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In this note, we explicitly compute the functional determinant of a Dirac Laplacian
with nonlocalpseudodifferentialboundary conditions over a finite cylinder in terms
of the z-function of the Dirac operator on the cross section and the pseudodiffer-
ential operators defining the boundary conditions. In particular, this result reduces
to our previous formulafJ. Phys. A 37, 7381 s2004dg for the special case of
generalized Atiyah–Patodi–Singer conditions. To prove our main result, we use the
gluing and comparison formulas established by the present authors in Refs 14
and 15.
© 2005 American Institute of Physics.fDOI: 10.1063/1.1860591g

I. INTRODUCTION

Recent advances in quantum field theory have necessitated the explicit evaluation of func-
tional determinants of Dirac operators over a variety of space–time configurations. In fact, at the
one-loop order, any such theory can be reduced to the theory of determinants. We refer the reader
to the works of Dowker and Critchley1 and Hawking.2 See also Elizaldeet al.,3 Kirsten,4 and Scott
and Wojciechowski,5 for recent reviews. Because of their increasingly important role in math-
ematical physics, over the past several years there has been intense research to compute functional
z-determinants of Dirac Laplacians. Of great significance is the Dirac Laplacian with spectral
pseudodifferential boundary conditions; the Atiyah–Patodi–Singershenceforth APSd boundary
conditions being the most well-known example. Such boundary conditions arise in, for instance,
one-loop quantum cosmology,6–8 spectral branes,9 and the study of Dirac fields in the background
of a magnetic flux.10

However, only recently was the open problem of explicitly computing thez-determinant of a
Dirac Laplacian with APS conditions over a finite cylinder solved.11 One reason this problem
withstood the efforts of existing mathematical methods is that it is impossible to find explicit
formulas for the eigenvalues of such a Dirac operator. For this reason, we had to attack the
problem using the method ofadiabatic decompositionpioneered by Douglas and Wojciechowski12

for the eta invariant and by the second author and Wojciechowski13 for the z-determinant. The
purpose of this current paper is twofold. First, we extend the result of Ref. 11 to a general class of
pseudodifferential conditions that generalize the APS condition up to operators ofarbitrary finite
rank. To compute thez-determinant in this generalized framework, which in some sense possesses
eigenvalues that are even more enigmatic, we use the gluing and comparison formulas for
z-determinants proved by the authors in Refs. 14 and 15 to break up this general framework into
tangible parts which can be explicitly computed. The second purpose of this paper is to elucidate
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the effectiveness of these gluing and comparison formulas to computez-determinants that have
eluded explicit evaluations due to the perplexity of their eigenvalues. This also exemplifies the aim
of gluing and comparison formulas: Breaking up complex problems into simpler more tractable
ones.

We now describe our setup. FixR.0 and letD :C`sNR,Sd→C`sNR,Sd be a Dirac type
operator whereNR=f−R,Rg3Y is a finite cylinder withR.0, Y a closed compact Riemannian
manifold sof arbitrary dimensiond, and S a Clifford bundle overNR. We assume thatD is of
product form

D = Gs]u + DYd, s1.1d

whereG is a unitary bundle isomorphism ofSandDY is a Dirac operator acting onC`sY,Sd such
that G2=−Id andGDY=−DYG. Furthermore, we assume that

dimskersG + id ù kersDYdd = dimskersG − id ù kersDYdd. s1.2d

Let P+,P−, andP0 denote the orthogonal projections onto the positive, negative, and zero eigens-
paces ofDY. SinceNR has boundaries, we have to impose boundary conditions. Let Gr`

* sDYd
denote the space of pairssP1,P2d, whereP1 andP2 are orthogonal pseudodifferential projections
on L2sY,Sd such that

P1 − P+, P2 − P− are smoothing operators,

and for i =1, 2,

PiG = GsId − Pid, DYPi = PiDY.

