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In this note, we explicitly compute the functional determinant of a Dirac Laplacian
with nonlocalpseudodifferentiaboundary conditions over a finite cylinder in terms

of the ¢-function of the Dirac operator on the cross section and the pseudodiffer-
ential operators defining the boundary conditions. In particular, this result reduces
to our previous formuldJ. Phys. A 37, 7381 (2004] for the special case of
generalized Atiyah—Patodi-Singer conditions. To prove our main result, we use the
gluing and comparison formulas established by the present authors in Refs 14
and 15.
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I. INTRODUCTION

Recent advances in quantum field theory have necessitated the explicit evaluation of func-
tional determinants of Dirac operators over a variety of space—time configurations. In fact, at the
one-loop order, any such theory can be reduced to the theory of determinants. We refer the reader
to the works of Dowker and Critchlégand Hawking? See also Elizaldet al. Kirsten? and Scott
and Wojciechowski, for recent reviews. Because of their increasingly important role in math-
ematical physics, over the past several years there has been intense research to compute functional
{-determinants of Dirac Laplacians. Of great significance is the Dirac Laplacian with spectral
pseudodifferential boundary conditions; the Atiyah—Patodi—Sifgenceforth AP$ boundary
conditions being the most well-known example. Such boundary conditions arise in, for instance,
one-loop quantum cosmolo§y spectral brane$and the study of Dirac fields in the background
of a magnetic flux®

However, only recently was the open problem of explicitly computingZtaeterminant of a
Dirac Laplacian with APS conditions over a finite cylinder solvé®ne reason this problem
withstood the efforts of existing mathematical methods is that it is impossible to find explicit
formulas for the eigenvalues of such a Dirac operator. For this reason, we had to attack the
problem using the method afliabatic decompositiopioneered by Douglas and Wojciechom?szki
for the eta invariant and by the second author and Wojcieché@vkki the {-determinant. The
purpose of this current paper is twofold. First, we extend the result of Ref. 11 to a general class of
pseudodifferential conditions that generalize the APS condition up to operatarbitéry finite
rank. To compute thé-determinant in this generalized framework, which in some sense possesses
eigenvalues that are even more enigmatic, we use the gluing and comparison formulas for
{-determinants proved by the authors in Refs. 14 and 15 to break up this general framework into
tangible parts which can be explicitly computed. The second purpose of this paper is to elucidate
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the effectiveness of these gluing and comparison formulas to condpdg¢erminants that have
eluded explicit evaluations due to the perplexity of their eigenvalues. This also exemplifies the aim
of gluing and comparison formulas: Breaking up complex problems into simpler more tractable
ones.

We now describe our setup. FIR>0 and letD:C*(Ng,S— C*(Ng,S be a Dirac type
operator wherdNg=[-R,R] XY is a finite cylinder withR>0, Y a closed compact Riemannian
manifold (of arbitrary dimensiop and S a Clifford bundle overNg. We assume thaD is of
product form

D=G(g,+Dy), (1.

whereG is a unitary bundle isomorphism &andDy is a Dirac operator acting o@”(Y,S) such
that G2=-1d andGDy=-DG. Furthermore, we assume that

dim(kenG +i) N ker(Dy)) = dim(ke{G - i) N kenDy)). (1.2

LetIl,,II_, andIl, denote the orthogonal projections onto the positive, negative, and zero eigens-
paces ofDy. SinceNg has boundaries, we have to impose boundary conditions. LetDGr
denote the space of paif®,,P,), whereP; and P, are orthogonal pseudodifferential projections

on L4Y,9) such that

P.—-11,, P,—1II_ are smoothing operators,

and fori=1, 2,
PiG:G(ld_Pi), Dypi:PiDy.

