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Main idea

Definition
cal ·cu ·lus

n. pl. cal ·cul ·li or cal ·cu ·lu ·ces

A method of analysis or calculation using a special
symbolic notation.

• Today we’ll study the b-calculus : A method of
(pseudodifferential) analysis on manifolds with
boundary using special “singular” b-notation.
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Outline of talk: Four main points

I. The b-geometry
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I. The b-geometry

Preview of Part I

• Through a simple change of variables, we take the
APS theorem for

noncompact manifold with cylindrical ends

and turn it into a result for

compact manifolds with boundary.

• We will be thrown into the new and exciting “b-world.”

We start with manifold with cylindrical ends . . .
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I. The b-geometry

�

� Y

M ∼= (−∞, 0]s × Y

M

cylindrical end compact end

• Top/Geo Data: Let E,F be Hermitian vector bundles
over an even-dimensional, compact, oriented,
Riemannian manifold M with cylindrical end.

On the cylindrical end, assume

g = ds2 + h

E ∼= E|s=0 , F ∼= F |s=0

dg = ds dh.
Note: For notational simplicity we drop most “hats” ̂
from last lecture.
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I. The b-geometry

�

� Y

M ∼= (−∞, 0]s × Y

M

cylindrical end compact end
• Functional Ana. Data: Let

D : C∞(M,E) → C∞(M,F )

be a Dirac operator. (D elliptic and σ(D∗D)(ξ) = |ξ|2.)

On the cylindrical end, assume
D = Γ(∂s + DY ),

where
Γ : E|s=0 → F |s=0 , Γ∗Γ = Id,

and DY : C∞(Y,E|s=0) → C∞(Y,E|s=0)

is a self-adjoint Dirac operator on Y .
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I. The b-geometry

Let
Ĉ∞(M,E) = smooth sections that → 0 exp. as s → −∞.

Atiyah-Patodi-Singer index theorem (1975):

D : Ĉ∞(M,E) → Ĉ∞(M,F ) is Fredholm, and

indD =

∫

M
KAS − 1

2

(
η(DY ) + dim ker DY

)
,

where KAS is the Atiyah-Singer polynomial and η(DY )
is the eta invariant of DY :

η(DY ) = “# of pos. e.v. − # of neg. e.v.”

=
1√
π

∫ ∞

0
t−1/2Tr

(
DY e−tD2

Y

)
dt.
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I. The b-geometry

�

� Y

M ∼= (−∞, 0]s × Y

M

cylindrical end compact end

• Common to use Sobolev spaces. Let Hk(M) = usual
space on compact part of M and on cylinder part,

u ∈ Hk(M) ⇐⇒ ∂j
s∂

α
y u ∈ L2(M) for j + |α| ≤ k.
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I. The b-geometry

�

� Y

M ∼= (−∞, 0]s × Y

M

cylindrical end compact end

• Common to use Sobolev spaces. Let Hk(M) = usual
space on compact part of M and on cylinder part,

u ∈ Hk(M) ⇐⇒ ∂j
s∂

α
y u ∈ L2(M) for j + |α| ≤ k.

• The APS theorem for Ĉ∞ is in fact equivalent to
APS index theorem: For ε > 0 suff. small,
D : eεsH1(M,E) → eεsL2(M,F ) is Fredholm, and

indD =

∫

M
KAS − 1

2

(
η(DY ) + dim ker DY

)
.

• We now change variables to get into the “b-world.”
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I. The b-geometry

• Transformations to “b-objects”:

   

compactify

cylindrical end

�

� Y

M ∼= (−∞, 0]s × Y

M

X ∼= [0, 1]x × Y

X
x = es ⇐⇒ s = log x
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I. The b-geometry

• Transformations to “b-objects”:

   

compactify

cylindrical end

�

� Y

M ∼= (−∞, 0]s × Y

M

X ∼= [0, 1]x × Y

X
x = es ⇐⇒ s = log x

g = ds2 + h  g =
(dx

x

)2
+ h (b-metric),

dg = ds dh  dg =
dx

x
dh (b-measure)

