Index theory on singular manifolds Il
Introduction to R.B. Melrose’s b-calculus

Paul Loya
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Main idea

Definition
al-cu-lus

. pl. cal-cul-li or cal-cu-lu-ces

A method of analysis or calculation using a special
symbolic notation.

» Today we’ll study the b-calculus : A method of

(pseudodifferential) analysis on manifolds with
boundary using special “singular”’ s»-notation.
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Outline of talk: Four main points

The b-geometry
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|. The b-geometry

Preview of Part |

Through a simple change of variables, we take the
APS theorem for

noncompact manifold with cylindrical ends
and turn it into a result for

compact manifolds with boundary.

» We will be thrown into the new and exciting “b-world.”

. We start with manifold with cylindrical ends
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|. The b-geometry
M = (—o00,0]s X

———tY

cyhndrlcal end compact end
Top/Geo Data: Let £, F be Hermitian vector bundles
ver an even-dimensional, compact, oriented,

Riemannian manifold M with cylindrical end.

On the cylindrical end, assume

g=ds*+h
E=FEls—, F= Fls=o
dg = ds dh.

79 AN

Note: For notational simplicity we drop most “hats
- from last lecture.
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|. The b-geometry
M = (—o00,0]s X

—— 1
cylindrical end compact end
Functional Ana. Data: Let

D:C®(M,E)— C®(M,F)
be a Dirac operator. (D elliptic and o(D*D)(¢) = |€].)

On the cylindrical end, assume
D =T(0s + Dy),

[': Fls—g — Fls=0 , I'"'T'=1d,
and Dy : O°(Y, E|s—g) — C>®(Y, E|s—0)
IS a self-adjoint Dirac operator on Y.
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|. The b-geometry

(M, E) = smooth sections that — 0 exp. as s — —oc.

tiyah-Patodi-Singer index theorem (1975):
: C®°(M, E) — C*(M, F) I1s Fredholm, and

1

mdD = / KAS — 5 (U(Dy) + dim ker DY),
M

where K 45 Is the Atiyah-Singer polynomial and n(Dy)
IS the eta Iinvariant of Dy :

n(Dy) ="# of pos. e.v. — # of neg. e.v.”

1 o /2 —tD3
= — t Tr (Dye Y) dt.
VT Jo
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|. The b-geometry
M = (—o0, 0]

s XY
i ) B

C}:/lindrical end compact end

» Common to use Sobolev spaces. Let H*(M) = usual
space on compact part of A/ and on cylinder part,

uwe HY (M) <= 0J0jue L*(M) for j+ |a| <k.
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|. The b-geometry
M = (—o0, 0]

XY
—

c&lindrical end compact end

» Common to use Sobolev spaces. Let H*(M) = usual
space on compact part of A/ and on cylinder part,

uwe HY (M) <= 0J0jue L*(M) for j+ |a| <k.

» The APS theorem for C*° is in fact equivalent to
APS index theorem: For ¢ > 0 suff. small,
D:e*HY (M, E) — e#*L*(M, F) is Fredholm, and

1
indD = / Kjg — 5 (n(Dy) + dim ker Dy).
M

» We now change variables to get into the “b-world.”
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l. The b-geometry

Transformations to “b-objects”:
M = (—o0

< compactlfy
< >Y Qcyhndneal end

r=e" <= s=logx
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l. The b-geometry

Transformations to “b-objects”:
M = (—o0

< compactlfy
< >Y Qcyhndmcal end

r=e’" <= s=logx

d .
g=ds*+h ~ g= (_x) +h (b-metric),
X
dx
dg = dsdh ~ dg= — dh (b-measure)