An important class of such boundary conditions are the renowned generalized APS spectral
conditions'® which are defined as follows. Let;, o, be involutions(that iS,o‘iZZId) over kefDy)

such thator;G=-Go; ando,G=-Go». Note that such involutions exist because of the assumption
(1.2). Then

1+0'1

o 1% 1+ g2
MEt =T+ =P, 1172 11+

I, (1.3

are calledyeneralized APS spectral projectigmsd(I11,1172) e Gr, (Dy). These generalized APS
boundary conditions were considered in our pafef. 11, but elements of GfDy) are much
more general and can differ from APS projections by operatorarioitrary finite rank. LetP
=(P;,P,) e Gr,(Dy) and impose boundary conditions fbrat {-R} X Y and{R} X Y via

P, at{-R} XY, P, at{R}XY.
We denote byDp the resulting operator with these boundary conditions, that is,
Dp := D:domDp) — L3%(Ng,9), (1.4
where

dom(Dp) = {$ € H'(Ng,S)|Py(hlu=-r) =0, P2l = 0}

By the fundamental work of Seelé{the spectrum of the Dirac operatby consists of discrete
real eigenvalue$\,}. The {-function of D2 is defined by

ZDf,(S): > )\Ezs,
)

which is a priori defined for%(s)>0, and by the work of Grubf?° and WojciechowsK?
(cf. Lei** and Loya and Pafk), has a meromorphic extension@owith 0 as a regular point. The
{-determinant ofD3 is defined by
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det,Dj = exp(— {'D%(O))-

This definition first appeared in Ray and Singer’s seminal ;ﬁperthe analytic torsion. Since we
imposed nonlocal pseudodifferential boundary conditions, it is impossible to compute the eigen-
values{\,} of Dp explicitly, so there is no direct way to compute theleterminant dg‘DE, from

the eigenvalues. However, we shall give two derivations of the formula fQ’Déet

(1) Using the gluing formula proved in Ref. 14.
(2) Using the comparison/relative invariant formula proved in Ref. 15.

See Sec. Il for more on these results. The formula fogm&ts described as follows. Since the
Pi's are orthogonal projectors such tHa{G=G(ld-P;) by assumption, with respect to the de-
composition

L2(Y,9 =L%(Y,S") @ LAY,S) (1.5

with S* denoting the(+i)-eigenspaces db in S (recall thatG?=-1d), we can write

_1(id Krl)
Pi_2<Ki |d '

where;:L%(Y,S")—L2(Y,S") are corresponding isometries. In particular,

Up = = ki LAY, S) — LA(Y,S)

is a unitary operator. Letlp denote the restriction df)p to the orthogonal complement of its
(-1)-eigenspace. LétV:=Im(ld—P,) N Im(ld—7P,). Then our assumptions d®,,P,) imply that
W is a finite-dimensional vector space and tBgt Im(P;) — Im(P;) andDy:Im(ld=7;) — Im(ld
-P;). We define a mafp over W by

Tood o onWnN ker(Dy)?t,
"7 2R onwWn kerDy).

sinh(2RDy)
M

We also defineTp and Tp, over the finite-dimensional vector spaces(Iiy) NIm(ld-7y) and
Im(IL,) N Im(P,), respectively, by

TPl = e4RDY' TP2 = 4RDY_

The following theorem is the main result of this note.
Theorem 1.1.The following equality holds:

det D = 2CRini0)hy

(detTp)? ( 21d+Up + 0,;1)
(detTpl)z(detsz)z 4 ’

where C:(F(s)‘lgD\z((s—1/2))’(0) with {D\z((s) the Z-function of Ii hy=dim ker(Dy) and det
denotes the Fredholm determinant

More explicitly, if we let E, denote the eigenspace Df, associated to the eigenvalye
e spe¢Dy), then we can write
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u>0 u>0
E,NIm(ld=P1)#0 E,NIM(P)#0

deth% = 2CRD2(0)+hy ( 1 e—4,LR) ) ( 1 e—4,LR)

: ()l
H Sinf(2uR) _dep<2|d+up+up>' 0o

2
pespecDy) 4
E/LHW¢0
where if =0 in the product in the second line, we repldsel?(2uR)]/ u? by its limit as u
—0, that is,(2R)2. In particular, wher?; =117t and P,=11?2, the generalized APS spectral pro-
jectors in(1.3), then Theorem 1.1 reduces to the main result of Ref. 11.

