Index theory on singular manifolds |

Index theory on manifolds with corners:
“Generalized Gauss-Bonnet formulas”

Paul Loya

. Index theorv on sinaular manifolds | = p. 1/4



Outline of talk: Four main points

The Gauss-Bonnet formula
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The Gauss-Bonnet formula
Il. Index version of Gauss-Bonnet

'll. The Atiyah-(Patodi-)Singer index formula
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|. The Gauss-Bonnet formula

Preview of Part |

The Gauss-Bonnet formula for a mwc (= manifold
with corners) involves topology, geometry, and linear
algebra.

» The interior, smooth boundary components, and the
corners all contribute to the G-B formula.

. Index theorv on sinaular manifolds | — p. 3/¢



|. The Gauss-Bonnet formula

Euler Characteristic.
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|. The Gauss-Bonnet formula

Euler Characteristic.
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|. The Gauss-Bonnet formula

Euler Characteristic.

X(T)=v—e+ f=0.

No matter how many dots you mark and how you
m connect them, you get 0.
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|. The Gauss-Bonnet formula

Curvature= deviation of the metric from being a
uclidean metric.

Let's make the torus flat:

T =Sy xS, K =0
‘ g = db* 4 dp?
\/
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|. The Gauss-Bonnet formula

Curvature= deviation of the metric from being a
uclidean metric.

Let's make the torus flat:
T =Sy xS, S K =0
‘ g = db? + dy?
\/

1 1
— K:—/O:O.
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|. The Gauss-Bonnet formula

Curvature= deviation of the metric from being a
uclidean metric.

Let's make the torus flat:
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|. The Gauss-Bonnet formula

Gauss-Bonnet theorem

B
=2

(G-B I) Given an oriented, compact, 2-dim.,
Riemannian manifold M without boundary, we have

topological geometrical

. What happens when M has corners?
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|. The Gauss-Bonnet formula

hop up the torus:
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|. The Gauss-Bonnet formula

hop up the torus:

s
2
~J
X(M) = 1.
1
140 — X(M)#—/ K.
27’(’ M
However,

1 1l /vm @™ @w™ «
My=— | K —(— T.r —).
x(M) 27T/M T\ T T3
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|. The Gauss-Bonnet formula

[/

G-B 1l) Given an oriented, compact, 2-dim.,
Riemannian manifold M with corners, we have

=5 / K + o total geodesic curvature of 0.X)
-

1 .
+2—(sum of exterior angles)
-

The G-B formula bridges three areas of math:
topology, diff. geometry, and linear algebra.
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|. The Gauss-Bonnet formula

Summary of Part |

Gauss-Bonnet for smooth case:  Gilven an oriented,
ompact, 2-dim., Riemannian manifold M without
oundary,

topological geometrical

When corners are present, we have
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|. The Gauss-Bonnet formula

Summary of Part |

.~ Gauss-Bonnet for singular case:  Given an oriented,
ompact, 2-dimensional, Riemannian manifold A with
orners,

1 1
=  — —(curv of oM
V(M) = /MK + o-(ourv of o)
1 1 1
topological geometrical boundary correction

+5=(sum of exterior angles)

1
linear algebra, correction from corners

Upshot: Smooth boundary components and corners
give new contributions to the G-B formula.
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1l. Index version of Gauss-Bonnet

Preview of Part Il

We shall see how to interpret the Gauss-Bonnet
ormula as an index formula.
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1l. Index version of Gauss-Bonnet

Top/Geo Data: Let M be a compact, oriented,
dimensional Riemannian manifold without boundary.
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1l. Index version of Gauss-Bonnet

Top/Geo Data: Let M be a compact, oriented,
dimensional Riemannian manifold without boundary.

U(

» Function spaces: C®(M, A¥).
Let (z,y) be local coordinates on M.