D=T(0s+ Dy) ~ D = F(xax + Dy) (b-diff. operator)
L*(M) ~ L}(X) (L} space)
H*(M) ~ HF(X) (b-Sobolev space).
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l. The b-geometry

compactlfy
)Y Qcyhndrleal end
r=e° <= s=logx

APS index theorem: For ¢ > 0 suff. small,

D:e*HY (M, E) — eL?(M, F) is Fredholm, and

1
indD = / Kjpg — = (U(Dy) + dim ker Dy).
M 2
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l. The b-geometry

compactlfy
)Y Qcyhndmcal end
r=e° <= s=logx

APS index theorem: For ¢ > 0 suff. small,

D:e*HY (M, E) — eL?(M, F) is Fredholm, and

1

indD = / Kjg — 5 (U(Dy) + dim ker Dy).
M

Transforms ~2 weighted b-Sobolev spaces:
D:x*H!(X,E) — 2°L?(M, F) is Fredholm, and

2
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l. The b-geometry

Summary of Part I

< compactlfy
< >Y Qcyhndmcal end
r=¢e" <= s=logx

» We started with an operator on a manifold with
cylindrical end:

D:C®(M,E) — C®(M,F)
with D = T'(9s + Dy) over the collar.

» Changing variables, we ended with an operator on a
compact manifold with boundary with “b-objects™

D:C®(X,E) — C®(X,F)
- with D = T'(zd, + Dy ) over the collar.
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l. The b-geometry

- Summary of Part |

The APS theorem on A can be expressed as a
tatement about weighted Sobolev spaces on X. We'll
ee why we need weighted spaces later.

X [0,1), xY X

» Henceforth our focus will mostly be on compact
manifold with boundary with “b-objects”; e.g. a Dirac
operator

D:C®(X,E) - C®(X,F)
with D = T'(zd, + Dy ) over the collar.

Question: Why study b-objects? We’'ll see in . ..
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Il. b-pseudodifferential operators

Preview of Part Il

There is a “global” geometric definition of ¢dos on
ompact manifolds without boundary in terms of their
chwartz kernels.

» b-¥dos are a very close analog on compact
manifolds with boundary.
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Il. b-pseudodifferential operators

vdos on R”

: S(R™) — S(R™) Is a ¥do of order m € R means:

Au= [ ot ) ae) .

a(e) = / e~it€y(1) di = Four. Trans of .

and a € S™:
079 a(t, )] < C (1 + g™,

Can you remind us what’s the Schwartz kernel?
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Il. b-pseudodifferential operators

Schwartz kernel.

Ince (&) = / e~y () dt', we have



Il. b-pseudodifferential operators

Schwartz kernel.

Ince (&) = / e~y () dt', we have

M= [ étau)ds = [ [ e Calt g ult) at dg

Called the Schwartz kernel of A.
What is the geometric description of  ¥dos?
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Il. b-pseudodifferential operators

(Picture when n = 1)

4 z=1—1" is a normal variable to diag.

o Notice that z =t — ¢ IS a normal variable to the
diagonal, and

Ka(t,t') = / e Ea(l, ) de

= |.ET. of a symbol in a direction normal to diag.

K 4 1s a distribution on R" x R", said to be conormal to
the diagonal of order m. K4 IS a conormal distribution
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Il. b-pseudodifferential operators

t X be a compact manifold without boundary. Recall
at the Schwartz kernel of an operator

A:C®(X) — C®(X),
s a distribution on X x X that satisfies

Au:/ KAt t"Yu(t)dt'.
X

Theorem: A IS an m-th order vdo iff K4 Is a distribution
conormal to the diagonal of order m.

X, diagonal in X x X

X X?=XxX
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Il. b-pseudodifferential operators

— >

- ONn (—o0,), consider D = 9;. Let’s find Kp.
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Il. b-pseudodifferential operators

=00, Q)

- -

- ONn (—o0,), consider D = 9;. Let’s find Kp.

Writing u = /eiSTﬂ(T) dr, then Du = /eiSTiTﬂ(T) ar,

Kp = /ei(s_s,)TiT dr.

l Index theorv on sinaular manifolds Il = p. 18/¢



Il. b-pseudodifferential operators

=00, Q)

- -

- ONn (—o0,), consider D = 9;. Let’s find Kp.