-1
detﬂ)ﬁiﬁﬂvz - e20R2§D§(0)+hY(2R)2hdef( 2id - (010'22— ~ (0109)- ) ’ (1.7)
where(o,0,)_ is the restriction of the unitary map,o, to L%(Y,S") Nker(Dy), h is the number of
(+1)-eigenvalues of(cy0,)_, and where défL) denotes the determinant <§L|ke,(L)L) for an
operatorL over a finite-dimensional vector space.

The structure of this paper is as follows. In Sec. Il, we review the gluing formula from Ref. 14
and the comparison/relative invariant formula from Ref. 15, which we shall use in the subsequent
sections. In Sec. Ill, we derive new formulas f@determinant ratios of Dirac Laplacians with
boundary conditions of special types. Finally, in Sec. IV we combine these sgedéerminant
ratios and the gluing and comparison formulas from Refs. 14 and 15 to derive our main Theorem
1.1.

Il. THE GLUING AND COMPARISON FORMULAS FROM REFS. 14 and 15

In this section we review the gluing formula from Ref. 14 and the comparison/relative invari-
ant formula from Ref. 15.

Let D be a Dirac type operator acting @¥(M,S) whereM is a closed compact Riemannian
manifold of arbitrary dimension an8lis a Clifford bundle oveM. Suppose tha=M_U M, is
partitioned into a union of manifolds with a common bound#rM_=JM.. We assume that all
geometric structures are of product type over a tubular neighborNoofdY whereD takes the
product form(1.1). By restriction of D, we obtain Dirac type operatof3, over M,. We impose
the boundary conditions given by the orthogonalized Calderén projegides D, and we denote
by D, the resulting operators,

D¢, = Dy:dom(De) := {¢p € HY(M.,9)|Ce(dly) = 0} — LA(M,, ).

Here, we recall that the Calderdn projectals are the projectors defined intrinsically as the
unique orthogonal projectors onto the closurek?Y,S) of the infinite-dimensionaCauchy data
spacesof D,:

{¢|Y|¢ e C*(M,9), D.¢p=0}CC*(Y,S).
The gluing problemfor the {-determinant is to describe the “defect”
det,D?
detD2 > =2
etDg, - detDe_

in terms of recognizable data. To describe the solution in Ref. 14, we need to introduce some
notations. With respect to the decomposition aglirb), the Calderén projector§, have the
matrix forms

Downloaded 29 Sep 2005 to 128.226.37.2. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042309-5 Functional determinants for the Dirac equation J. Math. Phys. 46, 042309 (2005)

1(1d  «G*
C*ZE Kk, 1d /)’ 2.0

where the map,:L4Y,S")—LAY,S) are corresponding isometries, so that —«_«,® is a
unitary operator ovet(Y,S"). Furthermorel/ is of Fredholm determinant class. We denotdhy
the restriction o/ to the orthogonal complement of its1)-eigenspace. We also put

hy

L= W, ® WykerD) — ykerD),
k=1

wherehy,=dim ke(D), y is the restriction map frorM to Y, and{U,} is an orthonormal basis of
ker(D). ThenL is a positive operator on the finite-dimensional vector space

vkenD) =Im(C_) N Im(C,).

We now have all the ingredients to state the followiiging formula**

det,D?

20 +U+ U1
d 2 2 ’ (2'2)
etgpc_ " deE’DC+

= 2‘505(0)‘“Y(det£)‘2det:( 2

wherehy=dim ker(Dy) and det denotes the Fredholm determinant. There is a similar formula for
manifolds with cylindrical endé!

We now explain the comparison/relative invariant formula proved in Ref. 18MarD_). To
this end, we consider the space. @_), which consists of orthogonal projectiossuch that
P-C_ are smoothing operators a&P=(Id—P)G. Let us fix P e Gr,(D_) and letxp:LA(Y,S")
—L2(Y,S") be the map that determinésas «, doesC, in (2.1). Let D, denote the operatdp_
on M_ with the boundary condition given bp. Let Py, be the orthogonal projection af(Y,S)
onto the finite-dimensional vector space

W:= ykenDp) = Im(C-) N Im(ld - P).