D = Γ(∂s + DY )  D = Γ(x∂x + DY ) (b-diff. operator)

L2(M)  L2
b(X) (L2

b space)

Hk(M)  Hk
b (X) (b-Sobolev space).
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I. The b-geometry
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η(DY ) + dim ker DY
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I. The b-geometry

   

compactify

cylindrical end

�

� Y

M ∼= (−∞, 0]s × Y

M

X ∼= [0, 1]x × Y

X
x = es ⇐⇒ s = log x

APS index theorem: For ε > 0 suff. small,

D : eεsH1(M,E) → eεsL2(M,F ) is Fredholm, and

indD =

∫

M
KAS − 1

2

(
η(DY ) + dim ker DY

)
.

Transforms weighted b-Sobolev spaces:

D : xεH1
b (X,E) → xεL2

b(M,F ) is Fredholm, and

indD =

∫

X
KAS − 1

2

(
η(DY ) + dim ker DY

)
.
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I. The b-geometry

Summary of Part I

   

compactify

cylindrical end

�

� Y

M ∼= (−∞, 0]s × Y

M

X ∼= [0, 1]x × Y

X
x = es ⇐⇒ s = log x

• We started with an operator on a manifold with
cylindrical end:

D : C∞(M,E) → C∞(M,F )

with D = Γ(∂s + DY ) over the collar.

• Changing variables, we ended with an operator on a
compact manifold with boundary with “b-objects”:

D : C∞(X,E) → C∞(X,F )

with D = Γ(x∂x + DY ) over the collar.
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I. The b-geometry

Summary of Part I
• The APS theorem on M can be expressed as a
statement about weighted Sobolev spaces on X. We’ll
see why we need weighted spaces later.

Y XX ∼= [0, 1)x × Y

• Henceforth our focus will mostly be on compact
manifold with boundary with “b-objects”; e.g. a Dirac
operator

D : C∞(X,E) → C∞(X,F )

with D = Γ(x∂x + DY ) over the collar.

Question: Why study b-objects? We’ll see in . . .
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II. b-pseudodifferential operators

Preview of Part II

• There is a “global” geometric definition of Ψdos on
compact manifolds without boundary in terms of their
Schwartz kernels.

• b-Ψdos are a very close analog on compact
manifolds with boundary.
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II. b-pseudodifferential operators

• Ψdos on R
n

A : S(Rn) → S(Rn) is a Ψdo of order m ∈ R means:

Au =

∫

Rn

eit·ξa(t, ξ) û(ξ) d̄ξ,

where d̄ξ = 1
(2π)n dξ,

û(ξ) =

∫

Rn

e−it·ξu(t) dt = Four. Trans of u,

and a ∈ Sm:
∣∣∂α

t ∂β
ξ a(t, ξ)

∣∣ ≤ C (1 + |ξ|)m−|β|.

Can you remind us what’s the Schwartz kernel?
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II. b-pseudodifferential operators

• Schwartz kernel.

Since û(ξ) =

∫

Rn

e−it′·ξu(t′) dt′, we have

Au =

∫
eit·ξa(t, ξ) û(ξ) d̄ξ =

∫ ∫
eit·ξ−it′·ξa(t, ξ) u(t′) dt′ d̄ξ

=

∫ ( ∫
ei(t−t′)·ξa(t, ξ) d̄ξ

)
u(t′) dt′

=

∫
KA(t, t′) u(t′) dt′.
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II. b-pseudodifferential operators

• Schwartz kernel.

Since û(ξ) =

∫

Rn

e−it′·ξu(t′) dt′, we have

Au =

∫
eit·ξa(t, ξ) û(ξ) d̄ξ =

∫ ∫
eit·ξ−it′·ξa(t, ξ) u(t′) dt′ d̄ξ

=

∫ ( ∫
ei(t−t′)·ξa(t, ξ) d̄ξ

)
u(t′) dt′

=

∫
KA(t, t′) u(t′) dt′.

• KA(t, t′) :=

∫
eiz·ξa(t, ξ) d̄ξ , z = t − t′.