Writing u = /eiSTﬂ(T) dr, then Du = /BiSTiTa(T) ar,

Kp = / &= 7ir dr.
Change variables:

(—00, 00) r = e’ 0, 00)
> A3 A A
s =logx

Y

[
[

<l
<

Then D = z9,, and
Kp = /ei’”zﬁ' dr
where z = logz — log 2’ = log (aj)

!
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Il. b-pseudodifferential operators

b-Wdo of order m € R on X = [0,00) IS an operator

A S(X) — S(X)
uch that

KA:/eiZTCL(iB,T)dLT, zzlog(m),

CU/

where a € S™:
000%a(x, )| < C (1 +|r))™ 1AL
(Also require a to be holomorphic in 7 ... a longer story.)

Is there a geometric description of  »-¥dos?
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Il. b-pseudodifferential operators

2 X?=10,00) x [0, 0)
X

» The Schwartz kernel lives a priori on X x X.

KA:/eiZTa(x,T)dLT, zzlog(x).

ZU/

Note: Want to say K 4 Is conormal to the diagonal but
1) There is no “normal” to the diagonal at the origin!

2) z = log(%) is bad at the origin — e.qg. log(g) =7

What do we do?
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Il. b-pseudodifferential operators

2 X?=10,00) x [0, 0)
X

» The Schwartz kernel lives a priori on X x X.

KA:/eiZTa(x,T)dLT, zzlog(x).

ZU/

Note: Want to say K 4 Is conormal to the diagonal but
1) There is no “normal” to the diagonal at the origin!

2) z = log(%) is bad at the origin — e.qg. log(g) =7

What do we do? Blow-up origin!
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Il. b-pseudodifferential operators

z <0 Ab:{z:
{z =a'}

T z >0

\

“blow up” z =2' =0
» Blow-up origin to get X?: Introduce polar coordinates

r=rcosf , 2 =rsinf
T cos 6
— z:log(—/)zlog(, )
T sin 0

Note: z 1S a normal variable to A,.
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Il. b-pseudodifferential operators

z <0 Ab:{z:
{z =a'}

T z >0

\

“blow up” z =2' =0
o Therefore,

KA:/GiZTCL(iv,T)dT, z:log(x)

!
= |.ET. of a symbol in normal direction to »-diag.

. K 4 is a distribution on X?, conormal to the
b-diagonal of order m.
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Il. b-pseudodifferential operators

b-wdos on manifolds with boundary.

X 00,1), xY X

Whatis a b-Wdo A : C®°(X) — C®(X)?
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Il. b-pseudodifferential operators

b-wdos on manifolds with boundary.

X 00,1), xY X

Whatis a b-Wdo A : C®°(X) — C®(X)?

2 2
X v X; Ay

AN AN AN

X
Y“blow up” 0X x 0X
‘Global” Geometric Definition:  An operator
A:C?(X) - C®(X)
IS an element of ¥}*(X), the space of b-Wdos of order

m € R if its Schwartz kernel K 4 is a distribution on X?,
conormal to the b-diagonal of order m.
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Il. b-pseudodifferential operators

Summary of Part Il

- The def. of »-dos on compact mwb imitates the
lobal geometric definition of ¥dos on compact
anifolds without boundary.

» b-Wdo’s enjoy (most of) the usual properties you
know and love; e.g. there is a symbol map and they
behave well under composition, adjoints, etc.

o For D =20, on [0,00) , We have
. . €T
KD:/BZZTZTCZLT, zzlog( )

33/
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Ill. b-trace and normal operator

Preview of Part Il
estion: When does an elliptic operator A € ¥;*(X)
efine a Fredholm map

A:HMX) — L¥(X) ?
Answer: In terms of the normal operator.

Question: Are b-vdos of order —~ of trace class?

Answer: No, but they are “b-trace class”
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Ill. b-trace and normal operator

X 00,1), xY X

Given A € ¥7*(X) and 7 € R, the normal operator is a

ap
N(A)(7) : C®(Y) — C2(Y).

Geometric Definition:  Recall that K 4 IS a distribution on
X?, conormal to Ay

X; A,

1

The Schwartz kernel of N(A)(7) Is obtained by
restricting K4 to ff = {r = 0} and taking its Fourier
transform in z = log(z/2’) evaluated at .
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Ill. b-trace and normal operator

0, 00)

[ -

- On [0, ), consider D = z0,. Recall that
12T _ £
sz/e 1T dT Z—log(x/).