An important class of such boundary conditions are the renowned generalized APS spectral
conditions,16 which are defined as follows. Lets1,s2 be involutionssthat is,si

2=Idd over kersDYd
such thats1G=−Gs1 ands2G=−Gs2. Note that such involutions exist because of the assumption
s1.2d. Then

P+
s1
ª P+ +

1 + s1

2
P0, P−

s2
ª P− +

1 + s2

2
P0 s1.3d

are calledgeneralized APS spectral projections, andsP+
s1,P−

s2dPGr̀* sDYd. These generalized APS
boundary conditions were considered in our papersRef. 11d, but elements of Gr̀* sDYd are much
more general and can differ from APS projections by operators ofarbitrary finite rank. LetP
=sP1,P2dPGr̀* sDYd and impose boundary conditions forD at h−Rj3Y and hRj3Y via

P1 at h− Rj 3 Y, P2 at hRj 3 Y.

We denote byDP the resulting operator with these boundary conditions, that is,

DP ª D:domsDPd → L2sNR,Sd, s1.4d

where

domsDPd ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j.

By the fundamental work of Seeley,17,18the spectrum of the Dirac operatorDP consists of discrete
real eigenvalueshlkj. The z-function of DP

2 is defined by

zDP
2ssd = o

lkÞ0
lk

−2s,

which is a priori defined forRssd@0, and by the work of Grubb19,20 and Wojciechowski21

scf. Lei22 and Loya and Park15d, has a meromorphic extension toC with 0 as a regular point. The
z-determinant ofDP

2 is defined by
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detzDP
2
ª exps− zDP

28 s0dd.

This definition first appeared in Ray and Singer’s seminal paper23 on the analytic torsion. Since we
imposed nonlocal pseudodifferential boundary conditions, it is impossible to compute the eigen-
valueshlkj of DP explicitly, so there is no direct way to compute thez-determinant detzDP

2 from
the eigenvalues. However, we shall give two derivations of the formula for detzDP

2:

s1d Using the gluing formula proved in Ref. 14.
s2d Using the comparison/relative invariant formula proved in Ref. 15.

See Sec. II for more on these results. The formula for detzDP
2 is described as follows. Since the

Pi’s are orthogonal projectors such thatPiG=GsId−Pid by assumption, with respect to the de-
composition

L2sY,Sd = L2sY,S+d % L2sY,S−d s1.5d

with S± denoting thes±id-eigenspaces ofG in S srecall thatG2=−Idd, we can write

Pi =
1

2
SId ki

−1

ki Id
D ,

whereki :L
2sY,S+d→L2sY,S−d are corresponding isometries. In particular,

UP ª − k1k2
−1:L2sY,S−d → L2sY,S−d

is a unitary operator. LetÛP denote the restriction ofUP to the orthogonal complement of its
s−1d-eigenspace. LetWª ImsId−P1dù ImsId−P2d. Then our assumptions onsP1,P2d imply that
W is a finite-dimensional vector space and thatDY: ImsPid→ ImsPid andDY: ImsId−Pid→ ImsId
−Pid. We define a mapTP over W by

TP ª H sinhs2RDYd
DY

on Wù kersDYd',

2R on Wù kersDYd.
J

We also defineTP1
and TP2

over the finite-dimensional vector spaces ImsP+dù ImsId−P1d and
ImsP+dù ImsP2d, respectively, by

TP1
ª e4RDY, TP2

ª e4RDY.

The following theorem is the main result of this note.
Theorem 1.1.The following equality holds:

detzDP
2 = e2CR2zDY

2s0d+hY
sdetTPd2

sdetTP1
d2sdetTP2

d2 · detFS2 Id + ÛP + ÛP
−1

4
D ,

where C=sGssd−1zDY
2ss−1/2dd8s0d with zDY

2ssd the z-function of DY
2, hY=dim kersDYd and detF

denotes the Fredholm determinant.
More explicitly, if we let Em denote the eigenspace ofDY associated to the eigenvaluem

PspecsDYd, then we can write
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detzDP
2 = e2CR2zDY

2s0d+hYS p
m.0

EmùImsId−P1dÞ0

e−4mRD ·S p
m.0

EmùImsP2dÞ0

e−4mRD
·S p

mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D , s1.6d

where if m=0 in the product in the second line, we replacefsinh2s2mRdg /m2 by its limit as m
→0, that is,s2Rd2. In particular, whenP1=P+

s1 andP2=P−
s2, the generalized APS spectral pro-

jectors ins1.3d, then Theorem 1.1 reduces to the main result of Ref. 11.