Then we introduce a linear map

= — PWGRIGP.yker(Dp) — ykenDy), (2.3

whereR is the sum of the Dirichlet to Neumann maps on an extensidvl oflefined as follows.
Fix any invertible extensiorD of D to a manifoldM that containgVl_. (The doubleof D would
do nicely) Then for anye € C*(Y,S), there are uniqueb, e C*(M_,S) and ¢, e C°°(I\~/I\M_,S)
that are continuous af with value ¢ such thatf)zg{)izo, i=1, 2, off of Y. Then

Re = dydily = dubalv- (2.9

In Ref. 15, we prove thdt is a positive operator so that deis a positive real number. Now the
main result of Ref. 15 states that

detD%

21d+U + 0‘1)
det D3 '

_ 2,
=(detL) dep( 2

(2.5)

whereU is the restriction ot := k_Kp to the orthogonal complement of its1)-eigenspace. The
formula (2.5) extends the work of Scéttfor the invertible casécf. Scott and Wojciechows?fb,

and has recently been further extended to noncompact manifolds whose boundaries are manifolds
with multi-cylindrical ends’
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Np=|-R,Rly xY

(O "L

-R rR -R r rR

FIG. 1. CuttingNg atr into two pieces.

lll. THE -DETERMINANT FOR SPECIAL BOUNDARY CONDITIONS

If (Py,P,) eGr,(Dy), then for the sake of clarity we shall denote the operdprin the
introduction with these boundary conditions Eiypl,pz. Thus, overNg=[-R,R] XY we impose
boundary conditions &R} XY and{R} X Y via

P at{-R XY, P,at{R}xY,

andDp, p, is the operator with domain

dom(Dp, p,) :={¢ € H'(Ng,S)|Pr(@lu=—r) =0, Pa(¢lu=r) = O} (3.9)

Let P be a projection on.3(Y,S) with (P,ld-P) e Gr.(Dy). By definition of Gr.(Dy), the image
of PIl, is a Lagrangian subspace in (Fy)=kernDy). Let o be the involution over Irfll,) such
that [(1+0)/2]l1y=PIl,. Recalling I1{:=11,+[(Id+0)/2][1,, it follows that (P,ld-II7)
e Gr.(Dy). Recall that we can write

1( Id K7_>1) l(ld K;_]')
P=- , Hi=—
2 Kp Id 2 K Id

o

for corresponding isometriegp, «,:L%(Y,S") —L%(Y,S), and defineUP as the restriction of
Up:= KpK;_l over L%(Y,S) to the orthogonal complement of its 1)-eigenspace. Note thatcp
and —«, are the isometries corresponding to [B-and Id-11J, respectively. We begin by com-
puting the following ratio.

Lemma 3.1: We have

2

derfDP,ld—Hf e**Rsintf(2uR) 21d +Up + Uzt
e I ) det\ =———),
de{Dp,g-p u>0 M

E,,NIM(Id=P) %0

where E, denotes the eigenspace of Bssociated to the eigenvalyee spe¢Dy).

Proof: We give two proofs, first using the gluing formui@.2) then using the comparison
formula (2.5), in order to demonstrate the effectiveness of these formulas.

Gluing proof of Lemma 3.1:et us decomposh into two partd -R,r] XY and[r,R] XY as
shown in Fig. 1. Then the restrictions OSIde_Hg over the decomposed paiftsR,r] XY and
[r,R] XY define two Dirac type operators with boundary conditions giverPgt {-R} X Y and
Id-TI{ at {R} X Y. It is easy to check that the Calderén projections of these two operators are,
respectively, jusC_=Id-P andC,=I17 over {r} X Y. We denote the operators over the decom-
posed part§—R,r] XY and[r,R] XY, with the new boundary conditions given by these Calderén
projectors ovefr} XY, by Dy 4_p(r) and Dng,m—ng(r): respectively. Applying the gluing formula
(2.2) to this situation, we obtain