2 <0 Ay={z=0}

9
Ap z >0

Exercise: Show that N(D)(r) =ir
D=2z0, = N(D)(r)=1T.
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Ill. b-trace and normal operator

;X§MJMXY"m.l=I')(

« In the APS situation, recall that over the collar, the
irac operator D : C>*°(X, E) — C*(X, F) takes the
orm

D =T'(20, + Dy).
Generalizing the previous example, one can show that

N(D)(r) =T(it + Dy).

Now, what are normal oprs good for?
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Ill. b-trace and normal operator

Theorem: For an elliptic »-do A of order m € R,
A: HMX) — LX) is Fredholm

If and only if for all 7 € R,
N(A)(1): C*(Y) — C*°(Y) Is Invertible.
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Ill. b-trace and normal operator

Theorem: For an elliptic »-do A of order m € R,
A: HMX) — LX) is Fredholm

If and only if for all 7 € R,
N(A)(1): C*(Y) — C*°(Y) Is Invertible.

Ex: D: HY(X,E) — Li(X, F) is Fredholm iff vr € R

. . N(D)(r) =T(ir + Dy)
IS Invertible.

N(D)(r) 1s always invertible for = #£ 0.
N(D)(0) = I"Dy, which is invertible iff ker Dy = 0.

Conclusion:
D: H/(X,E) — L}(X, F) is Fredholm <= ker Dy = 0.
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Ill. b-trace and normal operator

- For e € R, when is
D:x*H}(X,E) — z°L;(X,F) Fredholm?

Equivalently, when is

v °Daf : H (X,E) — L{(X,F) Fredholm?
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Ill. b-trace and normal operator

- For e € R, when is
D:x*H}(X,E) — z°L;(X,F) Fredholm?
Equivalently, when is
v °Daf : H (X,E) — L{(X,F) Fredholm?
Exercise:  Show that on the collar,
v °Dx® =T(x0, + Dy + ¢).
N(z7¢Dx®)(7) =T(it + Dy + ¢).
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Ill. b-trace and normal operator

- Fore e R, when s
D:x*H}(X,E) — z°L;(X,F) Fredholm?
Equivalently, when is
v °Daf : H (X,E) — L{(X,F) Fredholm?
Exercise:  Show that on the collar,
v~ °Dx® =T1(x0, + Dy + ¢).
N(z7¢Dx®)(7) =T(it + Dy + ¢).

Fredholm <« ker(Dy +¢) #0
&= —¢clIsnotane.v. of Dy.

In part., Fredholm if we take ¢ # 0 small enough.
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Ill. b-trace and normal operator

b-Trace. Let X be a compact manifold with boundary.
operator A € ¥,"*°(X) has a Schwartz kernel that Is

mooth on X?: b

X; Ay = X
O
i
Thus, K4|a, € C®(X). rb

The “obvious” trace is therefore

Tr A ::/ Kala, -
X

Unfortunately, the RHS Is in general not convergent . ..
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Ill. b-trace and normal operator

X =00,1), xY X

t (x,y) be coordinates on the collar, and expand
K 4|a, In Taylor series at = = 0 to first order:

Kala, = aly) + za(z,y).
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Ill. b-trace and normal operator

X =00,1), xY X

et (x,y) be coordinates on the collar, and expand
K 4|a, In Taylor series at = = 0 to first order:

Kala, = aly) + za(z,y).

Recalling: The measure on X is the b-measure %dh,

Kala // —I—:I:ozzzzy))d—xdh
collar
dx
/ / dh+// a(x,y) dx dh

= a big problem!

because [, % = .
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Ill. b-trace and normal operator

X 00,1), xY X

emove “big problem” and define

1
“Tr(A) ::/ /oz(:z:,y)dxdh—l—/ Kala,-
0 JY X \collar

Called the b-trace of A.

warning: The b-trace is not a “trace” (e.g. like a trace
for matrices or for trace-class operators) because

"Tr[A, B] # 0 in general. But, we do have a formula . ..
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Ill. b-trace and normal operator

eorem: We have

bTr[A, B] = K3 /RTI’Y (O;N(A)(T)o N(B)(T)) dr,

2T

where Try IS the trace on Y, a compact manifold
without boundary.

idea: 'Tr should be a trace on the interior of X. Hence,
"Tr[A, B] should only depend only on the boundary Y.

