , where k can run between 0 and n, such that X has only finitely

many boundary hypersurfaces, say {H0,H1, . . . ,Hr}, where each Hi is imbedded
in the sense that near the hypersurface Hi, we have

(1.1) X ∼= [0, 1]xi
×Hi , i = 1, 2, . . . , r , Hi = {xi = 0}.

We make the assumption that X is connected and H0 is an admissible boundary
hypersurface (this can be disconnected), which simply means that H0 ∩Hi 6= ∅ for
i = 1, . . . , r; see Figure 1 for examples of manifolds with corners and choices of H0.
For future convenience in establishing gluing formulas we assume that near H0,

(1.2) X ∼= [−1, 0]u ×H0 , H0 = {u = 0}.
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Figure 1. Two examples of three-dimensional manifolds with cor-
ners (each figure is solid). On the left, all the hypersurfaces are
admissible, but we choose H0 to be the right ‘cap’. On the right,
H0 and H3 are admissible, but H1 and H2 are not.

How do these manifolds arise? They arise very naturally. One example is to take a
(solid) soda can: the round portion is admissible and the top and bottom are not
admissible. A related example is to take the soda can and stand it up, then slice
it from top to bottom; each piece is a manifold with corners and the newly formed
flat side is admissible as seen in the right picture in Figure 1 where we only show
the left piece of the cut soda can.

We now put an exact b-metric g on X that geometrically pushes each hypersur-
face Hi, i = 1, . . . , r, out to infinity and which is smooth up to H0; thus the ‘b-’
refers only with respect to H1, . . . ,Hr. This means that the metric g is smooth up
to H0 and the metric degenerates up to each Hi, i = 1, . . . , r, as follows:

(1.3) g =

r∑

i=1

(dxi

xi

)2

+ h,

where h is a smooth symmetric two-form on X. Explicitly, pick a point p ∈ X, let
us say p ∈ H0 ∩H1 ∩ · · · ∩Hk, and p is in no other hypersurfaces; then we assume
that there is a common decomposition stemming from (1.1) and (1.2) such that
near the point p we can write

(1.4) X ∼= [−1, 0]u × [0, 1]kx × Y,

where Y is the component ofH0∩H1∩· · ·∩Hk containing p. Then in this coordinate
patch, g can be written as

(1.5) g = a(u, x, y)du2 +
(dx1

x1

)2

+ · · ·+
(dxk

xk

)2

+ h(u, x, y),

where a is a smooth positive function (even smooth and positive when u or any xi

is zero) and h is a symmetric two-form on X that is smooth near p. There is a
similar description of g in other patches away from H0.

This is the ‘compact viewpoint’; there is a ‘noncompact viewpoint’ in terms of
attaching cylinders that might be easier to understand. Let us make the change of
variables ti = log xi. Observe that when xi = 1, ti = 0 and as xi → 0, ti → −∞.
Therefore, under this change of variables, the coordinates (1.4) and the metric (1.5)
near the point p take the ‘multi-cylindrical’ forms:

X ∼= [−1, 0]u × (−∞, 0]kt × Y,
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where over this patch,

g = a′(u, t, y)du2 + dt21 + · · ·+ dt2k + h′(u, t, y).

Here, a′(u, t, y) = a(u, et, y) and h′(u, t, y) = h(u, et, y) where we define et =
(et1 , . . . , etk). One can work in this ‘noncompact viewpoint’ but we choose to work
under the compactified viewpoint because from this perspective we have Melrose’s
b-calculus machine [23] at our disposal.

We emphasize that b-metrics of the sort (1.3) arise very naturally under cutting:
Take a solid soda can as we mentioned before and put an exact b-metric on it that
geometrically pushes all its hypersurfaces to infinity. Now cut the can from top to
bottom as before to get a piece like in the right picture in Figure 1. The resulting
metric g is smooth up to H0 but is still an exact b-metric up to H1,H2,H3. Thus,
metrics of the sort (1.3) arise naturally in the context of cutting and pasting of
geometric and spectral invariants of Dirac type operators on noncompact ‘multi-
cylindrical end’ manifolds and noncompact partitioning hypersurfaces. We also
remark that instead of considering metrics of the form (1.3) with dxi/xi’s, we
can consider metrics with dxi/x

2
i ’s. The resulting metric is called an exact cusp

metric and very analogous results in this paper hold for such a metric. We choose
to work with b-metrics only because in the sequel [21] to this paper we shall use
certain analytic objects (the b-zeta determinant for instance) which are a little more
natural to use in the b-setting.

Let E,F be Hermitian vector bundles overX and letD : C∞(X,E)→ C∞(X,F )
be a Dirac type operator; that is, a Dirac type operator derived from the metric
(1.3) (see Section 2 for a precise definition or Melrose’s anticipated [24]). We also
assume that on the collar [−1, 0]u × H0 of the admissible boundary hypersurface
H0 with H0 = {u = 0}, the vector bundles E and F are isometric to E0 := E|H0

and F0 := F |H0
, and

(1.6) D = Gu(∂u +Du),

where Gu : E0 → F0 is unitary and Du : C∞(H0, E0) → C∞(H0, E0) is a Dirac
type operator, and where both Gu and Du are smooth up to u = 0 and restricting
there to define a unitary map G0 : E0 → F0 and a formally self-adjoint Dirac type
operator D0 : C∞(H0, E0)→ C∞(H0, E0).

We remark that boundary value problems on manifolds with cylindrical end
boundaries, which are special cases of manifolds with multi-cylindrical ends bound-
aries, have been considered by Schrohe [28] and Schrohe and Schulze [29] in the
context of Boutet de Monvel’s algebra [6] and by Mitrea and Nistor [27] generaliz-
ing the method of layer potentials to such manifolds. Grubb [10] (cf. also Grubb
and Kokholm [11]) has studied boundary value problems for a class of noncompact
manifolds that are Euclidean at ∞.

We now state our main results. Given any real s, we define Hs
b
(X,E) as the

natural b-Sobolev space and we defineH∞
b

(X,E) as the intersection of allHs
b
(X,E)

and we denote by Ψ̃s
b
(H0, E0) the space of b-pseudodifferential operators of order

s in the ‘calculus with bounds’ (see Section 2); similar remarks hold for F . The
Cauchy data space of D is by definition

H(D) := kerD|H0
= {φ|H0

| φ ∈ H∞
b

(X,E) , Dφ = 0 } ⊂ H∞
b

(H0, E0),

where kerD denotes the kernel of D on H∞
b

(X,E). For our first result, we ex-
tend the theory and application of the (orthogonalized) Calderón projector to our



4 PAUL LOYA AND JINSUNG PARK

category of manifolds. Here, the Calderón projector was introduced by Calderón
[7] and Seeley [30], [31] (cf. also Hörmander [12] and Grubb [8]). The theory and
application of the Calderón projector was extended to a class of manifolds which
are Euclidean at ∞ by Grubb [10] (cf. also Grubb and Kokholm [11]).

Theorem 1.1. The operator

D : H∞
b

(X,E)→ H∞
b

(X,F )

is surjective, restriction to the boundary gives a canonical isomorphism between
kerD and H(D), and there exists a (unique) orthogonalized Calderón projector

C ∈ Ψ̃0
b
(H0, E0) whose image on H∞

b
(H0, E0) is exactly H(D). Moreover, the b-

principal symbol of C is the orthogonal projection onto the eigenspaces of the negative
eigenvalues of the corresponding b-principal symbol of D0.

We remark that D is surjective for any real s and not just s = ∞. We also
remark that we make no invertibility assumptions whatsoever on the Dirac type
operator D. This may sound striking because in the case of a manifold with corners
with an exact b-metric (which pushes all its boundary hypersurfaces to ∞), it is
well-known [19, Cor. 2.5] that a Dirac type operator is Fredholm if and only if all
the induced Dirac type operators on the boundary hypersurfaces are invertible (see
also Theorem 2.5 and Remark 6.3). Theorem 1.1 shows that with no invertibility
assumptions whatsoever, if we cut the manifold forming an admissible face, then
the Calderón projector is well-defined at that face, has the same properties as on
a compact manifold, and even has the ‘nice’ structure of a b-operator. See Section
3 for an example where we compute the Calderón projector in a model case where
none of the induced Dirac operators are invertible. This example also shows that,
in general, the Calderón projector C is not in the ‘small’ b-calculus.

Assume for the moment that E = F and D is formally self-adjoint. Then in
particular, G2

0 = −Id. One can check that

Ω(v, w) := 〈G0ϕ,ψ〉0 for ϕ,ψ ∈ L2
b
(H0, E0)

is a Hermitian symplectic form on L2
b
(H0, E0) where 〈 , 〉0 is the L2

b
inner product

on H0. Our second result is

Theorem 1.2. Assume E = F and D is formally self-adjoint. Then the closure of
the Cauchy data space H(D) in L2

b
(H0, E0) is Lagrangian with respect to Ω. In par-

ticular, with respect to the decomposition L2
b
(H0, E0) = L2

b
(H0, E

+
0 )⊕L2

b
(H0, E

−
0 ),

where E±
0 are the (±i)-eigenspaces of G0, the orthogonalized Calderón projector

C takes the form

C =
1

2

(
Id κ−1

0

κ0 Id

)
,

where κ0 : L2
b
(H0, E

+
0 )→ L2

b
(H0, E

−
0 ) is a unitary operator.

We remark that Theorem 1.2 — the Lagrangian property of H(D) — holds
without any product structures near H0. This is one of the important geometric
properties of H(D), which plays the crucial rôle in the study of the spectral in-
variants for manifolds with multi-cylindrical end boundaries [20, 21]. In our next
theorem, under the condition that D is of product type near H0; that is, in the
decomposition (1.6) of D near H0, both Gu and Du are constant in u, we show that
the orthogonalized Calderón projector C is equal to the Calderón projector defined
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from the Poisson operator of the invertible double of D. Here, the invertible double
is defined in Section 4 following the work of Wojciechowski [32].

Theorem 1.3. Assume E = F and D is formally self-adjoint and assume that D
is of product-type near H0. Then the Calderón projector defined by the invertible
double of D equals the orthogonalized projector C.

Back to the general case, using the Calderón projector C, we can characterize the
Fredholm properties of D with other projectors defining the boundary condition.
Given an arbitrary projector P on L2

b
(H0, E0), we define

DP : dom(DP)→ L2
b
(X,F )

where

dom(DP) := {φ ∈ H1
b
(X,E) | P(φ|H0

) = 0 }.

Because this domain involves only kerP = ran(Id − P) we can obtain the same
domain by replacing the projector Id − P with its orthogonalization (cf. Remark
3.5 in [10]). For this reason, we consider only orthogonal projections and we define
the smooth self-adjoint Grassmanian Gr∗∞(D) as those orthogonal projections P ∈

Ψ̃0
b
(H0, E0) such that P − C ∈ Ψ̃−∞(H0, E0), the space of Green operators (in the

calculus with bounds — see the definition (2.12) in Section 2). This implies, in
particular, that PC : ran C → ranP is Fredholm. The following theorem is the
multi-cylindrical end version of reduction to the boundary.

Theorem 1.4. For an arbitrary projection P ∈ Gr∗∞(D), the operator

(1.7) DP : dom(DP)→ L2
b
(X,F )

is Fredholm, and

indDP = ind(P, C),

where ind(P, C) := ind
(
PC : ran C → ranP

)
. In particular, for any P ∈ Gr∗∞(D),

the essential spectrum of the operator DP in (1.7) has a gap near 0 and for any
two projections P1,P2 ∈ Gr

∗
∞(D), we have

(1.8) indDP1
− indDP2

= ind(P1,P2).

As before, we remark that we make no invertibility assumptions whatsoever on
D. Again, at first sight, this theorem is quite unbelievable because of the strong
invertibility assumptions needed for the boundary Dirac operators in order that the
corresponding statements hold for Dirac operators on manifolds with corners with
exact b-metrics (which push all their boundary hypersurfaces to ∞). Therefore,
the results stated in Theorem 1.4 show the importance of the Calderón projector
for the noncompact set-up. Moreover, the model case presented in Section 3 shows
the failure of the APS spectral projector to be a pseudodifferential operator. This
means that analytically it would be unfeasible to approach boundary problems via
the APS spectral projector and thus illuminates the effectiveness of the Calderón
method.

We now describe the Bojarski conjecture. Let M be a smooth manifold with
corners with an exact b-metric and let D : C∞(M,E) → C∞(M,F ) be a Dirac
type operator. Suppose that Y is a hypersurface inside M that divides M into two
manifolds with corners

M = M− ∪M+,
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where both M± are of the form considered in Figure 1 such that g|M±
and D± :=

D|M±
satisfy the conditions we have already discussed with respect to Y , which

we assume is admissible for both M±. The Bojarski Conjecture [4], later proved
by Booß–Bavnbek and Wojciechowski [5, Th. 24.1] for compact smooth manifolds,
gives a gluing formula for the index on M in terms of the Fredholm index of pairs
of boundary conditions from M±. Here is the multi-cylindrical end version.

Theorem 1.5. Suppose that D : H1
b
(M,E) → L2

b
(M,F ) is Fredholm. Then for

arbitrary projections P± ∈ Gr
∗
∞(D±), we have

indD = indDP−
+ indDP+

− ind(P−, Id− P+).