detzDP
+
s1,P

−
s2

2
= e2CR2zDY

2s0d+hYs2Rd2hdet*S2Id − ss1s2d− − ss1s2d−
−1

4
D , s1.7d

wheress1s2d− is the restriction of the unitary maps1s2 to L2sY,S−dùkersDYd, h is the number of
s+1d-eigenvalues ofss1s2d−, and where det*sLd denotes the determinant ofsLukersLd'd for an
operatorL over a finite-dimensional vector space.

The structure of this paper is as follows. In Sec. II, we review the gluing formula from Ref. 14
and the comparison/relative invariant formula from Ref. 15, which we shall use in the subsequent
sections. In Sec. III, we derive new formulas forz-determinant ratios of Dirac Laplacians with
boundary conditions of special types. Finally, in Sec. IV we combine these specialz-determinant
ratios and the gluing and comparison formulas from Refs. 14 and 15 to derive our main Theorem
1.1.

II. THE GLUING AND COMPARISON FORMULAS FROM REFS. 14 and 15

In this section we review the gluing formula from Ref. 14 and the comparison/relative invari-
ant formula from Ref. 15.

Let D be a Dirac type operator acting onC`sM ,Sd whereM is a closed compact Riemannian
manifold of arbitrary dimension andS is a Clifford bundle overM. Suppose thatM =M−øM+ is
partitioned into a union of manifolds with a common boundaryY=]M−=]M+. We assume that all
geometric structures are of product type over a tubular neighborhoodN of Y whereD takes the
product forms1.1d. By restriction ofD, we obtain Dirac type operatorsD± over M±. We impose
the boundary conditions given by the orthogonalized Calderón projectorsC± for D± and we denote
by DC±

the resulting operators,

DC±
= D±:domsDC±

d ª hf P H1sM±,SduC±sfuYd = 0j → L2sM±,Sd.

Here, we recall that the Calderón projectorsC± are the projectors defined intrinsically as the
unique orthogonal projectors onto the closures inL2sY,Sd of the infinite-dimensionalCauchy data
spacesof D±:

hfuYuf P C`sM±,Sd, D±f = 0j , C`sY,Sd.

The gluing problemfor the z-determinant is to describe the “defect”

detzD2

detzDC+

2 · detzDC−

2 = ?□

in terms of recognizable data. To describe the solution in Ref. 14, we need to introduce some
notations. With respect to the decomposition as ins1.5d, the Calderón projectorsC± have the
matrix forms
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C± =
1

2
S Id k±

−1

k± Id
D , s2.1d

where the mapsk± :L2sY,S+d→L2sY,S−d are corresponding isometries, so thatUª−k−k+
−1 is a

unitary operator overL2sY,S−d. Furthermore,U is of Fredholm determinant class. We denote byÛ
the restriction ofU to the orthogonal complement of itss−1d-eigenspace. We also put

L ª o
k=1

hM

gUk ^ gUk:g kersDd → g kersDd,

wherehM =dim kersDd, g is the restriction map fromM to Y, andhUkj is an orthonormal basis of
kersDd. ThenL is a positive operator on the finite-dimensional vector space

g kersDd ; ImsC−d ù ImsC+d.

We now have all the ingredients to state the followinggluing formula:14

detzD2

detzDC−

2 · detzDC+

2 = 2−zDY
2s0d−hYsdetLd−2detFS2Id + Û + Û−1

4
D , s2.2d

wherehY=dim kersDYd and detF denotes the Fredholm determinant. There is a similar formula for
manifolds with cylindrical ends.24

We now explain the comparison/relative invariant formula proved in Ref. 15 forsM−,D−d. To
this end, we consider the space Gr`

* sD−d, which consists of orthogonal projectionsP such that
P−C− are smoothing operators andGP=sId−PdG. Let us fix PPGr̀* sD−d and letkP :L2sY,S+d
→L2sY,S−d be the map that determinesP ask± doesC± in s2.1d. Let DP denote the operatorD−

on M− with the boundary condition given byP. Let PW be the orthogonal projection ofL2sY,Sd
onto the finite-dimensional vector space

Wª g kersDPd ; ImsC−d ù ImsId − Pd.