2
P,Id-T17

detﬂ)% |d—p(r) ' deE'DZHf Id—Hf(r)

deyD 21d+Up+ 05t

4

= 2‘405(0)"‘Y(det£r)‘2det:< ) . 32

whereng(s) is the Z-function of D$ andhy=dim ker(Dy), where we used that tHg in (2.2 for
this situation is {«p)(x;%) = kp,; =: Up, and where
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hp

Lr =2 %Uy ® % U vkerDp ignio) — ¥ ke Dp jg-p1o),
k=1

wherehp,=dim ker(Dmd_Hir), v, is the restriction map fronlNg to {r} XY, and{U,} is an ortho-
normal basis of kaiiDP,,d_Hg). From the main result of Ref. Jthat is, the formuld1.7)], we have
detlpif,m—ng(r) = R0y

whereC=(I'(s)"¢pz(s-1/2))'(0). Thus, detD? .,
(3.2, we see that

o) — 29049 asr R, so takingr —Riin

dethf, 1d-T1% 21d+U,+ Uzt
— T = (detLp) et | PP
detDp g-p 4

It remains to computédet£g)~2. To do so, we note that

ker(Dp,,d_Hg) = Im(ld = P) N IMm(I1J) = Im(ld = P) N Im(I1,),

since In(ld-P) and InI1{) have zero intersection in Kéy) by definition ofo. Let {y,} be an
orthonormal basis of hitd—7) N Im(I1,) wherey, € E,.. (Here, we recall thaDyP=7PDy, soDy
preserves Irfid—7P) and obviously IniI1,) as well. It follows thatDy can be diagonalized within
the finite-dimensional space (id-7) N Im(I1,). This elementary fact will be used quite often in
the seque). Then ¢, =e*4, e ker(Dpv,d_Hg) and

R e?#R_ g 2R ginh2uR
o= eau= - SR,
R 2u I
It follows that
$.(R) _ ¢u(R) g 2R
D R R [ A
n>0 I8 M u=>0 M
E,NIm(Id-7)#0 E,NIM(1d-P)#0
Hence,
2R\ -2 in?(2uR
e Sin
(detcp?= ]I ( 2) = 1 e“"R—(ZM ).
o llbl o
E,NIm(id-P)#0 E,NIm(id-P)#0

This completes the Gluing proof of Lemma 3.1.
Comparison proof of Lemma 3.We shall apply the comparison formu(a.5) to the pair

(Df, |d—H"'D727,|d—7’)' Here we regard Id#? as the Calderdn projector at the boundgRyx Y of the
operator

D:dom(D) — L%Ng,S),
where

dom(D) := {¢ € HY(Ng,S)|P(¢|,=—r) = 0}

ThenD,y-no=Dp g-ne andD, =Dp 4-p, SO by the comparison formul@.5),
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dethf; Id-T17 21d+U,+ Uzt
+ = (det L)2 - det c27 YP YP ,
detDp,4-p 4

where we used that thg in (2.5) for this situation is(—xp)(—«,") = kpk;=:Up, and wherel is
the map ove{R} XY defined in(2.3):

L=-PyGR IGPyW—W
with
W:= yg ker(Dp,,d_Hg) = Im(ld = P) N IMm(I1J) = Im(ld = P) N Im(I1,).

To determing(detL)?, we need to find=. An invertible extensio of D is justG(d,+Dy) over
[-R,2R] XY with boundary conditior? at -R and Id—-P at 2R. Let{¢,,} be an orthonormal basis
of W=Im(ld-P)NIm(IL,) wherey, € E,, and for each suchx, define¢,:=Gy, e GW. Since
GDy=-DyG andPG=G(Id-P), it follows thate, =G, € E_,NIm(P). Using this, it is straight-
forward to check that

__ sinh(u(u+R))

= over [-RR]XY,
17 sinh2uR) ¢ [-RRI

and
¢y=e""Re, over [R2R] XY,

are continuous ait=R with value ¢, and satisfy1~32¢i=0, i=1, 2. Thus, by the definition ok in
(2.4), we have