=) *
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1)
2)

Ill. b-trace and normal operator

Summary of Part Il

- b-wdos of order —oo are not trace class in general,
ut they are always b-trace class.

For A € ¥}*(X), the normal operator Is an operator

n the boundary Y depending on a parameter r:

N(A)(T): C(Y) — C°(Y).

"he normal operator is important for two reasons:
t determines the Fredholmness of elliptic operators.

t enters into the formula for Tx[A, B].
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V. b-proof of APS

Preview of Part IV
e prove the A-P-S index formula in 3 steps:

efine

h(t) = "Tr(e P P) — Py (e~ PP,

1) Look at h(oco) := lim A(t)

{—00

2) Look at 2 (0) := lim A(t).

t—0

3) Use FTC: h(oo) — h(0) = / Tt
0
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V. b-proof of APS

;X%MJ%XY"m.III')(

ven: A Dirac operator

D:C*®X,E)— C*X,F)
uch that over the collar,
D =T(20, + Dy),

where Dy : C*(Y,E|y) — C*(Y, Ely) Is a s.a. Dirac
operator, and I" : Ely — F|y Is a bundle map satisfying
I = Id.

We assume ker Dy = 0. Then,
D:H!(X,E) — L?(X,F) is Fredholm.
Goal: Compute ind D.
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V. b-proof of APS

ep 0: Heat operators.

onsider the Laplacian L : C*(X) — C*°(X). Given
€ C*°(X), the heat equation IS:

(0 + L)u(x,t) =0, wu(z,0)= f(x).

Notes:
o f represents the initial temp. distribution of X.

» There always exists a unique solution «(z,t), and this
function is the temp. distribution at a future time ¢.

/() u(x,t)
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V. b-proof of APS

ep 0: Heat operators.

For each ¢ > 0, the solution u(z,t) of

(0 + L)u(z,t) =0, u(z,0)= f(z)
an be written as
u(z,t) =e by

for an operator e7t* : C>®(X) — C*(X). This operator
IS called the heat operator .

o For fixed ¢ > 0, et~ is a b-¥do of order —o.

» Heat oprs exist iIn many other cases, not just for
Laplacians.
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V. b-proof of APS

ep 0: Heat operators.

« In particular, the heat operators ¢—*?"P and e~tP7"
exist and are »-vdos of order —o for all t > 0.

o If X were compact without boundary, the traces of
the heat operators are defined and

Tr(e—tD*D) B Tr(e—tDD*)

IS constant in ¢ and equals ind D — we’ll prove this!
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V. b-proof of APS

ep 0: Heat operators.

« In particular, the heat operators ¢—*?"P and e~tP7"
exist and are b-vdos of order —oc for all ¢ > 0.

o If X were compact without boundary, the traces of
the heat operators are defined and

Tr(e—tD*D) B Tr(e—tDD*)

IS constant in ¢ and equals ind D — we’ll prove this!

» However, In our boundary case, these traces are
NOT defined! So, instead we consider

ht) = "Tr(e P P) — Py (e 7P,
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V. b-proof of APS

ep 1. FINd limy . h(t).
lim h(t) = lim (bTr(e_tD*D) — ZTI‘lr(e_tDD*))

t—00 t—00
= "Tr(Idyer pp) — "Tr(Idker pp+) (2)
= dimker(D*D) — dim ker(D D) (2)
= dim ker(D) — dim ker(D") (3)
= ind D.
I(Cﬁali.or a>0, lime ' =0= {O !f a0
t—00 1 ifa=0.

(2) Tr(k x k identity matrix) = k.
(3) ker(D*D) = ker D and ker(DD*) = ker(D).
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V. b-proof of APS

ep 2. FInd lims_.q h(t).
lim A(t) = lim (bTr( —tD"Dy _ ZTI‘]C((fz_tDD*))

t—0 t—0
/ K 45.