Then we introduce a linear map

L ª − PWGR−1GPW:g kersDPd → g kersDPd, s2.3d

whereR is the sum of the Dirichlet to Neumann maps on an extension ofM− defined as follows.

Fix any invertible extensionD̃ of D to a manifoldM̃ that containsM−. sThe doubleof D would

do nicely.d Then for anywPC`sY,Sd, there are uniquef1PC`sM−,Sd and f2PC`sM̃ \M−,Sd
that are continuous atY with valuew such thatD̃2fi =0, i =1, 2, off of Y. Then

Rw ª ]uf1uY − ]uf2uY. s2.4d

In Ref. 15, we prove thatL is a positive operator so that detL is a positive real number. Now the
main result of Ref. 15 states that

detzDP
2

detzDC−

2 = sdetLd2 · detFS2Id + Û + Û−1

4
D , s2.5d

whereÛ is the restriction ofUªk−kP
−1 to the orthogonal complement of itss−1d-eigenspace. The

formula s2.5d extends the work of Scott25 for the invertible casescf. Scott and Wojciechowski26d,
and has recently been further extended to noncompact manifolds whose boundaries are manifolds
with multi-cylindrical ends.27
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III. THE z-DETERMINANT FOR SPECIAL BOUNDARY CONDITIONS

If sP1,P2dPGr̀* sDYd, then for the sake of clarity we shall denote the operatorDP in the
introduction with these boundary conditions byDP1,P2

. Thus, overNR=f−R,Rg3Y we impose
boundary conditions ath−Rj3Y and hRj3Y via

P1 at h− Rj 3 Y, P2 at hRj 3 Y,

andDP1,P2
is the operator with domain

domsDP1,P2
d ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j. s3.1d

Let P be a projection onL2sY,Sd with sP , Id−PdPGr̀* sDYd. By definition of Gr̀* sDYd, the image
of PP0 is a Lagrangian subspace in ImsP0d=kersDYd. Let s be the involution over ImsP0d such
that fs1+sd /2gP0=PP0. Recalling P+

s
ªP++fsId+sd /2gP0, it follows that sP , Id−P+

sd
PGr̀* sDYd. Recall that we can write

P =
1

2
S Id kP

−1

kP Id
D, P+

s =
1

2
S Id ks

−1

ks Id
D

for corresponding isometrieskP ,ks :L2sY,S+d→L2sY,S−d, and defineÛP as the restriction of
UPªkPks

−1 over L2sY,S−d to the orthogonal complement of itss−1d-eigenspace. Note that −kP
and −ks are the isometries corresponding to Id−P and Id−P+

s, respectively. We begin by com-
puting the following ratio.

Lemma 3.1: We have

detzDP,Id−P+
s

2

detzDP,Id−P
2 =S p

m.0
EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D ,

where Em denotes the eigenspace of DY associated to the eigenvaluemPspecsDYd.
Proof: We give two proofs, first using the gluing formulas2.2d then using the comparison

formula s2.5d, in order to demonstrate the effectiveness of these formulas.
Gluing proof of Lemma 3.1:Let us decomposeNR into two partsf−R,rg3Y andfr ,Rg3Y as

shown in Fig. 1. Then the restrictions ofDP,Id−P+
s over the decomposed partsf−R,rg3Y and

fr ,Rg3Y define two Dirac type operators with boundary conditions given byP at h−Rj3Y and
Id−P+

s at hRj3Y. It is easy to check that the Calderón projections of these two operators are,
respectively, justC−=Id−P and C+=P+

s over hrj3Y. We denote the operators over the decom-
posed partsf−R,rg3Y andfr ,Rg3Y, with the new boundary conditions given by these Calderón
projectors overhrj3Y, by DP,Id−Psrd andDP+