C®(M) = C*(M,A") = 0-forms
C™(M,A") = 1-forms  fdz + gdy

O™ (M, A*) = 2-forms  fdz A dy
- (There are no 3-forms on .)
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1. Index version of Gauss-Bonnet
Operators.
he exterior derivative

d: C™°(M,AF) — C®(M, A",

O-forms: df =0,fdx+0,fdy “gradient”
1-forms: d(fdz + gdy) = (0zg — 0y f)dx ANdy “curl”
2-forms. d =0.
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1l. Index version of Gauss-Bonnet
Operators.

he exterior derivative

d: C™°(M,AF) — C®(M, A",

O-forms: df =0,fdx+0,fdy “gradient”
1-forms: d(fdz + gdy) = (0zg — 0y f)dx ANdy “curl”
2-forms: d=0.
d has an adjoint:
d* - C°(M, A — (M, AP).
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1l. Index version of Gauss-Bonnet

Operators.

he Gauss-Bonnet operator IS
Dap =d+d* : C°(M,A*") — C™°(M, A°%).

Facts:

1) Dg g Is elliptic.
2) 0(DEgDap)(€) = |€)? (= the Riemannian metric).
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1l. Index version of Gauss-Bonnet

Operators.

The Gauss-Bonnet operator IS
Dgp =d+d* : C°(M,A%) — C°°(M, A°).

Facts:

1) Dg g Is elliptic.
2) 0(DEgDap)(€) = |€)? (= the Riemannian metric).

Note:
D:pDap = (d* + d)(d + d*) = (d + d*)* =: A = Laplacian.

Therefore D¢ IS a “square root” of the Laplacian.
D¢ g Is called a “Dirac operator”.
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1l. Index version of Gauss-Bonnet

Two theorems:

heorem 1. Dgp : C®°(M,A%) — C®(M, A°¥) is
Fredholm .

1) dimker Dpg < oc.
2) dim (C°°(M, A°)/Im Dgg) < oo.

ind Dgp := dimker Do — dim coker Dgop € Z.
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1l. Index version of Gauss-Bonnet

Two theorems:

heorem 1. Dgp : C®°(M,A%) — C®(M, A°¥) is
Fredholm .

1) dimker Dpg < oc.
2) dim (C°°(M, A°)/Im Dgg) < oo.

ind Dgp := dimker Dgp — dim coker Do € Z.

Theorem 2: ind Dgp = x(M)

1
- — | K.
2T M
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1l. Index version of Gauss-Bonnet

nclusion:

1
iﬂdDGB:%/ K
M

he index version of Gauss-Bonnet.
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1l. Index version of Gauss-Bonnet

Summary of Part Il

Gauss-Bonnet: index version If M IS an oriented,
ompact, 2-dim., Riem. manifold without boundary,
hen .

Dap : C°(M,A%) — C*°(M, A\°*?)

s Fredholm, and

analytical geometrical

The index formula interpretation of Gauss-Bonnet.

How does the A(P)S index formula generalize the
- “Index” Gauss-Bonnet formula?
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Ill. The A(P)S theorem

Preview of Part Il

» The Atiyah-Singer index formula is a higher

dimensional version of the index Gauss-Bonnet
formula.

» The Atiyah-Patodi-Singer index formula extends the
Atiyah-Singer formula to manifolds with boundary.

» As expected from Part | on the Gauss-Bonnet
formula, the A-S and A-P-S formulas differ by a
boundary term.
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Ill. The A(P)S theorem

. Top/Geo Data: Let E, I’ be Hermitian vector bundles
ver an even-dimensional, compact, oriented,
lemannian manifold A/ without boundary.

Functional Ana. Data: Let

D:C*(M,E)— C*(M,F)

be a Dirac-type operator:

1) D is elliptic.
2) o(D*D)(€) = |€]? (= the Riemannian metric).

Thus, D*D = A (at the principal symbol level).
Roughly speaking, D is a “square root” of the
Laplacian.
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Ill. The A(P)S theorem

Why “Dirac” operator?

Paul Dirac (1902-1984), recipient of 1933 Nobel prize.

In developing quantum theory in the 1920’s he
factorized the Laplacian as a square of a first order
operator.

Abuse of terminology:  We'll say “Dirac operator” instead
of “Dirac-type” operator.
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Ill. The A(P)S theorem

Examples of D : C®°(M,E) — C>*(M, F)
x1:Let E=A®, F =A% and Dgg =d + d*.
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Ill. The A(P)S theorem

Examples of D : C®°(M,E) — C>*(M, F)
x1:Let E=A®, F =A% and Dgg =d + d*.