R, = dybilu-r~ dubalu-r= ( CoSNZLR) _ ) s
Pu = OuP1lu=R~ OuP2lu=R~ MSinf‘(Z,u,R) My, = Sinh(2uR) P
Therefore,
Me—Z,uR Me—Z,u,R
-GRGyY,=-GRe¢,=-G— = — .
Vu Pu sinh(2uR) Pu sinh(2uR) Y
It follows that
~ e?"Rsinh(2uR)
L=-PyGRIGPy= > Y, ® Y,
u=>0 I
E,NIm(Id-P)#0
Hence,
(detL)?= 11 e‘“‘R—Sinhz(f'uR)
u>0 m
E,NIM(Id=P)#0
which completes the Comparison proof of Lemma 3.1. O

Next, we compute a relategideterminant ratio.
Lemma 3.2: With the notations above, the following equality holds:

det,D? ~ e
et n7,d-p Il e #RsintP(2uR) dep( 21d+Up+ U;})
2 2 ' — |.
detDyo g-pio #>0 K 4
E,NIm(Id-P)#0
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Proof: Observe that Id ¢ is the Calderén projector 4R} X Y of the operator
D:domD) — L%Ng,S),

where

dom(D) := {¢ € H'(Ng, S)T1Z(#]=—r) = O}

ThenD,y-p=Dng g-p andD¢_=Dre g-nie, SO the comparison formul.5) applied to this situa-

tion gives us
detDpo 4. 21d+Uz+U
————— =(detL)?- det +D ,
detDyo g-pio

where we used that the in (2.5) for this situation is(—«,) (-« = k&5 = (kpk, ) t=UZ, and
whereL is the map ovefR} X Y defined in(2.3):

= - PWGRIGPy:W— W
with
W:= yg ker(DHir,,d_p) = Im(ld = IIY) N Im(P) = Im(P) N Im(I1.).

To compute(detL)? for this example, we proceed in much the same way as for the Comparison

proof of Lemma 3.1. An invertible extensidd of D is just G(g,+Dy) over [-R,2R] XY with
boundary conditionlI{ at -R and Id-11{ at 2R. Let {«,} be an orthonormal basis oV
=Im(P)NIm(I1.) wherey, € E,. It is important to note that, in contrast to the Comparison proof
of Lemma 3.1, thev's are negative(rather than positiveand thatys, € E,NIm(P) [rather than
Im(ld-"7P)]. Following the Comparison proof of Lemma 3.1 almost verbatim, it is straightforward
to check that

VRa;
L=-PyGRGPy= >, w%@%

v<0
E,NIm(P)#0

SO

1 e4vRsinhZ(2vR)

(detL)?= 2

<0
E,NIm(P)#0
Finally, using thatG mapsE, N Im(P) isomorphically ontcE_, N Im(ld—7), where we used that
GDy=-DyG and PG=G(ld-P), we finally get

(detL)?= 1 e4(_M)Rsinhz(— 22,uR) _ il e_4#RsinI"F(§,uR) |
n>0 (_ ,LL) wn>0
E,NIm(id-P)#0 E,NIm(id-P)#0
which completes our proof. O

We are now ready to prove the following
Lemma 3.3: With the notations above, the following equality holds:

det{D%’ld_P = eZCR2§D$(0)+hY . ( H e_BMR) ,

u>0
E,NIm(Id-P)#0

where C:(I‘(s)‘lgD\z((s—1/2))’(0) with gD\z((s) the {-function of Ii and h,=dim ker(Dy).
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Proof: Solving for defD%,_» in Lemma 3.1, we obtain

g R 2 (2 1d+0,+ 07\
2 et e\ cBTERPTYR |
detDp,g-p = de{Dp, 4 o 11 sinhz(Z,uR)) et 4