Called the Schwartz kernel of A.
What is the geometric description of Ψdos?
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II. b-pseudodifferential operators

t

t′ z = 0

z > 0

z < 0

(Picture when n = 1)

z = t − t′ is a normal variable to diag.R
R

R

I
I

I

• Notice that z = t − t′ is a normal variable to the
diagonal, and

KA(t, t′) =

∫
eiz·ξa(t, ξ) d̄ξ

= I.F.T. of a symbol in a direction normal to diag.

KA is a distribution on R
n × R

n, said to be conormal to
the diagonal of order m. KA is a conormal distribution .
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II. b-pseudodifferential operators

Let X be a compact manifold without boundary. Recall
that the Schwartz kernel of an operator

A : C∞(X) → C∞(X),

is a distribution on X × X that satisfies

Au =

∫

X
KA(t, t′) u(t′) dt′.

Theorem: A is an m-th order Ψdo iff KA is a distribution
conormal to the diagonal of order m.

X

X

X2 = X × X

diagonal in X × X

R
R

R

I
I

I
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II. b-pseudodifferential operators

• b-Ψdos
-�

(−∞,∞)

Ex: On (−∞,∞), consider D = ∂s. Let’s find KD.
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II. b-pseudodifferential operators

• b-Ψdos
-�

(−∞,∞)

Ex: On (−∞,∞), consider D = ∂s. Let’s find KD.

Writing u =

∫
eisτ û(τ) d̄τ , then Du =

∫
eisτ iτ û(τ) d̄τ ,

∴ KD =

∫
ei(s−s′)τ iτ d̄τ.
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II. b-pseudodifferential operators

• b-Ψdos
-�

(−∞,∞)

Ex: On (−∞,∞), consider D = ∂s. Let’s find KD.

Writing u =

∫
eisτ û(τ) d̄τ , then Du =

∫
eisτ iτ û(τ) d̄τ ,

∴ KD =

∫
ei(s−s′)τ iτ d̄τ.

Change variables:

-�
(−∞,∞)

   

x = es

s = log x
-[

[0,∞)

Then D = x∂x, and

KD =

∫
eizτ iτ d̄τ

where z = log x − log x′ = log
( x

x′

)
.
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II. b-pseudodifferential operators

• A b-Ψdo of order m ∈ R on X = [0,∞) is an operator

A : S(X) → S(X)

such that

KA =

∫
eizτa(x, τ) d̄τ , z = log

( x

x′

)
,

where a ∈ Sm:
∣∣∂α

x ∂β
τ a(x, τ)

∣∣ ≤ C (1 + |τ |)m−|β|.

(Also require a to be holomorphic in τ . . . a longer story.)

Is there a geometric description of b-Ψdos?
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II. b-pseudodifferential operators

x′

x

{x = x′}
X2

X2 = [0,∞)× [0,∞)

• The Schwartz kernel lives a priori on X × X.

KA =

∫
eizτa(x, τ) d̄τ , z = log

( x

x′

)
.

Note: Want to say KA is conormal to the diagonal but
1) There is no “normal” to the diagonal at the origin!
2) z = log( x

x′ ) is bad at the origin — e.g. log(0
0) =?

What do we do?
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II. b-pseudodifferential operators

x′

x

{x = x′}
X2

X2 = [0,∞)× [0,∞)

• The Schwartz kernel lives a priori on X × X.

KA =

∫
eizτa(x, τ) d̄τ , z = log

( x

x′

)
.

Note: Want to say KA is conormal to the diagonal but
1) There is no “normal” to the diagonal at the origin!
2) z = log( x

x′ ) is bad at the origin — e.g. log(0
0) =?

What do we do? Blow-up origin!
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II. b-pseudodifferential operators

x′

x

{x = x′}

O

“blow up” x = x′ = 0

X2    

z < 0

z > 0

∆b = {z =

X2

b

• Blow-up origin to get X2
b : Introduce polar coordinates

x = r cos θ , x′ = r sin θ

=⇒ z = log
( x

x′

)
= log

(cos θ

sin θ

)
.