In Section 2, we give a self-contained, introductory presentation of b-pseudo-
differential operators on manifolds with corners. In Section 3 we compute the
Calderón projector explicitly in the ‘model’ case when X = [0, 1]u × [0,∞)`. We
prove that the Calderón projector exists and is in the b-calculus with bounds and
we compute its b-principal symbol. In Section 4, we construct the invertible double
of a Dirac type operator over a manifold with multi-cylindrical end. In Sections 5
and 6, we prove Theorems 1.1, 1.2, 1.3, 1.4 and 1.5 using the results proved in the
previous sections.

2. Introduction to b-operators on manifolds with corners

We review the b-calculus on manifolds with corners. For more on these topics,
see Melrose [23], Mazzeo [22], or the appendices of Melrose and Piazza [26], and
Melrose and Nistor [25].

2.1. b-pseudodifferential operators. Let M be a compact manifold with corners
with local expressions of the form (1.1) endowed with an exact b-metric of the form
(1.3) (where exact means there are no admissible boundary hypersurfaces; all the
boundary hypersurfaces are geometrically at ∞). In particular, near any point
p ∈M , as explained around (1.4) we can write

(2.1) M ∼= [0, 1]κv × Y,

where the vi’s represent those boundary defining functions xi that vanish at p
and Y is the component containing p where all the vi’s vanish. A codimension
κ face, κ ≥ 1, of M is a nonempty connected component of the intersection of κ
hypersurfaces of M . In particular, a boundary hypersurface is just a codimension
one face of M . The largest κ such that M has a (nonempty) condimension κ face
is called the codimension of M .

We now describe the ‘small’ calculus. Let Ċ∞(M) denote the space of smooth
functions on M that vanish to infinite order at the boundary of M ; that is, in Tay-
lor series at any xi in a local patch such as (2.1). We first define the b-smoothing
operators Ψ−∞

b
(M) (which are not genuine smoothing operators). These are op-

erators R on Ċ∞(M) described in local coordinates as follows. Let U and U ′

be coordinate patches on M of the form (2.1) where we take coordinates on the
corresponding Y ’s for U and U ′. We allow κ = 0 in (2.1) for either U or U ′,
which means that the coordinate patch is located in the interior of our manifold
M . Let v = (v1, . . . , v`) denote those boundary defining functions, if any, that are
common to both coordinate patches U and U ′, so that

(2.2) U = [0, 1]`v × V , U
′ = [0, 1]`v × V

′,
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where V ⊂ [0,∞)k × R
n−`−k and V ′ ⊂ [0,∞)k′

× R
n−`−k′

. Let y denote the
coordinates on V and y′ the coordinates on V ′. Then given any open set W with
compact closure in U ′, for any φ ∈ Ċ∞(M) having support in W , the restriction
of Rφ to U is of the form

(2.3) Rφ =

∫

U ′

R
(
v,
v

v′
, y, y′

)
φ(v′, y′) dg(v′, y′),

where v/v′ := (v1/v
′
1, . . . , v`/v

′
`) and where R(v, z, y, y′) has the following regularity

properties: It is smooth in all variables, vanishes to infinite order with all derivatives
at any zi = 0 or as zi → ∞, and vanishes to infinite order at any yi = 0 or y′i = 0
when the corresponding zero set represents a boundary hypersurface of M .

We now consider the general case of an operator A ∈ Ψm
b

(M), m ∈ R, which is

an operator on Ċ∞(M) described in local coordinates as follows. Let U and U ′

be coordinate patches of the form (2.2) and let W be an open set with compact
closure in U ′.

(I) If U and U ′ are disjoint, then given any φ ∈ Ċ∞(M) having support in W ,
the restriction of Aφ to U is given by an operator R ∈ Ψ−∞

b
(M) as in (2.3).

(II) Suppose now that U = U ′ = [0, 1]`v × R
n−`
y . Then there is a function

a(v, y, ξ), smooth in (v, y) ∈ U and a classical symbol of order m in ξ, such

that given any φ ∈ Ċ∞(M) having support in W , we have

(2.4) Aφ =

∫

Rn

viτeiy·ηa(v, y, τ, η) φ̂(ξ) d̄τ d̄η,

where ξ = (τ, η), viτ = viτ1

1 · · · v
iτ`

` , and φ̂(ξ) is the Mellin transform in v and
the Fourier transform in y of φ,

(2.5) φ̂(τ, η) =

∫

U

v−iτe−iy·ηφ(v, y)
dv

v
dy.

We also assume that a(v, y, ξ) with all its derivatives extends to be an entire
function of τ , and for |Im τ | bounded by any fixed number, is a classical
symbol of order m in (τ, η) as |Re τ |, |η| → ∞; this is a “lacunary” type
condition for τ ∈ C

` as described by Hörmander [13, p. 114].

The space Ψm
b

(M) is called the small calculus of b-pseudodifferential operators
of order m. It also turns out that any A ∈ Ψm

b
(M) defines a continuous map on

C∞(M). In the literature, b-operators are most often presented in terms of their
Schwartz kernels. Observe that combining (2.4) and (2.5), we see that the Schwartz
kernel of A on the product M ×M near the diagonal is of the form

(2.6) KA =

∫

Rn

( v
v′

)iτ

ei(y−y′)·ηa(v, y, τ, η) d̄τ d̄η ·
dv′

v′
dy′,

where (v, y) are coordinates on the left factor of M and (v′, y′) are the same co-
ordinates on the right factor of M . Introducing ‘logarithmic coordinates’ w =
(log v1, . . . , log v`, y), we can write this kernel as

(2.7) KA =

∫

Rn

ei(w−w′)·ξ a(v, y, ξ) d̄ξ · dw′,

which looks like the Schwartz kernel of a pseudodifferential operator that we are
used to. However, the ‘singular’ presentation (2.6) has certain advantages; perhaps
the major one is that it, quite remarkably, actually simplifies the proofs of the
composition and mapping properties of these operators.
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The space of b-pseudodifferential operators has many of the same properties as
the common ones on compact boundaryless manifolds. For example, Diffm

b (M) ⊂
Ψm

b
(M), where Diffm

b
(M) is the space of totally characteristic differential operators,

which are operators taking the following form over a patch [0, 1]`v × R
n−`
y :

(2.8) P =
∑

|α|+|β|≤m

aα,β(v, y) (v∂v)α∂β
y ,

where the aα,β ’s are smooth in (v, y) ∈ [0, 1]`v × R
n−`
y . The space of Ψ•

b
(M) is

also a symbolically filtered ∗-algebra of operators. Thus, it is closed under taking
adjoints and compositions, and there is a ‘b-’ principal symbol map preserving
these operations obtained by taking the leading homogeneous term of each symbol
a(v, y, ξ) in the local representation (2.7). For example, the b-principal symbol of
P in (2.8) is

bσm(P )(v, y, ξ) =
∑

|α|+|β|=m

aα,β(v, y) (iτ)α(iη)β , ξ = (τ, η).

The b-principal symbol turns out to be a function on the b-cotangent bundle bT ∗M
of M minus the zero section [23, p. 30]. An operator A is said to be b-elliptic if its
b-principal symbol is invertible. The space L2

b
(M) consists of those functions on

M that are square integrable with respect to dg and for any m ∈ R, the Sobolev
space Hm

b
(M) consists of those distributions φ on M having the property that Aφ ∈

L2
b
(M) for all A ∈ Ψm

b
(M); one can check that Hm

b
(M) is just the usual Sobolev

space in the interior of M and the Mellin transform based Sobolev space in the
normal variables to the hypersurfaces of M . We define H∞

b
(M) =

⋂
m∈R

Hm
b

(M).
Then any A ∈ Ψm

b
(M) defines a continuous linear map

A : Hs
b
(M)→ Hs−m

b
(M) , s ∈ R ∪ {∞}.

Unfortunately, the ‘small’ space Ψ•
b
(M) is not spectrally invariant in the sense

that this set is not closed under inversion, when inverses exist; however, inverses
can be found in the ‘larger’ calculus with bounds, which we now describe. Let

θ > 0. We define Ψm,θ
b

(M) as those operators A that satisfy (I) and (II) as before,
but with the following modifications: In (I), we can write R as in (2.3):

(2.9) Rφ =

∫

U ′

R
(
v,
v

v′
, y, y′

)
φ(v′, y′) dg(v′, y′),

but now R(v, z, y, y′) has the following ‘boundedness’ properties: For each i =
1, . . . , `, we require that

R(v, z, y, y′) = R1,i(v, z, y, y
′) + vθ+ε

i R2,i(v, z, y, y
′),

where R1,i, R2,i are smooth for v, y, y′ in the interior of M and in z > 0, and there
is an ε > 0 such that given any constant coefficient b-differential operators P in the
variables z, y, y′ and Q in the variables v, z, y, y′, the functions ∂α

v PR1,i (for any
α) and QR2,i are bounded for all v, z, y, y′, continuous at each vj = 0, vanishes to

order zθ+ε
j and z−θ−ε

j at each zj = 0 and as zj →∞, respectively, and vanishes to

order yθ+ε
j at any yj = 0 and (y′j)

θ+ε at any y′j = 0 if any of these sets represent

boundary hypersurfaces of M . In (II), for each i, we require that

a(v, y, ξ) = a1,i(v, y, ξ) + vθ+ε
i a2,i(v, y, ξ),
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where a1,i(v, y, ξ) is smooth in all variables and all b-derivatives of a2,i(v, y, ξ) are
continuous (here ‘b-’ refers only with respect to v), and a1,i and a2,i satisfy the
lacunary condition for τ in the strip |Im τ | ≤ θ + ε.

This definition of the calculus with bounds can be found in [16, p. 88] or [17, p.
1262] from the ‘blown-up picture’. When θ is not important (as it will not be for
this paper), we shall use the space

Ψ̃m
b (M) =

⋃

θ>0

Ψm,θ
b

(M).

These spaces form the calculus with bounds and they too form an algebra in the

sense that Ψm,θ
b

(M)◦Ψm′,θ′

b
(M) ⊂ Ψm+m′,θ′

b
(M), where θ′ = min{θ, θ′}. They also

define continuous maps between b-Sobolev spaces.

2.2. The normal operator and Fredholm properties. The normal operator
governs the Fredholm b-pseudodifferential operators. Let Y be a codimension `
boundary face of M . Assume that Y is a component of Hi1 ∩ · · · ∩ Hi`

, where
i1 < · · · < i`, so that xi1 , . . . , xi`

are defining functions for M . Then near Y (cf.
(2.1)) we have

(2.10) M ∼= [0, 1]`v × Y, v = (xi1 , . . . , xi`
).

Given A ∈ Ψm
b

(M), the normal operator of A at Y is defined as follows. Given
a function ψ ∈ C∞(Y ), let φ ∈ C∞(M) be any smooth function such that φ|Y =
ψ. The properties of the small calculus imply that given any fixed τ ∈ C

`, the
function v−iτA(viτφ) defines a smooth function on M ; in particular, this function
is continuous at Y . Restricting this function to Y defines the normal operator of
A at Y :

NY (A)(τ)ψ :=
(
v−iτA(viτφ)

)∣∣∣
Y
.

This operator does not depend on the choice of extension φ. Moreover, it readily
follows that

(2.11) NY (A∗)(τ) = NY (A)(τ)∗ , NY (AB)(τ) = NY (A)(τ)NY (B)(τ)

for any B ∈ Ψm′

b
(M) and all τ ∈ C

`. For instance, to prove the composition
property, let φ be an extension of ψ as before, and note that

NY (AB)(τ)ψ =
(
v−iτABviτφ

)∣∣∣
Y

=
(
v−iτAviτ

(
v−iτBviτφ

))∣∣∣
Y

= NY (A)(τ)
( (

v−iτBviτφ
)∣∣∣

Y

)

= NY (A)(τ)(NY (B)(τ)φ).

The following theorem characterizes Fredholm b-operators in terms of normal
operators. The proof can be found in the appendix of [19].

Theorem 2.1. If A ∈ Ψm
b

(M), m ∈ R
+, then given any s ∈ R or s = ∞, the

following are equivalent:

(1) A : Hs
b
(M)→ Hs−m

b
(M) is Fredholm.

(2) A is b-elliptic and NH(A)(τ) : Hs
b
(H) → Hs−m

b
(H) is invertible for all τ ∈ R

for each boundary hypersurface H.
(3) A is b-elliptic and NY (A)(τ) : Hs

b
(Y )→ Hs−m

b
(Y ) is invertible for all τ ∈ R

`

for each codimension ` face Y of M , for all ` ≥ 1.
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If the statements (1), (2), or (3) hold for one s, then they automatically hold for
any other s.

Because of this theorem, when we say A ∈ Ψm
b

(M) is Fredholm we can just fix
s = m so we can focus strictly on A : Hm

b
(M)→ L2

b
(M).

Finally, we remark that elements of Ψ̃−∞
b

(M) are not compact. The following
theorem characterizes compact b-operators in terms of normal operators; see [19,
Appendix] for the proof.

Theorem 2.2. For A ∈ Ψ̃−∞
b

(M), the following are equivalent:

(1) A : L2
b
(M)→ L2

b
(M) is compact.