>0
E,NIm(Id=P)#0

(3.3

On the other hand, from Lemma 3.2, we know that

2 II 2
det Do 1g-no >0 M 4

2 A s
det{DHg,ld—P e *Rsintt(2uR) 21d+Up+ Uz
— T = 2T dep| Y22
EMﬂlr#(Id—P)¢0

and from the main result of Ref. ITsee formula(1.7)], we also have

2 _ ~2CRo{p2(0)+h
det{DH(le_H(: = e2 24D/ Y,

Hence,
detD?, ., = 2Rl +hy I1

17,1d-P
* u=>0 m
E.N Im(ld-P)#0

e RsinkR(2uR 21d + U, + Uzt
S|2(M) -dep( 47> 7>>'

Substituting this expression int8.3), using that

2 _
det{DP,ld—Hf = detD

2

no,id-p 3.4

concludes the proof of our result once we show {3a4) holds. In fact,(3.4) holds in the more
general setting: dgb% 4 o=det D3 4_p for all (P,1d—Q) e Gr,(Dy). To prove this, we simply
observe that

G(dy+Dy)¢p=Nd, PH-R =0, (ld-Q)é(R)=0
if and only if #(u) := Gp(—u) satisfies
G(dy+Dy)¢g=-N\y, (d=-P)HR) =0, Q¥-R)=0,
where we used thaB?=-Id, GDy=-DyG, PG=G(ld-P), and QG=G(Id- Q). It follows that
specD5, 4_o) =SpecD? 4_p), Which implies that deD3 4 ,=detD? _p. O
IV. PROOF OF THEOREM 1.1

As we already mentioned, in order to demonstrate the effectiveness of the gluing f¢2n2ula
and the comparison formul@.5), we shall give separate proofs of Theorem 1.1 exploiting both
formulas.

Gluing proof of Theorem 1.1Recall that the operatdPp as defined in1.4) written using the
notation(3.1) is

DPl’PZ = D:dOI’T’(Dplypz) — LZ(NR, S),
where

don'(Dpl,Pz) ={¢ e Hl(NRv S)|P1(¢|u:—R) =0, P2(¢|U:R) =0}.

Let us decomposély into two parts[-R,0] XY and[0,R] XY as shown in Fig. 2. Then the
restrictions of’Dpl,P2 over the decomposed parts define two Dirac type operators with boundary
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Np=|-R,Rly xY

C 0
(O =

-BR0 R —-R 0 0 R

FIG. 2. CuttingNg at 0 into two pieces.

conditions given byP; at {-R} XY and P, at {R} X Y. It is easy to check that the Calderén
projections of these operators are, respectively, jusfidand 1d-P, over{0} X Y. We denote the
operators over the decomposed parR, 0] X Y and[0,R] X Y with the new boundary conditions
given by these Calderén projectors oM&} X Y by Dp, id-p, @nd Dyg—p, p,, respectively. Now
applying the gluing formuld2.2) to this situation, we obtain

2
detDp, p,
de%D%lv Id_Pl " deED|2d_p2’7)2

where thel/ in (2.2) for this situation is the restriction of (k) (~k;D) ==k, = Up over
L2(Y,S) to the orthogonal complement of its-1)-eigenspace, noting thatxris the isometry
corresponding to Id#; for i=1, 2, and where

2m+0p+0#)

= 2‘5D$(°)'hY(det£)'2det:< 2

(4.2

hp

L= 2 U ® yoUivokerDp p) — yo ke Dp, p), 4.2
k=1

wherehp=dim ker(Dplypz), o is the restriction map frorilg to {0} XY, and{U,} is an orthonor-
mal basis of keDp, »,). By Lemma 3.3here we need to repladewith R/2 since the lengths of
[-R,0] and[0,R] are half that of -R,R], which is the interval considered in Lemma 3.3

deth%l’I 4P, = CRo(p2(0)+hy ( IT e—4ﬂR),

u=>0
E,NIm(Id=P;)#0

and

u=>0

E,NIm(Py)#0

Now to complete the Gluing proof of Theorem 1.1, it remains to compdtL)? over
Yo ker(i)prpz)E Im(ld=7P;) NIm(ld-7P,). To do so, we note that

ker(Dfpl’pz) = |m(|d - Pl) N |m(|d - Pz) = W.
Let {¢,} be an orthonormal basis &/ wherey, e E,. Then¢,:=e "y, € ken(Dp, p,) and
R .
sinh(2uR
o= ooz SAE,
-R I

where if =0, then we replacgsinh(2uR)]/ x by its limit asu— 0, that is, R. It follows that