Note: z is a normal variable to ∆b.
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II. b-pseudodifferential operators

x′

x

{x = x′}

O

“blow up” x = x′ = 0

X2    
k

U

z < 0

z > 0

∆b = {z =

X2

b R
I R

I

• Therefore,

KA =

∫
eizτa(x, τ) d̄τ , z = log

( x

x′

)

= I.F.T. of a symbol in normal direction to b-diag.

∴ KA is a distribution on X2
b , conormal to the

b-diagonal of order m.
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II. b-pseudodifferential operators

• b-Ψdos on manifolds with boundary.

Y XX ∼= [0, 1)x × Y

What is a b-Ψdo A : C∞(X) → C∞(X)?
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II. b-pseudodifferential operators

• b-Ψdos on manifolds with boundary.

Y XX ∼= [0, 1)x × Y

What is a b-Ψdo A : C∞(X) → C∞(X)?

X

X
O“blow up” ∂X × ∂X

X2

   
k

U

∆b
X2

b

R
I R

I

“Global” Geometric Definition: An operator

A : C∞(X) → C∞(X)

is an element of Ψm
b (X), the space of b-Ψdos of order

m ∈ R if its Schwartz kernel KA is a distribution on X2
b ,

conormal to the b-diagonal of order m.
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II. b-pseudodifferential operators

Summary of Part II
• The def. of b-Ψdos on compact mwb imitates the
global geometric definition of Ψdos on compact
manifolds without boundary.

• b-Ψdo’s enjoy (most of) the usual properties you
know and love; e.g. there is a symbol map and they
behave well under composition, adjoints, etc.

• For D = x∂x on [0,∞) , we have

KD =

∫
eizτ iτ d̄τ , z = log

( x

x′

)
.
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III. b-trace and normal operator

Preview of Part III
Question: When does an elliptic operator A ∈ Ψm

b (X)

define a Fredholm map

A : Hm
b (X) → L2

b(X) ?

Answer: In terms of the normal operator.

Question: Are b-Ψdos of order −∞ of trace class?

Answer: No, but they are “b-trace class”
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III. b-trace and normal operator

Y XX ∼= [0, 1)x × Y

• Given A ∈ Ψm
b (X) and τ ∈ R, the normal operator is a

map
N(A)(τ) : C∞(Y ) → C∞(Y ).

Geometric Definition: Recall that KA is a distribution on
X2

b , conormal to ∆b:

k
Uff

∆b
X2

b

R
I R

I

The Schwartz kernel of N(A)(τ) is obtained by
restricting KA to ff = {r = 0} and taking its Fourier
transform in z = log(x/x′) evaluated at τ .
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III. b-trace and normal operator

-[
[0,∞)

Ex: On [0,∞), consider D = x∂x. Recall that

KD =

∫
eizτ iτ d̄τ , z = log

( x

x′

)
.

k
U

z < 0

z > 0

∆b = {z = 0}

X2

b R
I R

I

Exercise: Show that N(D)(τ) = iτ

∴ D = x∂x =⇒ N(D)(τ) = iτ.
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III. b-trace and normal operator

Y XX ∼= [0, 1)x × Y

Ex: In the APS situation, recall that over the collar, the
Dirac operator D : C∞(X,E) → C∞(X,F ) takes the
form

D = Γ(x∂x + DY ).

Generalizing the previous example, one can show that

N(D)(τ) = Γ(iτ + DY ).

Now, what are normal oprs good for?
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III. b-trace and normal operator

Theorem: For an elliptic b-Ψdo A of order m ∈ R,
A : Hm

b (X) → L2
b(X) is Fredholm

if and only if for all τ ∈ R,
N(A)(τ) : C∞(Y ) → C∞(Y ) is invertible.
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III. b-trace and normal operator

Theorem: For an elliptic b-Ψdo A of order m ∈ R,
A : Hm

b (X) → L2
b(X) is Fredholm

if and only if for all τ ∈ R,
N(A)(τ) : C∞(Y ) → C∞(Y ) is invertible.