(2) NH(A)(τ) ≡ 0 for each boundary hypersurface H.
(3) NY (A)(τ) ≡ 0 for each codimension ` face Y of M , for all ` ≥ 1.

We define Ψ̃−∞(M) — the (weak) Green operators (here we follow Schulze’s

terminology as explained in [15, Def. 3.6]) — as all elements of Ψ̃−∞
b

(M) that are
compact. These operators can be described explicitly as follows. Let ρ = x1 x2 · · ·xr

be the product of all the boundary defining functions ofM . Then Ψ̃−∞(M) consists
of operators having Schwartz kernels of the form, for some θ > 0:

(2.12) K ∈ Ψ̃−∞(M) ⇐⇒ K = ρ(p)θρ(q)θ R(p, q) dg(q)

where for any b-differential operators Pp and Qq acting on the variables p and
q, respectively, the function PpQqR(p, q) is bounded. Then K maps Hs

b
(M) to

ρθH∞
b

(M) and defines a compact operator on Hs
b
(M) for any s. The b subscript in

Ψ̃m
b

(M) has to do with special pseudodifferential structure at the boundary of M ,

but operators in Ψ̃−∞(M) vanish at the boundary, which accounts for the ‘missing’
b subscript for these compact operators.

The next theorem describes the generalized inverse of Fredholm operators.

Theorem 2.3. If A ∈ Ψm
b

(M), m ∈ R
+, is Fredholm, then its generalized inverse,

G : L2
b
(M)→ Hm

b
(M), is in the full calculus: G ∈ Ψ̃−m

b
(M). Here, the generalized

inverse is defined by the equations

AG = Id−Π1 , GA = Id−Π0,

where Π0,Π1 ∈ Ψ̃−∞(M) are the orthogonal projections onto the null space of A
in Hm

b
(M) and off the range of A in L2

b
(M), respectively. Moreover, kerA ⊂

ρθH∞
b

(M), and cokerA ∼= kerA∗ ⊂ ρθH∞
b

(M) for some θ > 0.

In the following theorem, we give another characterization of Fredholmness which
is quite useful in practice rather than in theory, and it will be exploited in a moment
to prove the subsequent Theorem 2.5 for Dirac operators.

Theorem 2.4. If A ∈ Ψm
b

(M), m ∈ R
+, then given any s ∈ R or s = ∞, the

following are equivalent:

(1) A : Hs
b
(M)→ Hs−m

b
(M) is a Fredholm.

(2) A is b-elliptic and NY (A)(τ) : Hs
b
(Y ) → Hs−m

b
(Y ) has kernel (null space) 0

for all τ ∈ R
` for each codimension ` face Y of M , for all ` ≥ 1.

If the statements (1) and (2) hold for one s, then they automatically hold for any
other s.
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Proof. By Theorem 2.1, it suffices to show that if A is b-elliptic and NY (A)(τ) :
Hs

b
(Y )→ Hs−m

b
(Y ) has kernel 0 for all τ ∈ R

` for each codimension ` face Y of M ,
for all ` ≥ 1, then NY (A)(τ) must be invertible. We first note that being b-elliptic,
A has a ‘small’ parametrix B ∈ Ψ−m

b
(M) such that AB = Id− R1, BA = Id− R2

with Rj ∈ Ψ−∞
b

(M). Let Y be any boundary face of M . Then taking normal
operators, we obtain

NY (A)(τ)NY (B)(τ) = Id−NY (R1)(τ)

NY (B)(τ)NY (A)(τ) = Id−NY (R2)(τ).
(2.13)

Since the Rj ’s are of order −∞, it follows that NY (A)(τ) is b-elliptic for all τ ∈ R
`

(with ` the codimension of Y in M), and as |τ | → ∞, NY (Rj)(τ) → 0 uniformly
in the topology of Ψ−∞

b (Y ), and hence we can invert each operator on the right in
(2.13) on L2

b for |τ | sufficiently large. In conclusion, NY (A)(τ) is a b-elliptic family
that is invertible for |τ | sufficiently large.

We are now ready to prove our theorem by induction. Let `0 be the codimension
of M . Consider the case when Y is a codimension `0 face of M , in which case Y is
a compact boundaryless manifold. Then as we showed above, NY (A)(τ) is a family
of elliptic (and hence Fredholm) operators on a closed manifold that is invertible
for |τ | sufficiently large. Thus, NY (A)(τ) always has index zero. By assumption,
NY (A)(τ) has kernel 0, so NY (A)(τ) must in fact be invertible. This proves that the
claim is true for `0. Let `0 ≥ `k + 1 > 1 and assume that all the normal operators
of A are invertible at all faces of M with codimension ≥ `k + 1. Let Y be a face
of M with codimension `k. Then Y is a manifold with corners whose boundary
hypersurfaces are codimension `k + 1 faces of M . All its normal operators are
invertible by induction hypothesis. Now as we showed above, NY (A)(τ) is a family
of b-elliptic operators on Y that is invertible for |τ | sufficiently large, therefore by
invertibility of its normal operators, NY (A)(τ) is a family of Fredholm operators
with index zero. By assumption, this family has kernels 0, so NY (A)(τ) must in
fact be invertible for all τ . This completes our proof. �

Before speaking about Dirac type operators, we note that everything we have
said for operators on functions works equally well for operators acting between
sections of vector bundles with the obvious modifications.

2.3. Dirac type operators. We now define operators ‘of Dirac type’. An oper-
ator D is called a (b-)Dirac type operator if D ∈ Diff1

b
(M,E,F ), is b-elliptic with

bσ1(D)2 = the metric g, and near each codimension ` face Y of M , in a decompo-
sition (2.10), M ∼= [0, 1]`v × Y near Y , we can write

(2.14) D = G1 v1∂v1
+ · · ·+G` v`∂v`

+BY +O(v),

where BY ∈ Diff1
b(Y,EY , FY ) with EY := E|Y and FY := F |Y , O(v) is a first order

b-differential operator that vanishes at Y , and where the maps Gj : EY → FY are
unitary maps satisfying the relations

(2.15) G∗
jGk = −G∗

kGj (j 6= k) , G∗
jBY = B∗

Y Gj .

By definition of normal operator, we have

(2.16) NY (D)(τ) = G1 iτ1 + · · ·+G` iτ` +BY ,

where the Gj ’s and BY satisfy (2.15); in fact, one can easily show that (2.16)
implies (2.14) so we can define ‘of Dirac type’ using the normal operator expression
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(2.16) instead of the expression (2.14). The operator BY is called the induced
Dirac operator on Y . The word ‘induced’ follows from the fact that if we set
v1 = · · · = v` = 0 in (2.16) we get exactly BY .

Theorem 2.5. A Dirac type operator D ∈ Diff1
b(M,E,F ) is Fredholm if and only

if for each boundary face Y of M , the induced Dirac type operator BY on Y has
kernel 0 on L2

b
(Y,EY ).

Proof. Let Y be a codimension ` face of M and fix any 0 ≤ j ≤ `. We prove that
NY (D)(τ) is invertible for all τ ∈ R

` with τj 6= 0. Indeed, observe that

NY (D)(τ) = iG1 τ1 + · · ·+ iG` τ` +BY = Gj [iτj +Aj(τ)],

where

Aj(τ) =
∑

k 6=j

G∗
jGk iτk +G∗

jBY

Since G∗
jGk = −G∗

kGj and G∗
jBY = B∗

Y Gj , the operator Aj(τ) is formally self-

adjoint for all τ ∈ R
`. It follows that NY (D)(τ) is invertible for all τ ∈ R

` with
τ 6= 0. It has kernel 0 at τ = 0 if and only if BY has kernel 0. The Fredholm
property of D now follows Theorem 2.4. �

Much of what we have studied on M works for our manifold with corners X
with an admissible hypersurface H0. Take any manifold with corners M with an
exact b-metric (pushing all its boundary hypersurfaces to ∞) that contains X as

a smooth submanifold; e.g. take the manifold M = X̃ shown in Figure 3 of Section
4, which is obtained from X by essentially doubling it across H0. Then M is a
manifold with corners of the type we’ve been studying, so Hs

b
(M), Diffm

b
(M), and

Ψs
b
(M) are defined. Now simply define Hs

b
(X), Diffm

b
(X), and Ψs

b
(X) to be the

restrictions to X of Hs
b
(M), Diffm

b (M), and Ψs
b
(M), respectively. These definitions

are determined independently of the choice of extension M . We now describe Dirac
type operators on X.

Let E,F be Hermitian vector bundles overX and letD : C∞(X,E)→ C∞(X,F )
be a Dirac type operator; this means that D is the restriction to X of a Dirac type
operator on M . We assume that on the collar [−1, 0]u × H0 of the admissible
boundary hypersurface H0 with H0 = {u = 0}, the vector bundles E and F are
isometric to E0 := E|H0

and F0 := F |H0
, and

(2.17) D = Gu(∂u +Du),

where Gu : E0 → F0 is unitary and Du ∈ Diff1
b
(H0, E0) is a Dirac type operator

on H0, and where both Gu and Du are smooth up to u = 0 and restricting there
to define a unitary map G0 : E0 → F0 and a formally self-adjoint Dirac type
operator D0 ∈ Diff1

b
(H0, E0). Note that H0 is an example of an ‘M ’ as we have

been considering in this section. We end this section with Green’s formula. Let D∗ :
C∞(X,F )→ C∞(X,E) denote the formal adjoint of D. Then given e ∈ H1

b
(X,E)

and f ∈ H1
b
(X,F ), we have

(2.18) 〈De, f〉X − 〈e,D
∗f〉X = 〈G0e0, f0〉0,

where e0 := e|H0
, f0 := f |H0

, and 〈 , 〉X and 〈 , 〉0 denote L2
b
-inner products over

X and H0, respectively. The proof of this formula is identical with the proof in the
compact case with no changes.
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3. An illuminating example

In this section we compute the orthogonalized Calderón projector for a ‘model’
Dirac operator. This example illustrates the basic characteristics of Calderón pro-

jectors in the general case. Let R > 0 and setXR = [0, R]u×R
`

+ where R+ = [0,∞).
In this case,

YR = ∂XR =
(
{0} × R

`

+

)
t

(
{R} × R

`

+

)
≡ R

`

+ t R
`

+.

Consider the (b-) Dirac operator

D = G0 ∂u +G1 v1∂v1
+ · · ·+G` v`∂v`

∈ Diff1
b
(XR, E),

where E is a Hermitian Clifford module (that is, we consider the trivial bundle
XR × E over XR) and the Gj ’s are unitary matrices on E satisfying

(3.1) G2
j = −Id, G∗

j = −Gj , GjGk = −GkGj (j 6= k).

We can write our Dirac operator as

D = G0(∂u +B),

where

B = A1 v1Dv1
+ · · ·+A` v`Dv`

∈ Diff1
b
(R

`

+, E),

with Aj = iGjG0 and Dvj
= i−1∂vj

. The properties (3.1) of the Gj ’s imply that

(3.2) A2
j = Id , A∗

j = Aj , AjAk = −AkAj , where Aj = iGjG0.

These properties imply, in particular, that B is formally self-adjoint.
To find the orthogonalized Calderón projector we first determine the Cauchy

data space of D. To this end, let φ(u, v) ∈ H∞
b

(XR, E). We first write φ in terms
of the Mellin transform

φ(u, v) =

∫

R`

viτ φ̂(u, τ) d̄τ,

where the ‘ ˆ ’ means Mellin transform with respect to v:

φ̂(u, τ) =

∫

R
`

+

v−iτφ(u, v)
dv

v
.

Second, we note that

Dφ = G0

(
∂u +B

) ∫
viτ φ̂(u, τ) d̄τ = G0

∫
viτ (∂u +A(τ)) φ̂(u, τ) d̄τ,

where recalling that B = A1 v1Dv1
+ · · ·+A` v`Dv`

, we have

A(τ) := bσ1(B)(τ) = A1 τ1 + · · ·+A` τ`.

Thus, Dφ = 0 if and only if (∂u +A(τ)) φ̂(u, τ) = 0, if and only if

φ̂(u, τ) = e−uA(τ) φ̂(0, τ).

With this formula in mind, for ϕ ∈ H∞
b

(R
`

+, E), we define the operator e−uBϕ via
the Mellin transform:

e−uBϕ :=

∫
viτe−uA(τ)ϕ̂(τ) d̄τ,

provided that the right-hand side exists. Then Dφ = 0 if and only if

φ(u, v) = e−uBϕ , ϕ(v) = φ(0, v).
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We can now find the Cauchy data space. Recall that XR = [0, R] × R
`

+ and

YR = ∂XR = R
`

+ t R
`

+. Then H∞
b

(YR, E) ≡ H∞
b

(R
`

+, E) ⊕H∞
b

(R
`

+, E) and with
respect to this decomposition, we have

φ|YR
=

(
φ|u=0

φ|u=R

)
=

(
ϕ

e−RBϕ

)
.