$,0 _ ¢,00 1
L= RN _ |
#ESiDY) ”¢M” ; ”qb'“H MeszﬁDy) ”d),U«HZ lﬂ,u ® lpM

E,NW=#0 E,NW=#0

Hence,
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1 \7? sinff(2uR
detey2= 11 (—” ; ”2) o SnreeR)
pespecDy) M pespe¢Dy) ]
EFOW#O EﬂﬁW#O

This completes the Gluing proof of Theorem 1.1.

Comparison proof of Theorem 1.XlMe now prove Theorem 1.1 using the comparison formula
(2.5 applied to the pai(D%lypz,Df,ly,d_Pl). Here we regard Id#; as the Calderdn projector at the
boundary{R} X Y of the operator

D:dom(D) — L%Ng,S),

where

dom(D) := {¢ € H(Ng, 9| P(¢,=-r) = O}

ThenkI)Dp_2=Dplvp2 and D¢ =Dp, ig-p,» SO applying the comparison formula.5) to this situation,
we obtain

detD} »,

2
detDp, ig-p,

where we used that thid in (2.5 for this situation is(—Kl)K;l =:Up noting that «; corresponds
to Id—P4, and where. is the operator defined i{2.3) for this situation, which we will investigate
in detail soon. Now, by Lemma 3.3,

2|d+0p+0;1) w3

_ 2.
= (detlL) det:( 1

u>0
E,,NIm(Id=P;)#0

de D3, 4_p, = 2ORRFO ( I e—s,m) ,

therefore by(4.3),

21d+Up + 0,;1)
u>0 4
E,,NIm(Id-P;)#0

de%D%er = eZCR2§D$(°)+hY( 11 e‘B"R> - (detL)?- det:(

To compute dek, we use almost the exact same argument found in Lemma 3.2 to show that with
W:=Im(ld=Py) N Im(ld=P,),

(detL)2= ]

pespecDy)
EMﬁW¢O

e4MRsinhz(Z,uR)
2

where in the product, whep=0 we replacdsint?(2uR)]/ u? by its limit asu— 0, that is,(2R)?.
Therefore,

wn>0 pmespedDy)
E,NIM(Id=Py)#0 E,NW+#0

deth% p,= €2CRo{p2(0)+hy ( I e—s,m) ) ( 1 e4,uR)

sinff(2uR 21d+Up + Ut
[ LU P A | (4.
2 4
nespe¢Dy) mr
EuﬂW#O

SinceW=Im(ld-P;) NIm(ld-7,), we have
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M - m e M e

mespedDy) u>0 u<0
E,NW#0 Eﬂﬂlm(ld—Pl)ﬂlm(ld—Pz)io Eﬂﬁlm(ld—Pl)ﬁIm(ld—Pz)io
= H e4;U~R . H e_4/.LR
n>0 u>0
E ﬁlm(ld Pp)#0 Eﬂﬂlm(ld—Pl)ﬁlm(Pz)?ﬁO
H e4,uR
n<0

E,Nim(Id~ Pl)ﬂlm (Id-P,)#0
SinceDyG=-GDy and P,G=G(ld-P;), we have
E# N Im(ld _Pl) N Im(ld _Pz) # O And E_p' N Im(Pl) N |m7)2 #* O,

asG maps the first space isomorphically onto the second space, therefore

H e4,u.R — H e4/.LR . H e—4,u.R

pnespecDy) u>0 >0
E,NW#0 E,NIm(ld-P1)#0 E,Nim(ld- 771 NIm(Py)#0

H e—4,uR

u=>0
Eﬂﬁlm(Pl)ﬂlm(Pz)sﬁO

- H e4;/,R i H e—4;/,R

u>0 u>0
E,NIm(ld-=P1)#0 E,NIM(P,)#0

Putting this expression int@!.4) completes the Comparison proof of Theorem 1.1.
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