Ex: D : H1
b (X,E) → L2

b(X,F ) is Fredholm iff ∀τ ∈ R

N(D)(τ) = Γ(iτ + DY )
is invertible.

N(D)(τ) is always invertible for τ 6= 0.
N(D)(0) = ΓDY , which is invertible iff ker DY = 0.

Conclusion:

D : H1
b (X,E) → L2

b(X,F ) is Fredholm ⇐⇒ ker DY = 0.
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III. b-trace and normal operator

Ex: For ε ∈ R, when is

D : xεH1
b (X,E) → xεL2

b(X,F ) Fredholm?

Equivalently, when is

x−εDxε : H1
b (X,E) → L2

b(X,F ) Fredholm?
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III. b-trace and normal operator

Ex: For ε ∈ R, when is

D : xεH1
b (X,E) → xεL2

b(X,F ) Fredholm?

Equivalently, when is

x−εDxε : H1
b (X,E) → L2

b(X,F ) Fredholm?

Exercise: Show that on the collar,
x−εDxε = Γ(x∂x + DY + ε).

∴ N(x−εDxε)(τ) = Γ(iτ + DY + ε).
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III. b-trace and normal operator

Ex: For ε ∈ R, when is

D : xεH1
b (X,E) → xεL2

b(X,F ) Fredholm?

Equivalently, when is

x−εDxε : H1
b (X,E) → L2

b(X,F ) Fredholm?

Exercise: Show that on the collar,
x−εDxε = Γ(x∂x + DY + ε).

∴ N(x−εDxε)(τ) = Γ(iτ + DY + ε).

∴ Fredholm ⇐⇒ ker(DY + ε) 6= 0

⇐⇒ −ε is not an e.v. of DY .

In part., Fredholm if we take ε 6= 0 small enough.
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III. b-trace and normal operator

• b-Trace. Let X be a compact manifold with boundary.
An operator A ∈ Ψ−∞

b (X) has a Schwartz kernel that is
smooth on X2

b :

ff

lb

rb

∆b
∼= X

C∞
X2

b

Thus, KA|∆b
∈ C∞(X).

The “obvious” trace is therefore

Tr A :=

∫

X
KA|∆b

.

Unfortunately, the RHS is in general not convergent . . .
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III. b-trace and normal operator

Y XX ∼= [0, 1)x × Y

Let (x, y) be coordinates on the collar, and expand
KA|∆b

in Taylor series at x = 0 to first order:
KA|∆b

= a(y) + xα(x, y).
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III. b-trace and normal operator

Y XX ∼= [0, 1)x × Y

Let (x, y) be coordinates on the collar, and expand
KA|∆b

in Taylor series at x = 0 to first order:
KA|∆b

= a(y) + xα(x, y).

Recalling: The measure on X is the b-measure dx
x dh,∫

collar
KA|∆b

=

∫

Y

∫ 1

0

(
a(y) + xα(x, y)

) dx

x
dh

=

∫ 1

0

dx

x

∫

Y
a(y) dh +

∫

Y

∫ 1

0
α(x, y) dx dh

= a big problem!

because
∫ 1
0

dx
x = ∞.
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III. b-trace and normal operator

Y XX ∼= [0, 1)x × Y

Remove “big problem” and define

bTr(A) :=

∫ 1

0

∫

Y
α(x, y) dx dh +

∫

X\collar
KA|∆b

.

Called the b-trace of A.

Warning: The b-trace is not a “trace” (e.g. like a trace
for matrices or for trace-class operators) because
bTr[A,B] 6= 0 in general. But, we do have a formula . . .
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III. b-trace and normal operator

Theorem: We have

bTr[A,B] =
i

2π

∫

R

TrY ( ∂τN(A)(τ) ◦ N(B)(τ) ) dτ,

where TrY is the trace on Y , a compact manifold
without boundary.

Idea: bTr should be a trace on the interior of X. Hence,
bTr[A,B] should only depend only on the boundary Y .

Y X
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III. b-trace and normal operator

Summary of Part III
• b-Ψdos of order −∞ are not trace class in general,
but they are always b-trace class.