In conclusion, we have proved that if φ ∈ H∞
b

(XR, E) and Dφ = 0, then φ|YR

is a column vector (ϕ, e−RBϕ) with ϕ, e−RBϕ ∈ H∞
b

(R
`

+, E). The converse is
straightforward (see the structure of A(τ) in (3.3) below.) Thus, we have proved

Theorem 3.1. The Cauchy data space

H(D) := {φ|YR
|φ ∈ H∞

b
(XR, E) , Dφ = 0 } ⊂ H∞

b
(R

`

+, E)⊕H∞
b

(R
`

+, E)

is given explicitly by

H(D) =

{(
Id

e−RB

)
ϕ

∣∣∣∣ ϕ ∈ H∞
b

(R
`

+, E) , e−RBϕ ∈ H∞
b

(R
`

+, E)

}
.

In order to determine the properties of the orthogonalized Calderón projector,
we first note that

(3.3) A(τ)∗ = A(τ) , A(τ)2 = |τ |2 , A(τ)G0 = −G0A(τ).

These properties follow directly from (3.2) or from the fact that A(τ) = bσ1(B)(τ).
It follows that A(τ) has eigenvalues ±|τ | with the corresponding eigenspaces of the
same dimension which G0 intertwines. In particular, for any u ∈ R,

(3.4) e−uA(τ) acts as e∓u |τ | where A(τ) = ±|τ |.

From this fact, it is easy to show that for ϕ ∈ H∞
b

(R
`

+, E), we have e−RBϕ ∈

H∞
b

(R
`

+, E) if and only if for any k,

(3.5)

∫
e2R|τ | |τ |k |ϕ̂(τ)|2 dτ <∞ for all k.

Now let us compute the orthogonalized Calderón projector:

Theorem 3.2. The orthogonal projector onto the Cauchy data space H(D) is the

pseudodifferential operator C ∈ Ψ̃0
b
(Y,E) given by (cf. (2.6))

C =
1

Id + e−2RB

(
Id e−RB

e−RB e−2RB

)
:=

∫

R`

( v
v′

)iτ

c(τ) d̄τ ·
dv′

v′
,

where

c(τ) =
1

Id + e−2RA(τ)

(
Id e−RA(τ)

e−RA(τ) e−2RA(τ)

)
.

Moreover, the b-principal symbol of C is given by

bσ0(C)(τ) =

(
Π+(A(τ)) 0

0 Π−(A(τ))

)
,

where Π±(A(τ)) are the orthogonal projectors onto the ±|τ | eigenspaces of the sym-
bol A(τ) = bσ1(B)(τ) of the tangential operator.
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Proof. We first show that C is a b-pseudodifferential operator and then we prove
that C does indeed project onto H(D). First, we note that c(τ) is smooth in all
variables and we can write

c(τ) =




1

Id + e−2RA(τ)

1

eRA(τ) + e−RA(τ)

1

eRA(τ) + e−RA(τ)

1

e2RA(τ) + Id


 .

From this expression, a straightforward verification from (3.4) shows that c(τ) is
a classical symbol of order 0. Another straightforward verification shows that c(τ)
satisfies the lacunary condition on a strip |Im τ | ≤ δ for some δ > 0 (cf. the
discussion after the proof). Second, we see that over the space where A(τ) = ±|τ |,
we have

c(τ) =




1

Id + e∓2R|τ |

1

e±R|τ | + e∓R|τ |

1

e±R|τ | + e∓R|τ |

1

e±2R|τ | + Id




=

(
Π+(A(τ)) 0

0 Π−(A(τ))

)
+ exponentially decreasing as |τ | → ∞.

This shows that
bσ0(C)(τ) =

(
Π+(A(τ)) 0

0 Π−(A(τ))

)
.

Third, by direct computation, we see that

c(τ)2 =
1

(Id + e−2RA(τ))2

(
Id e−RA(τ)

e−RA(τ) e−2RA(τ)

)(
Id e−RA(τ)

e−RA(τ) e−2RA(τ)

)

=
1

Id + e−2RA(τ)

(
Id e−RA(τ)

e−RA(τ) e−2RA(τ)

)
= c(τ).

Since c(τ) is certainly self-adjoint, we conclude that

C2 = C and C∗ = C.

Thus, we have proven that C ∈ Ψ̃0
b
(Y,E) and is an orthogonal projection. It

remains to show that C defines the projection onto H(D). To this end, let (ϕ,ψ) ∈
H∞

b
(Y,E). Then by definition,

C(ϕ,ψ) =

∫
viτ 1

Id + e−2RA(τ)

(
Id e−RA(τ)

e−RA(τ) e−2RA(τ)

) (
ϕ̂(τ)

ψ̂(τ)

)
d̄τ

=

∫
eivτ

(
Id

e−RA(τ)

)
ω̂(τ) d̄τ

where

ω(v) =

∫
viτ ϕ̂(τ) + e−RA(τ)ψ̂(τ)

Id + e−2RA(τ)
d̄τ.

Using (3.4), one sees that (3.5) is satisfied, so by Theorem 3.1, C has image in the
Cauchy data space H(D). Also, this computation shows that C = Id on H(D), so
the image of C is exactly H(D) and our proof is complete. �

We remark that in general, C is not in the small b-calculus. This is because the
operator (Id + e−2RA(τ))−1 will always have poles so the symbol c(τ) of C is not
entire. For example, let us consider the case ` = 1 when XR = [0, R] × R+. In



16 PAUL LOYA AND JINSUNG PARK

this case, we have A(τ) = τA1 where A1 = iG1G0 satisfies A∗
1 = A1 and A2

1 = Id.
Thus, with respect to the decomposition into the ±1 eigenspaces of A1, we have

1

Id + e−2RA(τ)
=

1

Id + e∓2R τ
on the ±1 eigenspaces of A1.

In particular, the function Id + e∓2R τ vanishes when τ = ±iπ/(2R). Further,
this equation shows that c(τ) satisfies the lacunary condition only on the strip

|Im τ | < π/(2R). Thus, when ` = 1, we can say precisely that C ∈ Ψ0,θ
b

(Y,E) for
any fixed 0 < θ < π/(2R).

We end this section with the APS spectral projector. Back to the general case

XR = [0, R] × R
`

+. Since D = G0(∂u + B), the induced Dirac operator on Y =

∂XR = R
`

+ t R
`

+ is

D0 =

(
−B 0
0 B.

)

Recalling that B = A1 v1Dv1
+ · · ·+A` v`Dv`

we see that the nonpositive spectral
projector of D0 is the operator

ΠAPS :=

∫

R`

( v
v′

)iτ
(

Π+(A(τ)) 0
0 Π−(A(τ))

)
d̄τ
dv′

v′
.

Note that the complete symbol of ΠAPS , which is just the b-principal symbol bσ0(C)
of the orthogonalized Calderón projector C, is not smooth at τ = 0, so ΠAPS is not
a pseudodifferential operator.

4. The invertible extension

In this section, we construct an extension of D, which is an invertible Fredholm
Dirac operator. This extension will be used to construct the Calderón projector
and derive its properties.

Theorem 4.1. There exists a smooth manifold X̃ with corners that contains X as

a submanifold and an invertible Fredholm Dirac type operator D̃ ∈ Diff1
b
(X̃, Ẽ, F̃ )

such that D̃|X = D.

This theorem generalizes Wojciechowski’s [32] (cf. Chapter 9 of [5]) result for
smooth manifolds with boundary. Note that this theorem holds regardless of the
dimension of X and with no invertibility assumptions on D. To prove this theorem,
we first reduce our theorem to the formally self-adjoint case. To do so, consider the
vector bundle E′ := E ⊕ F over X and the Dirac type operator

D′ :=

(
0 D∗

D 0

)
: C∞(X,E′)→ C∞(X,E′).

This operator is by construction formally self-adjoint and it still satisfies the collar
decomposition property (1.6). If we prove our theorem for this operator, then we
automatically get an invertible extension for D. Thus, for the rest of this section,
we assume that D : C∞(X,E)→ C∞(X,E) is formally self-adjoint.

Next, following Booß–Bavnbek and Wojciechowski, Chapter 9 of [5], we reduce
our problem to the product case near H0. To this end, by (1.6) we know that over
the collar neighborhood [−1, 0]×H0 of H0, we can write

D = Gu

(
∂u +Du),
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H0
-

−X−X ∼= [0, 1]u ×H0

−H2

?

−H1

6

Figure 2. −X is the ‘mirror image’ of the original manifold X.

where Gu is a family of unitary maps on E0 := E|H0
, andDu is a family of operators

in Diff1
b
(H0, E0) depending smoothly on u. Attaching the collar [0, 2]u ×H0 to H0

we can form the manifold

X t
(
[0, 2]u ×H0

)
,

then it is straightforward to extend D to this manifold in such a way that D is
independent of u on [1, 2]u ×H0:

(4.1) D = G0

(
∂u +D0)

where G0 is a unitary map on E0 and D0 ∈ Diff1
b
(H0, E0) is formally self-adjoint.

By proving Theorem 4.1 for this extended operator, we may assume that D takes
the product form (4.1) on the original neighborhood N = [−1, 0] × H0, which we
now assume. Then using the fact that D is of Dirac type and is formally self-adjoint,
we observe that

(4.2) G2
0 = −Id and D0G0 = −G0D0.

With this product structure fixed, we proceed to construct the invertible double of
the Dirac type operator D.

4.1. The doubled manifold. We begin by defining the manifold −X to be the
same manifold X but on the collar N = [−1, 0]u × Y , we simply make the change
of variables u 7→ −u so that near H0 (see Figure 2)

−X ∼= −N := [0, 1]u ×H0.

The minus sign just indicates that we always use the collar −N near H0 on −X
instead of N , which in the literature is sometimes stated as ‘−X is X with the
reversed orientation’. Since H0 is admissible, all the hypersurfaces intersect H0,
therefore each of the hypersurfaces Hj with j > 0 are also reversed as seen in
Figure 2. Of course, since X ≡ −X, the vector bundle E is still a vector bundle
over −X and D defines an operator on C∞(−X,E). The only difference is that
on −X we use the collar −N , and since D is of the form (4.1) over N , under the
change of variables u 7→ −u, we have

(4.3) D = G0(−∂u +D0) over −N = [0, 1]u ×H0.

We now glue X to −X via (see Figure 3)

(4.4) X̃ := X tH0
(−X) and Ẽ := E tG0

E,

which means that X and −X are attached along H0 and Ẽ is obtained by gluing

E on X to E on −X via the relation e ∼ G0e over H0. The C∞ structure of Ẽ is
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H0

X̃

X̃ ∼= [−1, 1]u ×H0
X −X

Figure 3. In this example, X̃ is the double of the manifold on the
left side in Figure 1. The hypersurfaces H1 and H2 automatically
get doubled in the process.

defined as follows. Since Ẽ ≡ E over X and −X away from H0, we can focus near
the gluing hypersurface H0. Since over N ,

(4.5) E|N ∼=
(
[−1, 0]×H0 , E0

)
,

over −N = [0, 1]×H0, we have

(4.6) E|−N
∼=

(
[0, 1]×H0 , E0

) G0−→
(
[0, 1]×H0 , E0

)
,

where G0 is an isomorphism on E0. Let Ñ := N tH0
(−N). Then by definition of

Ẽ, using (4.5) and (4.6) we get a bijection

Ẽ|Ñ :=
(
E|N

)
tG0

(
E|−N

)
←→

(
[−1, 1]×H0 , E0

)
.

We define the C∞ structure of Ẽ near H0 by simply declaring this bijection to be

a diffeomorphism. Now working out the definition of the C∞ structure of Ẽ, we

see that an element of C∞(X̃, Ẽ) can be identified as a pair

φ = (φ1, φ2) , where φ1 ∈ C
∞(X,E) , φ2 ∈ C

∞(−X,E),

such that in the trivializations E|N ∼=
(
[−1, 0]u × H0, E0

)
and E|−N

∼=
(
[0, 1]u ×

H0, E0

)
, the following section

(4.7) φ(u, y) :=

{
φ1(u, y) u < 0

G0φ2(u, y) u > 0

extends to u = 0 to define a smooth section φ(u, y) ∈ C∞([−1, 1]u ×H0, E0).
It is important to note that, by the admissibility of H0, if Hj with j > 0 is any

boundary hypersurface, then the hypersurfaces Hj and −Hj glue via (4.4) to form

a hypersurface H̃j in X̃ such that (see Figure 3)

H̃j = Hj tH0∩Hj
(−Hj) and Ẽ|H̃j

:= E|Hj
tG0

E|Hj
.

Moreover, {H̃j} (j > 0) are all the boundary hypersurfaces of X̃ and the boundary
defining functions {xj} for {Hj} induce corresponding boundary defining functions

{x̃j} for the {H̃j}, and the decomposition (1.1) continues to hold near H̃i:

X̃ ∼= [0, 1]x̃i
× H̃i , i = 1, 2, . . . , r , H̃i = {x̃i = 0}.

There are also decompositions of the sort (2.10): If Ỹ is a component of H̃i1 ∩ · · · ∩

H̃i`
, where 1 ≤ i1 < · · · < i`, then near Ỹ ,

(4.8) X̃ ∼= [0, 1]`ṽ × Ỹ , ṽ = (x̃i1 , . . . , x̃i`
).
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Note that Ỹ is just the double of a component in Hi1 ∩· · ·∩Hi`
. Finally, the metric

g in (1.3) becomes an exact b-metric g̃ on X̃ that pushes all its faces {H̃j} to ∞:

g̃ =

r∑

i=1

(dx̃i

x̃i

)2

+ h̃,

where h̃ is a smooth symmetric two-form on X̃.