s,Id−P+
ssrd, respectively. Applying the gluing formula

s2.2d to this situation, we obtain

detzDP,Id−P+
s

2

detzDP,Id−P
2 srd · detzDP+

s,Id−P+
s

2 srd
= 2−zDY

2s0d−hYsdetLrd−2detFS2 Id + ÛP + ÛP
−1

4
D , s3.2d

wherezDY
2ssd is thez-function of DY

2 andhY=dim kersDYd, where we used that theÛ in s2.2d for

this situation is −s−kPdsks
−1d=kPks

−1
¬ ÛP, and where

FIG. 1. CuttingNR at r into two pieces.
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Lr ª o
k=1

hP
grUk ^ grUk:grkersDP,Id−P+

sd → gr kersDP,Id−P+
sd,

wherehP=dim kersDP,Id−P+
sd, gr is the restriction map fromNR to hrj3Y, andhUkj is an ortho-

normal basis of kersDP,Id−P+
sd. From the main result of Ref. 11fthat is, the formulas1.7dg, we have

detzDP+
s,Id−P+

s
2 srd = eCsR−rd2zDY

2s0d+hY,

whereC=sGssd−1zDY
2ss−1/2dd8s0d. Thus, detzDP+

s,Id−P+
s

2 srd→2zDY
2s0d+hY asr →R, so takingr →R in

s3.2d, we see that

detzDP,Id−P+
s

2

detzDP,Id−P
2 = sdetLRd−2detFS2 Id + ÛP + ÛP

−1

4
D .

It remains to computesdetLRd−2. To do so, we note that

kersDP,Id−P+
sd ; ImsId − Pd ù ImsP+

sd = ImsId − Pd ù ImsP+d,

since ImsId−Pd and ImsP+
sd have zero intersection in kersDYd by definition ofs. Let hcmj be an

orthonormal basis of ImsId−Pdù ImsP+d wherecmPEm. sHere, we recall thatDYP=PDY, soDY

preserves ImsId−Pd and obviously ImsP+d as well. It follows thatDY can be diagonalized within
the finite-dimensional space ImsId−Pdù ImsP+d. This elementary fact will be used quite often in
the sequel.d Thenfm=e−mucmPkersDP,Id−P+

sd and

ifmi2 =E
−R

R

e−2mudu=
e2mR − e−2mR

2m
=

sinhs2mRd
m

.

It follows that

LR = o
m.0

EmùImsId−PdÞ0

fmsRd
ifmi

^
fmsRd
ifmi

= o
m.0

EmùImsId−PdÞ0

e−2mR

ifmi2cm ^ cm.

Hence,

sdetLRd−2 = p
m.0

EmùImsId−PdÞ0

S e−2mR

ifmi2D−2

= p
m.0

EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 .

This completes the Gluing proof of Lemma 3.1.
Comparison proof of Lemma 3.1:We shall apply the comparison formulas2.5d to the pair

sDP,Id−P+
s

2 ,DP,Id−P
2 d. Here we regard Id−P as the Calderón projector at the boundaryhRj3Y of the

operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduPsfuu=−Rd = 0j .

ThenDId−P+
s=DP,Id−P+

s andDc−
=DP,Id−P, so by the comparison formulas2.5d,
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detzDP,Id−P+
s

2

detzDP,Id−P
2 = sdet Ld2 · detFS2 Id + ÛP + ÛP

−1

4
D ,

where we used that theU in s2.5d for this situation iss−kPds−ks
−1d=kPks

−1
¬UP, and whereL is

the map overhRj3Y defined ins2.3d:

L = − PWGR−1GPW:W→ W

with

Wª gR kersDP,Id−P+
sd ; ImsId − Pd ù ImsP+

sd = ImsId − Pd ù ImsP+d.