• For A ∈ Ψm
b (X), the normal operator is an operator

on the boundary Y depending on a parameter τ :

N(A)(τ) : C∞(Y ) → C∞(Y ).

• The normal operator is important for two reasons:
1) It determines the Fredholmness of elliptic operators.
2) It enters into the formula for bTr[A,B].
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IV. b-proof of APS

Preview of Part IV
• We prove the A-P-S index formula in 3 steps:

Define

h(t) := bTr(e−tD∗D) − bTr(e−tDD∗

).

1) Look at h(∞) := lim
t→∞

h(t)

2) Look at h(0) := lim
t→0

h(t).

3) Use FTC: h(∞) − h(0) =

∫ ∞

0
h′(t) dt.
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IV. b-proof of APS

Y XX ∼= [0, 1)x × Y

Given: A Dirac operator

D : C∞(X,E) → C∞(X,F )

such that over the collar,
D = Γ(x∂x + DY ),

where DY : C∞(Y,E|Y ) → C∞(Y,E|Y ) is a s.a. Dirac
operator, and Γ : E|Y → F |Y is a bundle map satisfying
Γ∗Γ = Id.

We assume ker DY = 0. Then,
D : H1

b (X,E) → L2
b(X,F ) is Fredholm.

Goal: Compute ind D.
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IV. b-proof of APS

Step 0: Heat operators.

Consider the Laplacian L : C∞(X) → C∞(X). Given
f ∈ C∞(X), the heat equation is:

(∂t + L)u(x, t) = 0 , u(x, 0) = f(x).

Notes:

• f represents the initial temp. distribution of X.

• There always exists a unique solution u(x, t), and this
function is the temp. distribution at a future time t.

f(x)

   
time t later

u(x, t)
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IV. b-proof of APS

Step 0: Heat operators.

• For each t ≥ 0, the solution u(x, t) of

(∂t + L)u(x, t) = 0 , u(x, 0) = f(x)

can be written as

u(x, t) = e−tLf

for an operator e−tL : C∞(X) → C∞(X). This operator
is called the heat operator .

• For fixed t > 0, e−tL is a b-Ψdo of order −∞.

• Heat oprs exist in many other cases, not just for
Laplacians.
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IV. b-proof of APS

Step 0: Heat operators.

• In particular, the heat operators e−tD∗D and e−tDD∗

exist and are b-Ψdos of order −∞ for all t > 0.

• If X were compact without boundary, the traces of
the heat operators are defined and

Tr(e−tD∗D) − Tr(e−tDD∗

)

is constant in t and equals ind D — we’ll prove this!
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IV. b-proof of APS

Step 0: Heat operators.

• In particular, the heat operators e−tD∗D and e−tDD∗

exist and are b-Ψdos of order −∞ for all t > 0.

• If X were compact without boundary, the traces of
the heat operators are defined and

Tr(e−tD∗D) − Tr(e−tDD∗

)

is constant in t and equals ind D — we’ll prove this!

• However, in our boundary case, these traces are
NOT defined! So, instead we consider

h(t) := bTr(e−tD∗D) − bTr(e−tDD∗

).
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IV. b-proof of APS

Step 1: Find limt→∞ h(t).

lim
t→∞

h(t) = lim
t→∞

(
bTr(e−tD∗D) − bTr(e−tDD∗

)
)

= bTr(IdkerD∗D) − bTr(IdkerDD∗) (1)

= dim ker(D∗D) − dim ker(DD∗) (2)

= dim ker(D) − dim ker(D∗) (3)

= ind D.

Ideas:
(1) For a ≥ 0, lim

t→∞
e−ta = 0 =

{
0 if a > 0

1 if a = 0.

(2) Tr(k × k identity matrix) = k.

(3) ker(D∗D) = ker D and ker(DD∗) = ker(D).
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IV. b-proof of APS

Step 2: Find limt→0 h(t).

lim
t→0

h(t) = lim
t→0

(
bTr(e−tD∗D) − bTr(e−tDD∗

)
)

=

∫

X
KAS .

Accept this by faith!