4.2. The invertible double. We now define the doubled Dirac operator D̃ act-

ing on C∞(X̃, Ẽ) of the Dirac type operator D. Given a section φ = (φ1, φ2) ∈

C∞(X̃, Ẽ), we define

(4.9) D̃φ := (Dφ1,−Dφ2).

We need to verify that (Dφ1,−Dφ2) ∈ C
∞(X̃, Ẽ). To prove this, in view of (4.7),

we need to show that Dφ1 and −G0Dφ2 patch near H0 to be smooth. To this end,
we note that since D = G0(∂u +D0) over N , we have

Dφ1(u, y) = G0(∂u +D0)φ(u, y).

From (4.2) we know that G2
0 = −Id and D0G0 = −G0D0. Thus, since D =

G0(−∂u +D0) over −N , again recalling (4.7), we have

−G0D
(
φ2

)
= −G0 ·

(
G0(−∂u +D0)

)(
−G0φ

)
= −(−∂u +D0)G0φ

= G0(∂u +D0)φ.

Comparing the formulas for Dφ1(u, y) and −G0Dφ2(u, y), we see that

(4.10) D̃φ = G0(∂u +D0)φ(u, y) over Ñ = [−1, 1]u ×H0.

Thus, D̃ : C∞(X̃, Ẽ) → C∞(X̃, Ẽ) takes the product form (4.10) near H0. Since

D is a b-operator, the definition (4.9) shows that D̃ is a b-differential operator

away from H0 and then the form (4.10) shows that D̃ is a b-operator near H0.

Hence, D̃ ∈ Diff1
b(X̃, Ẽ). Note that Ẽ inherits an inner product from E, therefore

L2
b
(X̃, Ẽ) has a naturally induced inner product. Since D is by assumption formally

self-adjoint, the definition (4.9) and the product form (4.10) shows that D̃ is also
formally self-adjoint.

4.3. Fredholmness of the double. We now show that D̃ is of Dirac type and

Fredholm. The definition (4.9) and the decomposition (4.10) show that bσ1(D̃)2 =

g̃, so it remains to verify the structure of D̃ near the faces of X̃. Consider the

decomposition of X̃ near Ỹ as in (4.8), and let X ∼= [0, 1]`v×Y be the corresponding
decomposition of X near Y . Then by (2.14), near Y we can write

D = G1 v1∂v1
+ · · ·+G` v`∂v`

+BY +O(v),

where BY ∈ Diff1
b
(Y,EY ) with EY := E|Y , O(v) is a first order b-differential

operator that vanishes at Y , and where the Gj ’s are unitary maps on EY satisfying
the relations

(4.11) G2
j = −Id , GjGk = −GkGj (j 6= k) , GjBY = −BY Gj .
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Note that these relations are slightly different from (2.15) because now D is for-
mally self-adjoint so we have more structure forced upon us. It follows that on the

decomposition (4.8) near Ỹ , X̃ ∼= [0, 1]`ṽ × Ỹ , we have

D̃ = G̃1 ṽ1∂ṽ1
+ · · ·+ G̃` ṽ`∂ṽ`

+ B̃Ỹ +O(ṽ),

where the operators G̃j and B̃Ỹ are defined on sections on ẼỸ := Ẽ|Ỹ over the
double of Y by corresponding formulas to (4.9):

G̃jφ := (Gjφ1,−Gjφ2) , B̃Ỹ φ := (BY φ1,−BY φ2).

We know that D̃ maps smooth sections of Ẽ to itself, but it is not a priori automatic

that G̃j and B̃Ỹ individually map smooth sections of ẼỸ to itself. We prove this
is so in the following lemma.

Lemma 4.2. The operators G̃j and B̃Ỹ define operators on C∞(Ỹ , ẼỸ ) and they

satisfy the properties (4.11) with ‘tildes’. In particular, D̃ is a Dirac type operator

over X̃.

Proof. Taking the normal operator of D̃, we see that

NỸ (D̃)(τ) :=
(
ṽ−iτ D̃ṽiτ

)∣∣
Ỹ

= G̃1 iτ1 + · · ·+ G̃` iτ` + B̃Ỹ ,

which by definition is a smooth family of b-operators on Ỹ . In particular, setting

τ = 0 shows that B̃Ỹ maps C∞(Ỹ , ẼỸ ) to itself. Then fixing j and setting τk = 0

for k 6= j implies that G̃j maps C∞(Ỹ , ẼỸ ) to itself. The properties (4.11) are
straightforward to verify; for instance,

G̃kB̃Ỹ φ = G̃k(BY φ1,−BY φ2) = (GkBY φ1, GkBY φ2)

= −(BY Gkφ1, BY Gkφ2)

= −B̃Ỹ (Gkφ1,−Gkφ2) = −B̃Ỹ G̃kφ.

�

We now prove that D̃ is Fredholm. By Theorem 2.5 we need to show that B̃Ỹ

has L2
b

kernel 0. So assume that B̃Ỹ (φ1, φ2) = (BY φ1,−BY φ2) = 0. This implies
that BY φ1 = 0 = BY φ2. Since D = G0(∂u +D0) near H0, we see that

BY = D|Y = GY (∂u +DY ) over N ∩ Y = [−1, 0]u ×H0 ∩ Y,

where GY = G0|Y and DY = D0|Y . Therefore we can apply Green’s formula (2.18)
on Y to get

0 = 0− 0 = 〈BY φ1, φ2〉 − 〈φ1, BY φ2〉 = 〈GY φ1|Y , φ2|Y 〉Y

= −〈φ2|Y , φ2|Y 〉Y = −‖φ2|Y ‖
2
Y ,

where we used that φ1|Y = GY φ2. This implies that φ2|Y = 0 and thus φ1|Y =
GY φ2|Y = 0. Thus, with BY φ1 = 0 = BY φ2 and the unique continuation theorem,
which also holds for our manifold [1, Cor. 1], we get φ1 = 0 = φ2. Thus, BY has L2

b

kernel 0, so by Theorem 2.5, D̃ is Fredholm. The same argument that we just did

also shows that D̃ has L2
b

kernel 0. Thus, D̃ is invertible and our proof of Theorem
4.1 is complete.
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5. The Calderón projector

In this section we prove Theorems 1.1, 1.2 and 1.3.

5.1. Proof of Theorem 1.1. First let us show that

D : H∞
b

(X,E)→ H∞
b

(X,F )

is surjective. Let ψ ∈ H∞
b

(X,F ) and choose any element ψ̃ ∈ H∞
b

(X̃, F̃ ) with

ψ̃|X = ψ where X̃ is the manifold defined in (4.4). Then set

φ :=
(
D̃−1ψ̃

)∣∣
X
,

where D̃ is the invertible extension constructed in subsection 4.2. By definition,
it is obvious that Dφ = ψ. By the unique continuation principle [1, Cor. 1], the
restriction of kerD to the boundary gives a canonical isomorphism between kerD

and H(D). Now using the invertible extension D̃, let us define

(5.1) P := lim
ε→0−

−γε D̃
−1 γ∗0 G0 : H∞

b
(H0, E0)→ H∞

b
(H0, E0),

where γε is restriction to {ε}×H0 and γ∗0 is the adjoint map of γ0 at {0}×H0. In
the following lemma, we prove, in particular, that the limit in (5.1) exists.

Lemma 5.1. P ∈ Ψ̃0
b
(H0, E0) and is a projection (in general not orthogonal) whose

image is H(D). Moreover, the b-principal symbol of P is the orthogonal projection
onto the eigenspace of the negative eigenvalues of the b-principal symbol of D0.

Proof. We prove this lemma in two steps.

Step I: We first prove that P ∈ Ψ̃0
b
(H0, E0). To do so, we work on a neighborhood

[−1, 1]u ×H0 near H0 in X̃ where, see (4.10),

D̃ = Gu(∂u +Du),

where Gu : E0 → F0 is unitary and Du ∈ Diff1
b
(H0, E0) is a Dirac type operator on

H0, and where both Gu and Du are smooth up to u = 0 and restricting there to
define a unitary map G0 : E0 → F0 and a formally self-adjoint Dirac type operator

D0 ∈ Diff1
b
(H0, E0). By Theorem 2.3, we know that D̃−1 ∈ Ψ̃−1

b
(X̃, F̃ , Ẽ), and the

structure of the Schwartz kernel of D̃−1 is described in Section 2. To prove that

P ∈ Ψ̃0
b
(H0, E0), we shall analyze the limit defining P when D̃−1 is described in

coordinate patches so that its Schwartz kernel takes the form (2.9), and when its
Schwartz kernel takes the form (2.6).

Consider first the case (2.9). Let U = [0, 1]`v × V and U ′ = [0, 1]`v × V ′ be
coordinate patches on H0, where v = (v1, . . . , v`) denotes those boundary defining
functions that are common to both coordinate patches U and U ′, and where V ⊂
[0,∞)k × R

n−1−`−k and V ′ ⊂ [0,∞)k′

× R
n−1−`−k′

. Let y denote the coordinates
on V and y′ the coordinates on V ′. Then given any open set W with compact

closure in (−1, 1)u × U ′, for any φ ∈ Ċ∞(X̃, F̃ ) having support in W , according

to (2.9), the restriction of D̃−1 φ to (−1, 1)u ×U is of the form

D̃−1 φ =

∫

(−1,1)u′×U ′

R
(
v,
v

v′
, u, y, u′, y′

)
φ(u′, v′, y′) dg(u′, v′, y′),
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where v/v′ := (v1/v
′
1, . . . , v`/v

′
`) and where R(v, z, u, y, u′, y′) satisfies the condi-

tions listed after (2.9). Therefore, in such coordinates, we have

Pϕ = lim
ε→0−

−γε D̃
−1 γ∗0 G0ϕ = −

∫

U ′

R
(
v,
v

v′
, 0, y, 0, y′

)
G0ϕ(v′, y′) dg(0, v′, y′),

which represents an element of Ψ̃−∞
b

(H0, E0). Consider now the case when the

kernel of D̃−1 takes the form (2.6). In this case, let U = [0, 1]`v × R
n−1−`
y . For a

section φ(u, v, y) compactly supported in (−1, 1)u× [0, 1]`v×R
n−1−`
y , as in Equation

(2.4), we can write

D̃−1φ =

∫

Rn

eiuξ+iy·η viτa(u, v, y, ξ, τ, η) φ̂(ξ, τ, η) d̄ξ d̄τ d̄η,

where a(u, v, y, ξ, τ, η) is the (complete) symbol of D̃−1 and with φ̂ denoting the
Fourier transform of φ in (u, y) and the Mellin transform in v. Thus, for a compactly
supported ϕ on the cross section coordinate patch [0, 1]` × R

n−1−`, we have

Pϕ = lim
ε→0−

−γε D̃
−1(γ∗0G0ϕ) =

∫

Rn−1

viτeiy·η b(v, y, τ, η) ϕ̂(τ, η) d̄τ d̄η,

where

(5.2) b(v, y, τ, η) := − lim
u→0−

1

2π

∫

R

eiuξ a(u, v, y, ξ, τ, η)G0dξ,

provided, of course, that this limit exists. To prove that this limit exists, we note

that by definition of the space D̃−1 ∈ Ψ̃−1
b

(X̃, F̃ , Ẽ), the symbol a(u, v, y, ξ, τ, η) is
a symbol of order −1 with b-principal symbol equal to

(5.3) a1(u, v, y, ξ, τ, η) = bσ1(D̃)(u, v, y, ξ, τ, η)−1 =

(
− iξ + σ(u, v, y, τ, η)

)
G−1

u

ξ2 + |(τ, η)|2
,

where | · |2 = g(·, ·) and σ is the b-principal symbol of Du. Moreover, it follows from

the explicit local parametrix construction of D̃ (see e.g. [16, Th. 3.33] or [17, Th.
4.11]) that a(u, v, y, ξ, τ, η) is a rational symbol in ξ, τ, η in the sense that

a(u, v, y, ξ, τ, η) ∼

∞∑

j=1

aj(u, v, y, ξ, τ, η),

where

aj(u, v, y, ξ, τ, η) =
pj(u, v, y, ξ, τ, η)

(ξ2 + |(τ, η)|2)j

with pj(u, v, y, ξ, τ, η) a polynomial of degree j in (ξ, τ, η). Note that by (5.3)
a1(u, v, y, ξ, τ, η) certainly satisfies this property and a straightforward induction
argument shows that this holds for each j. Thus, we just have to understand

− lim
u→0−

1

2π

∫

R

eiuξ aj(u, v, y, ξ, τ, η)G0dξ

for each j. To do so, we write ξ2 + |(τ, η)|2 = (ξ + i|(τ, η)|)(ξ − i|(τ, η)|) and use
Cauchy’s theorem to obtain

1

2π

∫

R

eiuξ pj(u, v, y, ξ, τ, η)

(ξ2 + |(τ, η)|2)j
dξ =

i

2πi

∫

R

eiuξ pj(u, v, y, ξ, τ, η)

(ξ + i|(τ, η)|)j(ξ − i|(τ, η)|)j
dξ

=
−i

(j − 1)!