To determinesdetLd2, we need to findR. An invertible extensionD̃ of D is just Gs]u+DYd over
f−R,2Rg3Y with boundary conditionP at −R and Id−P at 2R. Let hcmj be an orthonormal basis
of W=ImsId−Pdù ImsP+d wherecmPEm, and for each suchm, definewmªGcmPGW. Since
GDY=−DYG andPG=GsId−Pd, it follows thatwm=GcmPE−mù ImsPd. Using this, it is straight-
forward to check that

f1 ª
sinhsmsu + Rdd

sinhs2mRd
wm over f− R,Rg 3 Y,

and

f2 ª emsu−Rdwm over fR,2Rg 3 Y,

are continuous atu=R with valuewm and satisfyD̃2fi =0, i =1, 2. Thus, by the definition ofR in
s2.4d, we have

Rwm ª ]uf1uu=R − ]uf2uu=R = Sm
coshs2mRd
sinhs2mRd

− mDwm =
me−2mR

sinhs2mRd
wm.

Therefore,

− GRGcm = − GRwm = − G
me−2mR

sinhs2mRd
wm =

me−2mR

sinhs2mRd
cm.

It follows that

L = − PWGR−1GPW = o
m.0

EmùImsId−PdÞ0

e2mRsinhs2mRd
m

cm ^ cm.

Hence,

sdetLd2 = p
m.0

EmùImsId−PdÞ0

e4mRsinh2s2mRd
m2 ,

which completes the Comparison proof of Lemma 3.1. h

Next, we compute a relatedz-determinant ratio.
Lemma 3.2: With the notations above, the following equality holds:

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 =S p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2 Id + ÛP + ÛP

−1

4
D .
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Proof: Observe that Id−P+
s is the Calderón projector athRj3Y of the operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduP+
ssfuu=−Rd = 0j.

ThenDId−P=DP+
s,Id−P andDC−

=DP+
s,Id−P+

s, so the comparison formulas2.5d applied to this situa-
tion gives us

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 = sdetLd2 · detFS2 Id + ÛP

−1 + ÛP
4

D ,

where we used that theU in s2.5d for this situation iss−ksds−kP
−1d=kskP

−1=skPks
−1d−1=UP

−1, and
whereL is the map overhRj3Y defined ins2.3d:

L ª − PWGR−1GPW:W→ W

with

Wª gR kersDP+
s,Id−Pd ; ImsId − P+

sd ù ImsPd = ImsPd ù ImsP−d.

To computesdetLd2 for this example, we proceed in much the same way as for the Comparison

proof of Lemma 3.1. An invertible extensionD̃ of D is just Gs]u+DYd over f−R,2Rg3Y with
boundary conditionP+

s at −R and Id−P+
s at 2R. Let hcnj be an orthonormal basis ofW

=ImsPdù ImsP−d wherecnPEn. It is important to note that, in contrast to the Comparison proof
of Lemma 3.1, then’s are negativesrather than positived and thatcnPEnù ImsPd frather than
ImsId−Pdg. Following the Comparison proof of Lemma 3.1 almost verbatim, it is straightforward
to check that

L = − PWGR−1GPW = o
n,0

EnùImsPdÞ0

e2nRsinhs2nRd
n

cn ^ cn,

so

sdetLd2 = p
n,0

EnùImsPdÞ0

e4nRsinh2s2nRd
n2 .

Finally, using thatG mapsEnù ImsPd isomorphically ontoE−nù ImsId−Pd, where we used that
GDY=−DYG andPG=GsId−Pd, we finally get

sdetLd2 = p
m.0

EmùImsId−PdÞ0

e4s−mdRsinh2s− 2mRd
s− md2 = p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 ,

which completes our proof. h

We are now ready to prove the following
Lemma 3.3: With the notations above, the following equality holds:

detzDP,Id−P
2 = e2CR2zDY

2s0d+hY ·S p
m.0

EmùImsId−PdÞ0

e−8mRD ,

where C=sGssd−1zDY
2ss−1/2dd8s0d with zDY

2ssd the z-function of DY
2 and hY=dim kersDYd.
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Proof: Solving for detzDP,Id−P
2 in Lemma 3.1, we obtain

detzDP,Id−P
2 = detzDP,Id−P+

s
2 ·S p

m.0
EmùImsId−PdÞ0

e−4mRm2

sinh2s2mRdD · detFS2 Id + ÛP + ÛP
−1

4
D−1

.

s3.3d

On the other hand, from Lemma 3.2, we know that

detzDP+
s,Id−P

2

detzDP+
s,Id−P+

s
2 =S p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2 Id + ÛP + ÛP

−1

4
D

and from the main result of Ref. 11fsee formulas1.7dg, we also have

detzDP+
s,Id−P+

s
2 = e2CR2zDY

2s0d+hY.