The first “easy” proof of this fact is due to Getzler
(1986).
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS

Recalling h(t) = bTr(e−tD∗D) − bTr(e−tDD∗

),

h′(t) = − bTr(D∗De−tD∗D) + bTr(DD∗e−tDD∗

)
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS

Recalling h(t) = bTr(e−tD∗D) − bTr(e−tDD∗

),

h′(t) = − bTr(D∗De−tD∗D) + bTr(DD∗e−tDD∗

)

= − bTr(D∗e−tDD∗

D) + bTr(DD∗e−tDD∗

)
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS

Recalling h(t) = bTr(e−tD∗D) − bTr(e−tDD∗

),

h′(t) = − bTr(D∗De−tD∗D) + bTr(DD∗e−tDD∗

)

= − bTr( D∗e−tDD∗

D) + bTr(D D∗e−tDD∗

)
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS

Recalling h(t) = bTr(e−tD∗D) − bTr(e−tDD∗

),

h′(t) = − bTr(D∗De−tD∗D) + bTr(DD∗e−tDD∗

)

= − bTr( D∗e−tDD∗

D) + bTr(D D∗e−tDD∗

)

= bTr
[
D , D∗e−tDD∗]

.
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IV. b-proof of APS

Step 3: Use FTC:
h(∞) − h(0) =

∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KAS

Recalling h(t) = bTr(e−tD∗D) − bTr(e−tDD∗

),

h′(t) = − bTr(D∗De−tD∗D) + bTr(DD∗e−tDD∗

)

= − bTr( D∗e−tDD∗

D) + bTr(D D∗e−tDD∗

)

= bTr
[
D , D∗e−tDD∗]

.

• If bTr were a true trace, then h′(t) = 0 =⇒
ind D =

∫

X
KAS A-S thm.
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IV. b-proof of APS

However, the b-trace is NOT a trace! Recall

Theorem: We have

bTr[A,B] =
i

2π

∫

R

TrY ( ∂τN(A)(τ) ◦ N(B)(τ) ) dτ,

where TrY is the trace of operators on Y .

Now, h(∞) − h(0) =
∫ ∞
0 h′(t) dt

↑ ↑
ind D

∫
X KASwhere

h′(t) = bTr
[
D , D∗e−tDD∗]

.

Use Theorem to find h′(t)!

Index theory on singular manifolds II – p. 44/47



IV. b-proof of APS

Exercise: Recalling that N(D)(τ) = Γ(iτ + DY ), use the
theorem to prove that

h′(t) = bTr
[
D , D∗e−tDD∗]

= −t−1/2

2
√

π
TrY

(
DY e−tD2

Y

)
.
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IV. b-proof of APS

Exercise: Recalling that N(D)(τ) = Γ(iτ + DY ), use the
theorem to prove that

h′(t) = bTr
[
D , D∗e−tDD∗]

= −t−1/2

2
√

π
TrY

(
DY e−tD2

Y

)
.

Finish Proof:

ind D −
∫

X
KAS = h(∞) − h(0) =

∫ ∞

0
h′(t) dt

= − 1

2
√

π

∫ ∞

0
t−1/2 TrY

(
DY e−tD2

Y

)
dt

= −1

2
η(DY ).

This is exactly the APS formula when dim ker DY = 0!

Index theory on singular manifolds II – p. 45/47



IV. b-proof of APS

Summary of Part IV
• The b-proof of the APS theorem is the “same” as for
the AS theorem in the boundaryless case.

• Only difference: The b-trace is used instead of the
regular trace.

• The appearance of the eta-invariant is just a simple
computation involving the b-trace formula for a
commutator.
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Summary of Talk

Question: What are b-objects?

Answer: The geometric objects obtained from a
manifold with cylindrical end by compactifying it.

Question: What is the b-calculus?

Answer: Ψdos on a compact manifolds with boundary
obtained by imitating the geometric definition of Ψdos
for boundaryless manifolds + tools like the normal
operator and b-trace . . ..

Question: How is the APS theorem proved?

Answer: In the same way as the AS theorem . . . using
the FTC!
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