(
d

dξ

)j−1 ∣∣∣
ξ=−i|(τ,ξ)|

(
eiuξ pj(u, v, y, ξ, τ, η)

(ξ − i|(τ, η)|)j

)
.
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Here, recalling that u < 0, we shifted the line R = {=ξ = 0} down to {=ξ = −∞}
where the integral vanishes, and we picked up a pole at ξ = −i|(τ, η)|. Therefore,

− lim
u→0−

1

2π

∫

R

eiuξ aj(u, v, y, ξ, τ, η)G0dξ

=
i

(j − 1)!

(
d

dξ

)j−1 ∣∣∣
ξ=−i|(τ,ξ)|

(
pj(u, v, y, ξ, τ, η)

(ξ − i|(τ, η)|)j

)
G0.

It’s easily checked that the right-hand side is homogeneous of degree 1− j for each
j = 1, 2, 3, . . .. It follows that the symbol b(v, y, τ, η) in (5.2) is a classical symbol
of order 0 in (τ, η) and using (5.3), the b-principal symbol of b(v, y, τ, η) is equal to

p1(0, v, y,−i|(τ, η)|, τ, η)

−2|(τ, η)|
G0 =

(
|(τ, η)| − σ(0, v, y, τ, η)

)

2|(τ, η)|

=
1

2

(
Id−

σ(0, v, y, τ, η)

|(τ, η)|

)
.

In particular, since σ(0, v, y, τ, η)2 = |(τ, η)|2, the leading order part of b(v, y, τ, η)
is the orthogonal projection onto the eigenspace of the negative eigenvalues of the
b-principal symbol of D0. Finally, it is straightforward to check that, from (5.2), a
lacunary condition on a(u, v, y, ξ, τ, η) implies a lacunary condition on b(v, y, τ, η).

In conclusion, we have shown that P ∈ Ψ̃0
b
(H0, E0).

Step II: We now prove that ranP = H(D). The proof of this step is similar to
Seeley [30, Th. 5]. We first show that P = Id on H(D). Let ϕ = γ0−φ, where
γ0− = limε→0− γε , φ ∈ H∞

b
(X,E), and Dφ = 0, and define

φ̃ :=

{
φ on X

0 on X̃ \X.

SinceDφ = 0 and, according to (4.10), D̃ = Gu(∂u+Du) nearH0, and the derivative
of the Heaviside function is the delta distribution, it follows that

D̃φ̃ = −δ0 ⊗G0ϕ = −γ∗0G0ϕ,

since γ∗0 = δ0 ⊗ · with δ0 the delta distribution concentrated at the hypersurface

{0} ×H0. Thus, φ̃ = −D̃−1γ∗0Gϕ, and so

Pϕ := −γ0−

(
D̃−1γ∗0Gϕ

)
= γ0−

(
φ̃
)

= γ0−

(
φ
)

= ϕ.

Hence, P = Id on H(D). We now show that P 2 = P . Let ϕ ∈ H∞
b

(H0, E0). Then
by definition of P , we have

Pϕ = γ0−φ = ϕ,

where φ := −
(
D̃−1γ∗0Gϕ

)∣∣
X

. Note that our analysis in Step I shows that φ ∈

H∞
b

(X,E). Also, we clearly have Dφ = 0. Thus, γ0−φ ∈ H(D), so as we know that
P = Id on H(D), it follows that

P 2ϕ = P
(
Pϕ

)
= P

(
γ0−φ

)
= γ0−φ = Pϕ.

Our proof is now complete. �

We now define

(5.4) C := PP ∗
[
PP ∗ + (Id− P ∗)(Id− P )

]−1
.
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Then, the right side is the orthogonal projection onto ranP by Lemma 12.8 of [5]
(see also [2]). Now by Lemma 5.1 and (5.4), we can see that the b-principal symbol
of C is also the orthogonal projection onto the eigenspace of the negative eigenvalues
of the b-principal symbol of D0. To complete the proof of Theorem 1.1, it remains

to show that C ∈ Ψ̃0
b
(H0, E0). To show this, let

A = PP ∗ + (Id− P ∗)(Id− P ).

By Lemma 5.1, the b-principal symbol of P is also a projection, so that

bσ0(A) = bσ0(P ) bσ0(P )∗ + (Id− bσ0(P )) (Id− bσ0(P )∗)

is always invertible, which means that A is b-elliptic. Moreover, by (2.11) any
normal operator of A equals

N(A)(τ) = N(P )(τ)N(P )(τ)∗ + (Id−N(P )(τ)∗)(Id−N(P )(τ)),

and N(P )(τ) is a projection since N(P )(τ)2 = N(P 2)(τ) = N(P )(τ). Thus, we
can see that N(A)(τ) is invertible for all real τ . Thus, by Theorem 2.1 and 2.3,

it follows that A−1 ∈ Ψ̃0
b
(H0, E0). Finally, by the composition properties of b-

pseudodifferential operator, we conclude that C = PP ∗A−1 is also in Ψ̃0
b
(H0, E0).

This completes the proof of Theorem 1.1.

5.2. Proof of Theorem 1.2. We now assume that E = F and D is formally
self-adjoint. This, in particular, implies that G2

0 = −Id and G∗
0 = −G0. Recall that

Ω(ϕ,ψ) := 〈G0ϕ,ψ〉0 for ϕ,ψ ∈ L2
b(H0, E0)

is a Hermitian symplectic form on L2
b
(H0, E0) where 〈 , 〉0 is the L2

b
inner product

on H0. We begin with the following lemma.

Lemma 5.2. The image ranP of an orthogonal projector P on L2
b
(H0, E0) is

Lagrangian with respect to Ω if and only if

G0P = (Id− P)G0.

Proof. By definition, the subspace ranP ⊂ L2
b
(H0, E0) is Lagrangian with respect

to Ω means that ranP = (ranP)⊥Ω where

(5.5) (ranP)⊥Ω = {ϕ ∈ L2
b
(H0, E0) |Ω(ϕ,ψ) = 〈G0ϕ,ψ〉0 = 0 ∀ψ ∈ ranP }.

Therefore, the Lagrangian property of ranP is equivalent to

(5.6) G0 : ranP → (ranP)⊥ = ran(Id− P) is an isomorphism.

Now if G0P = (Id − P)G0, then certainly (5.6) holds. Conversely, if (5.6) holds,
then it follows that G∗

0 = −G0 : ran(Id − P) → ranP, which implies that G0 :
ran(Id− P)→ ranP. Hence,

G0P = (Id− P)G0P = (Id− P)G0P + 0

= (Id− P)G0P + (Id− P)G0(Id− P)

= (Id− P)G0(P + Id− P) = (Id− P)G0.

Thus, G0P = (Id− P)G0 and our proof is now complete. �
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Thus, according to this lemma, to show that the closure of H(D) in L2
b
(H0, E0),

which for simplicity we again denote byH(D), is a Lagrangian subspace with respect
to Ω, it is sufficient to show that

G0C = (Id− C)G0, equivalently CG0 = G0(Id− C)

since ran(C) = H(D). To do so, we need the following extension of Grubb’s result
[10, Th. 7.5] to the category of manifolds with multi-cylindrical end boundaries.

Lemma 5.3. We have

(5.7) P ∗G0 = G0(Id− P ).

Proof. First, we claim that for any φ ∈ H∞
b

(X,E), we have

(5.8) φ = (r D̃−1e)Dφ− (r D̃−1e)γ∗0G0γ0φ

where r is the restriction map from X̃ to X, e is the extension map by 0 from X

to X̃. This identity can be found in Booß–Bavnbek and Wojciechowski’s book [5,
Lem. 12.7] for the smooth closed manifold case. To prove this, we define

φ̃ :=

{
φ on X

0 on X̃ \X.

Since D̃ = Gu(∂u + Du) near H0 as described in (4.10), and the derivative of the
Heaviside function is the delta distribution, it follows that

r D̃φ̃ = Dφ− γ∗0G0γ0φ.

Multiplying both sides by r D̃−1e we get (5.8). In particular, applying γ0 to both
sides of (5.8), we obtain

(5.9) Pγ0φ = γ0φ− γ0D̃
−1 eDφ.

Second, we follow the proof of Theorem 7.5 in [10]. Let us denote L2-pairings
over X (H0) by angular brackets 〈 , 〉X (〈 , 〉0) and distributional pairings by
parentheses. Then, for φ ∈ H∞

b
(X,E) and ψ ∈ H∞

b
(H0, E0), by (5.9) we have

(5.10) 〈γ0D̃
−1 eDφ,G0ψ〉0 = 〈(γ0φ− Pγ0φ), G0ψ〉0 = 〈(Id− P )γ0φ,G0ψ〉0.

As distributions we can write the left-hand side of (5.10) as

〈γ0D̃
−1 eDφ,G0ψ〉0 = (γ∗0G0ψ)(D̃−1 eDφ)

= (r D̃−1γ∗0G0ψ)(Dφ)

= 〈Dφ, r D̃−1γ∗0G0ψ〉X

= 〈Dφ, r D̃−1γ∗0G0ψ〉X − 〈φ,D r D̃
−1γ∗0G0ψ〉X ,

since D r D̃−1γ∗0G0ψ = 0 over X. By Green’s formula, the right-hand side equals

〈G0γ0φ, γ0D̃
−1γ∗0G0ψ〉0 = −〈G0γ0φ, Pψ〉0

= −〈P ∗G0γ0φ, ψ〉0 = −〈G0P
∗G0γ0φ,G0ψ〉0.

Equating the far right term with the far right term in (5.10), we obtain −G0P
∗G0 =

Id− P , which, after multiplication by G0, proves our result. �



26 PAUL LOYA AND JINSUNG PARK

As before, we put A = PP ∗ + (Id − P ∗)(Id − P ). Then using the identity in
(5.7), we obtain

AG0 = P
(
P ∗G0

)
+ (Id− P ∗)

(
(Id− P )G0

)

= P
(
G0(Id− P )

)
+ (Id− P ∗)

(
G0P

∗
)

=
(
P G0

)
(Id− P ) +

(
(Id− P ∗)G0

)
P ∗

=
(
G0(Id− P

∗)
)
(Id− P ) +

(
G0P

)
P ∗

= G0

(
(Id− P ∗)(Id− P ) + PP ∗

)
= G0A.

Thus, AG0 = G0A. Hence, G0A
−1 = A−1G0. Again using (5.7), we see that

CG0 = PP ∗A−1G0 = PP ∗G0A
−1 = P G0(Id− P )A−1

= G0(Id− P
∗)(Id− P )A−1.(5.11)

Now

(Id− P ∗)(Id− P )A−1 =
(
PP ∗ + (Id− P ∗)(Id− P )

)
A−1 − PP ∗A−1

= AA−1 − C = Id− C.

Combining this and (5.11) proves

CG0 = G0(Id− C).

Hence by Lemma 5.2, H(D) is a Lagrangian subspace with respect to Ω. Now let
us write

C =
1

2

(
C11 C12

C21 C22

)

with respect to the decomposition L2
b
(H0, E0) = L2

b
(H0, E

+
0 )⊕ L2

b
(H0, E

−
0 ). Then

using C∗ = C and CG0 = G0(Id − C) it is easy to check that C11 = Id, C22 = Id,
C21 : L2

b
(Y,E+

Y ) → L2
b
(Y,E−

Y ) is unitary with C12 = C−1
21 . Therefore, setting

κ0 := C12, we conclude that

C =
1

2

(
Id κ−1

0

κ0 Id

)
.

This completes the proof of Theorem 1.2.

5.3. Proof of Theorem 1.3. Assume that E = F , D is formally self-adjoint, and

D = G0(∂u + D0) over [−1, 0]u × H0. Let Ẽ := E tG0
E be the doubled vector

bundle over the doubled manifold X̃ = X tH0
(−X) constructed in Subsection 4.2

and let D̃ := (D , −D) be the corresponding invertible double. We define

P± := ± lim
ε→0±

γε D̃
−1 γ∗0 G0 : H∞

b
(H0, E0)→ H∞

b
(H0, E0).

To be precise, P± really defines a map on H∞
b

(H0, Ẽ|H0
) but we make the following

‘left’ identification of E0 = E|H0
with Ẽ|H0

:

E0 ←→ Ẽ|H0
:= E0 tG0

E0 ⇐⇒ E0 3 ϕ←→ [(ϕ,G0ϕ)] ∈ Ẽ|H0
.

As a result of this ‘left’ identification, given any φ ∈ H∞
b

(X,E) with φ|H0
= ϕ ∈

H∞
b

(H0, E0), considering φ as sections of Ẽ over X and −X, we have

(5.12) φ ∈ H∞
b

(X, Ẽ) =⇒ φ|H0
= ϕ, φ ∈ H∞

b
(−X, Ẽ) =⇒ φ|H0

= G0ϕ,
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the latter equality holds because restriction of φ from X equals ϕ on the left factor
of E0 tG0

E0, which is equivalent to G0ϕ on the right factor of E0 tG0
E0. The

‘left’ identification is important because then the Cauchy data space of D̃ taken

from the left manifold X of X̃ is exactly the same as the Cauchy data space of the
original operator D on X.