Hence,

detzDP+
s,Id−P

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−PdÞ0

e−4mRsinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D .

Substituting this expression intos3.3d, using that

detzDP,Id−P+
s

2 = detzDP+
s,Id−P

2 , s3.4d

concludes the proof of our result once we show thats3.4d holds. In fact,s3.4d holds in the more
general setting: detzDP,Id−Q

2 =detzDQ,Id−P
2 for all sP , Id−QdPGr̀* sDYd. To prove this, we simply

observe that

Gs]u + DYdf = lf, Pfs− Rd = 0, sId − QdfsRd = 0

if and only if csudªGfs−ud satisfies

Gs]u + DYdc = − lc, sId − PdcsRd = 0, Qcs− Rd = 0,

where we used thatG2=−Id, GDY=−DYG, PG=GsId−Pd, andQG=GsId−Qd. It follows that
specsDP,Id−Q

2 d=specsDQ,Id−P
2 d, which implies that detzDP,Id−Q

2 =detzDQ,Id−P
2 . h

IV. PROOF OF THEOREM 1.1

As we already mentioned, in order to demonstrate the effectiveness of the gluing formulas2.2d
and the comparison formulas2.5d, we shall give separate proofs of Theorem 1.1 exploiting both
formulas.

Gluing proof of Theorem 1.1:Recall that the operatorDP as defined ins1.4d written using the
notations3.1d is

DP1,P2
ª D:domsDP1,P2

d → L2sNR,Sd,

where

domsDP1,P2
d ª hf P H1sNR,SduP1sfuu=−Rd = 0, P2sfuu=Rd = 0j.

Let us decomposeNR into two partsf−R,0g3Y and f0,Rg3Y as shown in Fig. 2. Then the
restrictions ofDP1,P2

over the decomposed parts define two Dirac type operators with boundary
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conditions given byP1 at h−Rj3Y and P2 at hRj3Y. It is easy to check that the Calderón
projections of these operators are, respectively, just Id−P1 and Id−P2 overh0j3Y. We denote the
operators over the decomposed partsf−R,0g3Y andf0,Rg3Y with the new boundary conditions
given by these Calderón projectors overh0j3Y by DP1,Id−P1

and DId−P2,P2
, respectively. Now

applying the gluing formulas2.2d to this situation, we obtain

detzDP1,P2

2

detzDP1,Id−P1

2 · detzDId−P2,P2

2 = 2−zDY
2s0d−hYsdetLd−2detFS2 Id + ÛP + ÛP

−1

4
D , s4.1d

where theÛ in s2.2d for this situation is the restriction of −s−k1ds−k2
−1d=−k1k2

−1
¬UP over

L2sY,S−d to the orthogonal complement of itss−1d-eigenspace, noting that −ki is the isometry
corresponding to Id−Pi for i =1, 2, and where

L ª o
k=1

hP

g0Uk ^ g0Uk:g0 kersDP1,P2
d → g0 kersDP1,P2

d, s4.2d

wherehP=dim kersDP1,P2
d, g0 is the restriction map fromNR to h0j3Y, andhUkj is an orthonor-

mal basis of kersDP1,P2
d. By Lemma 3.3shere we need to replaceR with R/2 since the lengths of

f−R,0g and f0,Rg are half that off−R,Rg, which is the interval considered in Lemma 3.3d,

detzDP1,Id−P1

2 = eCR2zDY
2s0d+hY ·S p

m.0
EmùImsId−P1dÞ0

e−4mRD ,

and

detzDId−P2,P2

2 = eCR2zDY
2s0d+hY ·S p

m.0
EmùImsP2dÞ0

e−4mRD .

Now to complete the Gluing proof of Theorem 1.1, it remains to computesdetLd−2 over
g0 kersDP1,P2

d; ImsId−P1dù ImsId−P2d. To do so, we note that

kersDP1,P2
d ; ImsId − P1d ù ImsId − P2d ª W.