Accept this by faith!

The first “easy” proof of this fact is due to Getzler
(1986).
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V. b-proof of APS

ep 3: Use FTC:
h(co) — h(0) = fooo h'(t) dt

1 1
ind D fXKAS
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V. b-proof of APS
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V. b-proof of APS

ep 3: Use FTC:
h(co) — h(0) = fooo h'(t) dt

T T
ind D fXKAS
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V. b-proof of APS

ep 3: Use FTC:
h(co) — h(0) = fOOO h'(t) dt

T T
ind D fXKAS

Recalling h(t) = "Tr(e~tP" D) — by (e~ tPD7),

B (t) = — 'Tr(D*DeP"P) 4 'y (D D*etPP")

— —'Tr(D*e PP D) 4 'Tr(D| D*e PP" )




V. b-proof of APS

ep 3: Use FTC.:
h(co) — h(0) = fOOO h'(t) dt

1 1
ind D fXKAS

Recalling h(t) = "Tr(e~tP" D) — by (e~ tPD7),

W (t) = — "Tr(D*De™ P Py 4 'y (DD*e PP

= —"Tr(D*e PP D) + "Tx (D D*e PP )
=""Tv [D, D*e PP,
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V. b-proof of APS

ep 3: Use FTC.:
h(co) — h(0) = fooo h'(t) dt

1 1
ind D fXKAS

Recalling h(t) = "Tr(e~tP" D) — by (e~ tPD7),

W (t) = — "Tr(D*De™ P Py 4 'y (DD*e PP

— —'Tr(D*e PP D) 4 'Tr(D| D*e PP" )
="Tr [D, D*e PP,

o If “Tr were a true trace, then V' (t) = 0 =
ind D :/ Kag A-Sthm.
X

. Index theorv on sinaular manifolds Il = p. 43/




eorem: \We have

V. b-proof of APS

owever, the b-trace iIs NOT a trace! Recall

“Tr[A, B] =

(

2T

/RTI‘Y (O;N(A)(T)o N(B)(T)) dr,

where

I

where Try IS the trace of operators on Y.

Now, h(oo) — h(0)= [7 1'(¢)dt

I

ind D fXKAS

W (t) = 'Tr D, D*e_tDD*].

Use Theorem to find A/(t)!
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V. b-proof of APS

rcise: Recalling that N(D)(7) = I'(it + Dy ), use the
orem to prove that

p—1/2

2/

W (t) = "Tr D, D*e_tDD*] = — Try (Dye_tD%).
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V. b-proof of APS

rcise: Recalling that N(D)(7) = I'(it + Dy ), use the
orem to prove that

—1/2

2/

W (t) = "Tr D, D*e_tDD*] = — Try (Dye_tD%).

Finish Proaf: 50
ind D — / K ag = h(c0) — h(0) = / oL
X 0
1 = —~1/2 —tDj
- —— ¢ Try (D Y)d
27 Jo ry (Dye™)
1

= _577(DY)-

This is exactly the APS formula when  dim ker Dy = 0!

l Index theorv on sinaular manifolds Il = p. 45/«



V. b-proof of APS

Summary of Part IV

The b-proof of the APS theorem is the “same” as for
he AS theorem in the boundaryless case.

Only difference: The b-trace Is used instead of the
eqgular trace.

» The appearance of the eta-invariant is just a simple

computation involving the b-trace formula for a
commutator.

. Index theorv on sinaular manifolds Il = p. 46/



Summary of Talk

uestion: What are b-objects?

nswer. The geometric objects obtained from a
anifold with cylindrical end by compactifying It.

uestion: What iIs the b-calculus?

Answer:. ¥dos on a compact manifolds with boundary
obtained by imitating the geometric definition of ¥dos
for boundaryless manifolds + tools like the normal
operator and b-trace .. ..

Question: How is the APS theorem proved?

Answer: In the same way as the AS theorem ... using
the FTC!

. Index theorv on sinaular manifolds Il = p. 47/¢
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