Lemma 5.4. P− (P+) is a projection whose image is exactly the Cauchy data space

of the restriction of D̃ to X (−X), and

(5.13) P− + P+ = Id.

Proof. In Lemma 5.1 we showed that P− is a projection whose image is exactly the

Cauchy data space of the restriction of D̃ to X and a similar proof establishes the
corresponding claim for P+.

The proof of (5.13) is similar to Seeley’s proof [30, Th. 5] but now in the “b-

category”. Let φ ∈ H∞
b

([−1, 1]u ×H0, Ẽ) have compact support in (−1, 1)u ×H0

and let ψ ∈ H∞
b

(H0, E0). Let us denote distributional pairing by parentheses and,

as usual, L2-pairings over H0 by angular brackets 〈 , 〉0. If K̃ := D̃−1γ∗0G0, then

〈γ0φ,G0ψ〉0 = (γ∗0G0ψ)(φ) =
(
D̃K̃ψ

)
(φ) =

(
K̃ψ

)(
D̃φ

)

=

∫ 1

−1

〈D̃φ, K̃ψ〉0 du,(5.14)

where we used the fact that from the proof of Lemma 5.1, K̃ψ = D̃−1γ∗0G0ψ has
a left-hand limit at H0 and a similar proof shows that it has a right-hand limit at

H0, so the function K̃ψ is in H∞
b

off H0 with at most a jump discontinuity at H0.
In particular, we can write

∫ 1

−1

〈D̃φ, K̃ψ〉0 du = lim
r→0+

∫

|u|>r

〈D̃φ, K̃ψ〉0 du.

By (4.10) we know that D̃ = G0(∂u +Du) over [−1, 1]u ×H0, so we can evaluate
the right-hand integral as follows:∫

|u|>r

〈D̃φ, K̃ψ〉0 du =

∫

|u|>r

〈
(
G0(∂u +Du)

)
φ, K̃ψ〉0 du

= −

∫

|u|>r

〈∂uφ,G0K̃ψ〉0 du+

∫

|u|>r

〈φ,
(
G0Du

)
K̃ψ〉0 du

= −

∫

|u|>r

∂u〈φ,G0K̃ψ〉0 du+

∫

|u|>r

〈φ, D̃K̃ψ〉0 du

= −〈γ−rφ,G0γ−rK̃ψ〉0 + 〈γrφ,G0γrK̃ψ〉0,(5.15)

where we used that D̃K̃ = 0 off H0. Taking r → 0+ in (5.15) and equating this

with 〈γ0φ,G0ψ〉0 in (5.14), and using that P− := −γ0−K̃ψ and P+ := γ0+K̃ψ, we
conclude that

〈γ0φ,G0ψ〉0 = 〈γ0φ,G0P−ψ〉0 + 〈γ0φ,G0P+ψ〉0.

Since φ and ψ were arbitrary, it follows that Id = P− + P+, and our proof is
complete. �

Now to prove Theorem 1.3, we need to demonstrate that P− = C; which reduces
to proving that P− is orthogonal. To this end, we first prove the following
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Lemma 5.5. We have G0P− = P+G0.

Proof. We shall prove that G0P− = P+G0 first over ranP− and then over ran(Id−
P−) = ranP+.

Let ϕ ∈ ranP− ⊂ H∞
b

(H0, E0). Then P−ϕ = ϕ and there is a φ1 ∈ C
∞(X,E)

such that Dφ1 = 0 and φ1|H0
= ϕ. Let φ2 ∈ C∞(−X,E) be the same sec-

tion φ1, but considered on the reversed manifold −X. Since Dφ1 = 0, we have

D̃φ2 = −Dφ2 = 0, therefore φ2|H0
∈ ranP+ or P+(φ2|H0

) = φ2|H0
. In view of the

identification (5.12), we have φ2|H0
= G0ϕ, therefore

G0

(
P−ϕ

)
= G0

(
ϕ
)

= φ2|H0
= P+

(
φ2|H0

)
= P+(G0ϕ) = P+G0ϕ.

Now let ϕ ∈ ran(Id− P−) = ranP+ ⊂ H∞
b

(H0, E0). Then P−ϕ = 0, so we just
have to prove that P+G0ϕ = 0 too. Since ϕ ∈ ranP+, we know that P+ϕ = ϕ and
there is a φ2 ∈ C

∞(−X,E) such that Dφ2 = 0 and φ2|H0
= ϕ. Let φ1 ∈ C

∞(X,E)
be the same section φ2, but considered on the left manifold X. Since Dφ2 = 0, we

have D̃φ1 = Dφ1 = 0, therefore φ1|H0
∈ ranP− or P−(φ1|H0

) = φ1|H0
. Because

φ2|H0
= ϕ from the right manifold −X, in view of the identification (5.12), from

the left we must have φ1|H0
= −G0ϕ. Hence, P−(−G0ϕ) = −G0ϕ, and so

P+G0ϕ = P+P−(G0ϕ) = (Id− P−)P−(G0ϕ) = 0.

�

Now combining the identity (5.13) with Lemma 5.5, we obtain

G0P− = (Id− P−)G0.

On the other hand, we also know that G0P
∗
− = (Id − P−)G0 from (5.7). Hence,

P− = P ∗
− and our proof of Theorem 1.3 is now complete.

6. Relative index formulæ and the Bojarski conjecture

In this section we prove Theorems 1.4 and 1.5.

6.1. Proof of Theorem 1.4. The proof of Theorem 1.4 consists of three steps.

Step I: First, we consider the following general abstract situation. Let V0, V1, V2

be topological vector spaces and let

T : V1 → V2 , γ0 : V1 → V0

be continuous surjective linear transformations. Suppose there is a projection

C : V0 → V0

whose image is the generalized Cauchy data space of T :

H(T ) := γ0 kerT = { γ0φ | φ ∈ V1 , Tφ = 0 } ⊂ V0

and the generalized unique continuation property holds:

ψ ∈ ran C ⇐⇒ ∃!φ ∈ V1 , Tφ = 0 and γ0φ = ψ.

Given a projection P : V0 → V0, consider the linear map

TP : dom(TP)→ V2

where

dom(TP) := {φ ∈ V1 | P(γ0φ) = 0 } ⊂ V1.
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Proposition 6.1. For an arbitrary projection P : V0 → V0, the operator

TP : dom(TP)→ V2

is Fredholm; that is, has a finite-dimensional kernel and cokernel, if and only if

PC : ran C → ranP

is Fredholm, in which case the following index formula holds:

indTP = ind(P, C) := ind
(
PC : ran C → ranP

)
.

Proof. We just need to establish isomorphisms between kernels: kerTP ∼= kerPC
and cokernels: cokerTP := V2/ ranTP ∼= ranP/ ranPC =: cokerPC. This shows
that TP is Fredholm if and only if PC is Fredholm. The first congruence is easy:
Using that

ψ ∈ ran C ⇐⇒ ∃!φ ∈ V1 , Tφ = 0 and γ0φ = ψ

it follows that

ψ ∈ ran C , Pψ = 0⇐⇒ ∃!φ , Tφ = 0 and γ0φ = ψ and Pψ = 0

⇐⇒ ∃!φ , Tφ = 0 and Pγ0φ = 0 and γ0φ = ψ

⇐⇒ ∃!φ ∈ kerTP with γ0φ = ψ.

Therefore the map

kerTP 3 φ 7→ γ0φ ∈ kerPC

is an isomorphism.
It remains to prove that cokerTP ∼= cokerPC. To prove this, we define a map

f : V0 → V2/ ranTP = cokerTP

as follows. Let ψ ∈ V0. Then there is a φ ∈ V1 such that γ0φ = ψ. We define

f(ψ) := [Tφ ] ∈ V2/ ranTP ,

where [ ] denotes equivalence class. This is well-defined because if γ0φ̃ = ψ also,

then Pγ0(φ̃− φ) = P(0) = 0, so φ̃− φ ∈ dom(TP), and thus,

[T φ̃ ] = [Tφ+ T (φ̃− φ) ] = [Tφ ].

Since we know that T : V1 → V2 is surjective, f is also surjective. Observe that if
Pψ = 0, then with φ ∈ V1 such that γ0φ = ψ, we have φ ∈ dom(TP), so Tφ ∈ ranTP
and thus f(ψ) = [Tφ ] = 0. Hence,

f : kerP → ranTP .

Therefore f descends to a (still surjective) map on the quotient:

f̃ : V0/ kerP → V2/ ranTP .

We are given that P is a projection, so we have a canonical isomorphism

ranP ∼= V0/ kerP.

Indeed, the map ranP 3 ψ 7→ [ψ ] ∈ V0/ kerP is certainly one-to-one, and it is
surjective because given any ψ ∈ V0, we can write

ψ = Pψ + (Id− P)ψ = Pψ modulo kerP,

as kerP = ran(Id− P) since P is a projection. Thus, we obtain a surjective map

f̃ : ranP → V2/ ranTP .
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We claim that ker f̃ = ranPC. Once we prove this, it follows that f̃ descends to an
isomorphism of vector spaces

cokerPC := ranP/ ranPC
∼=
→ V2/ ranTP =: cokerTP ,

which completes our proof. We first show that ker f̃ ⊂ ranPC. An element of
ker f̃ is an element ψ ∈ ranP where we choose φ ∈ V1 such that γ0φ = ψ and
Tφ ∈ ranTP . The inclusion Tφ ∈ ranTP means that

∃ φ̃ ∈ V1 , Pγ0φ̃ = 0 , T φ̃ = Tφ.

In particular, T (φ− φ̃) = 0, so γ0(φ− φ̃) = ψ − γ0φ̃ ∈ ran C. Thus,

ψ = Pψ − 0 = Pψ − Pγ0φ̃ = P(ψ − γ0φ̃) ∈ ranPC.

The proof that ranPC ⊂ ker f̃ is similar: An element of ranPC is an element
ψ ∈ ranP such that ψ ∈ ran C also. The inclusion ψ ∈ ran C means that

∃!φ ∈ V1 , γ0φ = ψ , Tφ = 0.

Choose φ̃ ∈ V1 with γ0φ̃ = ψ. Then Pγ0(φ̃−φ) = P(ψ−ψ) = 0, so φ̃−φ ∈ dom(TP)
and thus,

f̃(ψ) = [T φ̃ ] = [Tφ+ T (φ̃− φ) ] = [Tφ ] = [ 0 ] = 0.

�

Step II: Now we apply Proposition 6.1 to

D : H∞
b

(X,E)→ H∞
b

(X,F ) , γ0 : H∞
b

(H0, E0)→ H∞
b

(H0, E0),

where γ0 is restriction to H0, which is obviously surjective. The surjective property
of D follows from Theorem 1.1. Also, we know that

C : H∞
b

(H0, E0)→ H∞
b

(H0, E0)

has image equal to the Cauchy data space of D:

H(D) := γ0 kerD = { γ0φ | φ ∈ H
∞
b (X,E) , Dφ = 0 } ⊂ H∞

b (H0, E0)

and
ψ ∈ ran C ⇐⇒ ∃!φ ∈ H∞

b
(X,E) , Dφ = 0 and γ0φ = ψ.

The uniqueness here follows from the unique continuation principle, which also
holds for our manifold [1, Cor. 1]. Therefore, we have satisfied all the conditions of
Proposition 6.1, so we conclude that

Proposition 6.2. For an arbitrary projection P ∈ Gr∗∞(D), the operator

(6.1) DP : dom(DP)∞ := {φ ∈ H∞
b

(X,E) | P(γ0φ) = 0 } → H∞
b

(X,F )

is Fredholm; that is, DP has a finite-dimensional kernel and cokernel if and only if
PC : ran C → ranP is Fredholm.

Remark 6.3. In applications of Proposition 6.1, the surjective condition of T is
very crucial as its proof shows. Here is one case where we can clearly see this
point. Let us consider the half infinite cylinder X = [0,∞)×Y where Y is compact
boundaryless manifold and a Dirac type operator

D = G(∂u +DY ) : H∞
b

(X,E)→ H∞
b

(X,F )

where DY is a Dirac type operator over Y . We assume that DY is non-invertible.
Then it is easy to see that the Calderón projection C at {0} × Y is the spectral
projection Π> onto the positive eigenspaces of DY . We choose an augmented
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APS spectral projection Pσ = Π> + 1−σ
2 Π0 where σ is an involution over kerDY

such that Gσ = −σG and Π0 is the orthogonal projection onto kerDY . Then
PσΠ> : ran(Π>) → ran(Pσ) is certainly a Fredholm operator yet it is well-known,
and easy to prove, that DPσ

is not Fredholm since DY is not invertible. Therefore,
this example shows that Proposition 6.1 does not hold for this simple case. The
reason is that the operator D : H∞

b (X,E) → H∞
b (X,F ) is not surjective when

DY is not invertible. For instance, given ϕ ∈ kerDY , it is easy to check that
ψ := 1

1+u Gϕ(y) ∈ H∞
b (X,F ) is not in the image of D. In order to establish a

Fredholm theory for D we need to ‘perturb’ it as explained in Section 3 of [18].