Let hcmj be an orthonormal basis ofW wherecmPEm. Thenfmªe−mucmPkersDP1,P2
d and

ifmi2 =E
−R

R

e−2mudu=
sinhs2mRd

m
,

where if m=0, then we replacefsinhs2mRdg /m by its limit asm→0, that is, 2R. It follows that

L = o
mPspecsDYd
EmùWÞ0

fms0d
ifmi

^
fms0d
ifmi

= o
mPspecsDYd
EmùWÞ0

1

ifmi2cm ^ cm.

Hence,

FIG. 2. CuttingNR at 0 into two pieces.
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sdetLd−2 = p
mPspecsDYd
EmùWÞ0

S 1

ifmi2D−2

= p
mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 .

This completes the Gluing proof of Theorem 1.1.
Comparison proof of Theorem 1.1: We now prove Theorem 1.1 using the comparison formula

s2.5d applied to the pairsDP1,P2

2 ,DP1,Id−P1

2 d. Here we regard Id−P1 as the Calderón projector at the
boundaryhRj3Y of the operator

D:domsDd → L2sNR,Sd,

where

domsDd ª hf P H1sNR,SduPsfuu=−Rd = 0j.

ThenDP2
=DP1,P2

andDc−
=DP1,Id−P1

, so applying the comparison formulas2.5d to this situation,
we obtain

detzDP1,P2

2

detzDP1,Id−P1

2 = sdetLd2 · detFS2Id + ÛP + ÛP
−1

4
D , s4.3d

where we used that theU in s2.5d for this situation iss−k1dk2
−1
¬UP noting that −k1 corresponds

to Id−P1, and whereL is the operator defined ins2.3d for this situation, which we will investigate
in detail soon. Now, by Lemma 3.3,

detzDP1,Id−P1

2 = e2CR2zDY
2s0d+hY ·S p

m.0
EmùImsId−P1dÞ0

e−8mRD ,

therefore bys4.3d,

detzDP1,P2

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−P1dÞ0

e−8mRD · sdetLd2 · detFS2Id + ÛP + ÛP
−1

4
D .

To compute detL, we use almost the exact same argument found in Lemma 3.2 to show that with
Wª ImsId−P1dù ImsId−P2d,

sdetLd2 = p
mPspecsDYd
EmùWÞ0

e4mRsinh2s2mRd
m2 ,

where in the product, whenm=0 we replacefsinh2s2mRdg /m2 by its limit asm→0, that is,s2Rd2.
Therefore,

detzDP1,P2

2 = e2CR2zDY
2s0d+hYS p

m.0
EmùImsId−P1dÞ0

e−8mRD ·S p
mPspecsDYd
EmùWÞ0

e4mRD
·S p

mPspecsDYd
EmùWÞ0

sinh2s2mRd
m2 D · detFS2Id + ÛP + ÛP

−1

4
D . s4.4d

SinceW=ImsId−P1dù ImsId−P2d, we have
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p
mPspecsDYd
EmùWÞ0

e4mR = S p
m.0

EmùImsId−P1dùImsId−P2dÞ0

e4mRD ·S p
m,0

EmùImsId−P1dùImsId−P2dÞ0

e4mRD
= S p

m.0
EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsId−P1dùImsP2dÞ0

e−4mRD
·S p

m,0
EmùImsId−P1dùImsId−P2dÞ0

e4mRD .

SinceDYG=−GDY andPiG=GsId−Pid, we have

Em ù ImsId − P1d ù ImsId − P2d Þ 0 ⇔ E−m ù ImsP1d ù ImP2 Þ 0,

asG maps the first space isomorphically onto the second space, therefore

p
mPspecsDYd
EmùWÞ0

e4mR = S p
m.0

EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsId−P1dùImsP2dÞ0

e−4mRD
·S p

m.0
EmùImsP1dùImsP2dÞ0

e−4mRD
= S p

m.0
EmùImsId−P1dÞ0

e4mRD ·S p
m.0

EmùImsP2dÞ0

e−4mRD .

Putting this expression intos4.4d completes the Comparison proof of Theorem 1.1.
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