Step III: For P ∈ Gr∗∞(D), let us consider the L2
b

domain:

(6.2) dom(DP) := {φ ∈ H1
b
(X,E) | P(γ0φ) = 0 },

where γ0 : H1
b
(X,E)→ H

1/2
b

(H0, E0) is restriction to the boundary, and

(6.3) DP : dom(DP)→ L2
b
(X,F )

is regarded as an unbounded operator on L2
b
. To complete the proof of Theorem

1.4, we shall prove that DP in (6.3) is L2
b
-Fredholm and its index is the same as

the index of DP in (6.1):

ind
(
DP : dom(DP) ⊂ H1

b
→ L2

b

)
= ind

(
DP : dom(DP)∞ ⊂ H

∞
b
→ H∞

b

)
.

To establish these properties, we first prove

Lemma 6.4. There is an operator Q having the property that for any s > 1/2,

Q : Hs
b
(X,F )⊕H

s+1/2
b

(H0, E0)→ Hs+1
b

(X,E) is continuous and

(6.4) Q ◦

(
D
Pγ0

)
= Id + S : Hs

b (X,E)→ Hs
b (X,E),

where S : Hs
b
(X,E) → H∞

b
(X,E) is a compact operator. In particular ranDP is

closed and kerDP ⊂ H
∞
b

(X,E).

Proof. We define Q as the 1× 2 matrix

Q := [(Id +K(Id− C)γ0)(r D̃
−1e) , KP],

where D̃ is an invertible extension of D, r is the restriction map from X̃ to X, e is

the extension map by 0 from X to X̃, and

K := −r D̃−1 γ∗0 G0 : Hs
b (H0, E0)→ H

s+1/2
b

(X,E)

is the Poisson operator of D. Recall that ranP = ran C where P = γ0K by (5.1).

(Note that if D is of product type near H0 and D̃ is the invertible double, then

P = C by Theorem 1.3, but P 6= C in general). By (5.8), we have (r D̃−1e)D =
Id−Kγ0, and using this we obtain

Q ◦

(
D
Pγ0

)
= [(Id +K(Id− C)γ0)(r D̃

−1e) , KP]

(
D
Pγ0

)

= (Id +K(Id− C)γ0)(r D̃
−1e)D +KPγ0

= Id−Kγ0 +K(Id− C)γ0 −K(Id− C)γ0Kγ0 +KPγ0

= Id−Kγ0 +Kγ0 −KCγ0 −K(Id− C)Pγ0 +KPγ0

= Id−KCγ0 +KPγ0 = Id + S,
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where S = K(P − C)γ0. By assumption, P − C ∈ Ψ̃−∞(H0, E0), from which the
compactness and regularity of S follows. Note that the regularity property of S
implies that kerDP ⊂ H

∞
b

(X,E).
It remains to prove that ranDP is closed. To do so, let {φn} be a sequence in

dom(DP) ⊂ H1
b (X,E) with ψn := DPφn → ψ ∈ L2

b(X,F ). We need to find a
φ ∈ dom(DP) with DPφ = ψ. To this end, observe that since S is compact we
may assume that Sφn converges to an element of H∞

b
(X,E). Then applying φn

to both sides of (6.4) and using that φn ∈ dom(DP) so that Pγ0φn = 0 and that
Q : L2

b
(X,F )⊕ 0→ H1

b
(X,E) is continuous, we see that

φn = Q

(
ψn

0

)
− Sφn

converges in the topology of H1
b
(X,E), say to an element φ. Then

DPφ = lim
n→∞

DPφn = ψ

and, since Pγ0φn = 0 for each n, we have Pγ0φ = limn→∞ Pγ0φn = 0. This proves
that ranDP is closed and completes our proof. �

The following proposition completes the proof of Theorem 1.4 except for the
relative index formula, which we take care of in a moment.

Proposition 6.5. The Calderón projector of D∗ : C∞(X,F ) → C∞(X,E) is the
projector P ′ := G0(Id − C)G

∗
0 with P ′ ∈ Gr∗∞(D∗), and the L2

b
adjoint of the map

DP in (6.3) is the map

(D∗)P′ : dom((D∗)P′)→ L2
b(X,E),

where

dom((D∗)P′) := {φ ∈ H1
b
(X,F ) | P ′(γ0φ) = 0 }.

Proof. The fact that the Calderón projector of D∗ is G0(Id − C)G
∗
0 follows by

applying Theorem 1.2 to the formally self-adjoint Dirac type operator
(

0 D∗

D 0

)
: C∞(X,E′)→ C∞(X,E′) , E′ = E ⊕ F.

To see that the L2
b

adjoint of the map DP is (D∗)P′ , let ϕ ∈ H∞
b

(H0, E0), f ∈
H∞

b
(X,F ), and choose e ∈ H∞

b
(X,E) with e|H0

= (Id− P)ϕ. Then e ∈ dom(DP)
and by Green’s formula, as a distributional pairing, we see that

(
(Id− P)G∗

0γ0f
)(
ϕ

)
= 〈ϕ, (Id− P)G∗

0f〉0 = 〈G0(Id− P)ϕ, f〉0

= 〈De, f〉X − 〈e,D
∗f〉X .(6.5)

Now let us assume that f ∈ dom((D∗)P′). Then this equality implies that f is in
the domain of the L2

b
adjoint of DP . The hard part is the other direction: Now

assume that f is in the domain of the L2
b

adjoint of DP ; we need to show that
f ∈ dom((D∗)P′). By definition of the L2

b
adjoint, we know that f ∈ L2

b
(X,F ) and

D∗f ∈ L2
b
(X,E). Since f ∈ L2

b
(X,F ), the same proof as in the compact case shows

that γ0f ∈ H
−1/2
b

(H0, F0). In particular, (Id−P)G∗
0γ0f ∈ H

−1/2
b

(H0, E0) defines a
distribution acting on H∞

b
(H0, E0), so by the above Green’s formula equality (6.5),

we see that this distribution must be zero. It remains to prove that f ∈ H1
b
(X,F ).
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To see this, we apply Lemma 6.4 to D∗, to obtain an operator Q′ such that for any

s > 1/2, Q′ : Hs
b
(X,E)⊕H

s+1/2
b

(H0, F0)→ Hs+1
b

(X,F ) is continuous and

Q′ ◦

(
D∗

P ′γ0

)
= Id + S ′ : Hs

b (X,E)→ Hs
b (X,E),

where S ′ is a compact regularizing operator. We can apply this formula in the
distributional sense to f , in which case, using that D∗f ∈ L2

b
(X,F ) and, as a

distribution, P ′γ0f = 0, we see that

f = Q′ ◦

(
D∗f

0

)
− S ′f ∈ H1

b (X,F ).

Our proof is now complete. �

Finally, the relative index formula (1.8) follows directly from the following lemma.

Lemma 6.6. For P1,P2,P3 ∈ Gr
∗
∞(D), P1P2 : ranP2 → ranP1 is Fredholm. Its

index ind(P1,P2) := ind
(
P1P2 : ranP2 → ranP1

)
satisfies

ind(P1,P2) = − ind(P2,P1) = ind(Id− P2, Id− P1)

and the ‘logarithm property’

ind(P1,P3) = ind(P1,P2) + ind(P2,P3).

Proof. Since indP1P2 = − ind(P1P2)
∗ = indP2P1, the equality ind(P1,P2) =

− ind(P2,P1) is obvious. To prove that ind(P2,P1) = ind(Id − P1, Id − P2), we
simply compute:

(6.6) kerP2 P1 = {φ | (Id− P1)φ = 0 , P2φ = 0}

and

coker
[
P2 P1 : ran(P1)→ ran(P2)

]
∼= ker

[
(P2 P1)

∗ : ran(P2)→ ran(P1)
]

= ker
[
P1 P2 : ran(P2)→ ran(P1)

]

= {φ | (Id− P2)φ = 0 , P1φ = 0}.(6.7)

Replacing P2 with Id− P1 and P1 with Id− P2 in (6.6) and (6.7), we obtain

ker(Id− P1)(Id− P2) = {φ | P2φ = 0 , (Id− P1)φ = 0}

and

coker(Id− P1)(Id− P2) = {φ | P1φ = 0 , (Id− P2)φ = 0}.

Comparing these spaces with (6.6) and (6.7), we see that ind(P2,P1) = ind(Id −
P1, Id− P2).

To prove the logarithm property, just note that by the logarithm property of the
usual index, we have

ind(P1,P2) + ind(P2,P3) = ind
[
P1P2P3 : ran(P3)→ ran(P1)

]
.

Hence, it remains to show that ind(P1P3) = ind(P1P2P3). To see this, we write

P1P3 = P1P2P3 + P1(Id− P2)P3.

Since P1 = P2 modulo compact, it follows that modulo compact, we have

P1(Id− P2)P3 = P2(Id− P2)P3 = 0.
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Thus, P1P3 and P1P2P3 differ by a compact operator, so ind(P1P3) = ind(P1P2P3),
and our proof is complete. �

6.2. Proof of Theorem 1.5. Let M be a manifold with corners with an exact
b-metric g and let D : C∞(M,E)→ C∞(M,F ) be a Dirac operator. Assume that
M is decomposed into two submanifolds M± with corners along a hypersurface Y :

M = M− ∪M+ , ∂M− = ∂M+ = Y

where g|M±
satisfies the conditions for manifold with multi-cylindrical end bound-

aries, in particular, Y is admissible for both M±. Now let us prove Theorem 1.5:
If

D : H1
b
(M,E)→ L2

b
(M,F )

is Fredholm, then for arbitrary projections P± ∈ Gr
∗
∞(D±), we have

indD = indDP−
+ indDP+

− ind(P−, Id− P+).

Before proceeding with the proof, we need a classical result about Fredholm pairs.
Let H1 and H2 be closed subspaces in a Hilbert space H. Then the pair (H1,H2)
is called as Fredholm pair of subspaces if

dim(H1 ∩H2) <∞ and dim(H⊥
1 ∩H

⊥
2 ) <∞,

in which case, we define the index of the pair (H1,H2) to be the integer

ind(H1,H2) := dim(H1 ∩H2)− dim(H⊥
1 ∩H

⊥
2 ).

Now we recall the following classic result from [5, p. 263].

Lemma 6.7. Let Hi, i = 1, 2, be closed subspaces in a Hilbert space H and let Pi

be the orthogonal projection onto Hi. Then H1 and H2 form a Fredholm pair in H
if and only if

(Id− P2)P1 : H1 → H
⊥
2

is Fredholm, in which case,

ind(H1,H2) = ind(Id− P2, P1).

Proof. We simply compute:

ker(Id− P2)P1 = {φ ∈ H1 | (Id− P2)φ = 0} = H1 ∩H2

and

coker
[
(Id− P2)P1 : H1 → H

⊥
2

]
∼= ker

[(
(Id− P2)P1)

∗ : H⊥
2 → H1

]

= ker
[
P1 (Id− P2) : H⊥

2 → H1

]

= {φ ∈ H⊥
2 | P1φ = 0}

= H⊥
1 ∩H

⊥
2 .

�

Now to prove the Bojarski conjecture let us first prove

indD = ind(Id− C−, C+) = ind(Id− C+, C−).

By the unique continuation property [1, Cor. 1], it is obvious that

kerD ∼= ran(C−) ∩ ran(C+) , cokerD ∼= kerD∗ ∼= ran(C∗−) ∩ ran(C∗+)
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where C∗± denotes the orthogonal Calderón projection for the restriction of D∗ to
M±. Applying Proposition 6.5, we obtain

ran(C∗−) ∩ ran(C∗+) = ran(G0(Id− C−)G∗
0) ∩ ran(G0(Id− C+)G∗

0)

∼= ran(Id− C−) ∩ ran(Id− C+)

∼= ran(C−)⊥ ∩ ran(C+)⊥.

Thus, by Lemma 6.7,

indD = dim kerD − dim cokerD

= dim
(
ran(C−) ∩ ran(C+)

)
− dim

(
ran(C−)⊥ ∩ ran(C+)⊥

)

= ind(Id− C−, C+).

Finally, for arbitrary projections P± ∈ Gr
∗
∞(D±), we have

indD = ind(Id− C−, C+)

= ind(Id− C−,P+) + ind(P+, C+)

= − ind(C−, Id− P+) + ind(P+, C+)

= − ind(C−,P−)− ind(P−, Id− P+) + ind(P+, C+)

= ind(P−, C−) + ind(P+, C+)− ind(P−, Id− P+)

= indDP−
+ indDP+

− ind(P−, Id− P+).
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12. L. Hörmander: ‘Pseudo-differential operators and non-elliptic boundary problems’, Ann.

Math. 83, 129–209, 1966.
13. : The analysis of linear partial differential operators. III, second ed., Springer-Verlag,

Berlin, 1985.
14. R. Lauter: ‘On representations of ψ∗-algebras and C∗-algebras of b-pseudodifferential opera-

tors on manifolds with corners’, J. Math. Sci. (New York) 98, no. 6, 684–705, 2000.



36 PAUL LOYA AND JINSUNG PARK

15. R. Lauter and J. Seiler, Pseudodifferential analysis on manifolds with boundary—a compari-

son of b-calculus and cone algebra, Approaches to singular analysis (Berlin, 1999), Birkhäuser,
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