Ex2: M =R2 E=F =C, and

Dcor = Oy + 10, : C°(R?* C) — C=(R?, C).
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Ill. The A(P)S theorem

Examples of D : C®°(M,E) — C>*(M, F)
x1:Let E=A®, F =A% and Do = d+ d*.

Ex2: M =R%, E=F =C, and
Dor = 0y + 10, : C°(R?* C) — C™(R?, C).
Observe:

D¢ rDeop = (—0y +1i0y) (0, + 10y) = =07 — O

General Dirac operators share many of the same
. properties of D¢ .
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Ill. The A(P)S theorem

ASHBACK:
auss-Bonnet: index version If M IS an oriented,
ompact, 2-dim., Riem. manifold without boundary,
hen

Dep : C®(M,A") — C%(M, A%

IS Fredholm, and

analytical geometrical

The Index formula interpretation of Gauss-Bonnet.

. Index theorv on sinaular manifolds | = p. 22/¢



Ill. The A(P)S theorem

ichael Atiyah (1929-) and Isadore Singer (1924-)

Atiyah-Singer index theorem (1963):
D:C*®(M,E)— C*®(M,F) is Fredholm, and

ind D = / K g
M
1 1
analytical geometrical

AN

where K 5 = A(M)Ch((E @ F)/Sp), an explicitly
defined polynomial in the curvatures of M, E/, and F.
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Ill. The A(P)S theorem

vestion: How does the AS formula
ind D = / Kyg
M
change when M has a smooth boundary?
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Ill. The A(P)S theorem

uestion: How does the AS formula
ind D = / K g
M
change when M has a smooth boundary?

» Top/Geo Data: Let E, I' be Hermitian vector bundles
over an even-dimensional, compact, oriented,
Riemannian manifold M with smooth boundary.

M =10,1),xY
M

o Functional Ana. Data: Let
D:C*M,E)— C*(M,F)

be a Dirac operator.
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Ill. The A(P)S theorem

~10,1), x Y
M

Assumptions on D : C*(M, E) — C®(M, F):

M

ver the collar [0,1); x Y, assume

g=ds*+h
E2Els—o, F=F|—

D = F(@s + Dy),
where
[':Ely—g— Fls—o , I*I'=1d,

and Dy COO(Y,E‘SZ()) — COO(Y,E|S:0)
IS a self-adjoint Dirac operator on Y.
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Ill. The A(P)S theorem

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?
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Ill. The A(P)S theorem

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dimker D = .

l Index theorv on sinaular manifolds | — p. 26/¢



Ill. The A(P)S theorem

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dimker D = .

£x: Consider M = [0, 1], x S, and Dgg = 95 + 0y,

L)

ker Dor = hol. functions on [0, 1] x R, of period 27 in y.

(Note: e¥? = e**ek¥ ¢ ker Do for all k € Z.
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Ill. The A(P)S theorem

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dimker D = .

£x: Consider M = [0, 1], x S, and Dgg = 95 + 0y,

L)

ker Dor = hol. functions on [0, 1] x R, of period 27 in y.

(Note: e¥? = e**ek¥ ¢ ker Do for all k € Z.

At least two ways to fix this problem.
1) Put boundary conditions.

- 2) Attach an infinite cylinder. « «~ «
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Ill. The A(P)S theorem

con'tt: M =1[0,1], x S, and D¢g = 0s + i0,.
O O =‘]/\4\: (_007 OO)S

Let C>°(M,C) = smooth functions on (—oo, 00) x S!

Consider that — 0 exp. as |s| — oco.

Deg = 05+ 10, : C®°(M,C) — C®(M,C).
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Ill. The A(P)S theorem

con'tt: M =10,1]s X Si, and Dor = 0s + 0.
O O ]/\4\: <_O<)7 OO)S

>

Let C>(M,C) = smooth functions on (—oo, 0o) x S'

Consider that — 0 exp. as |s| — oco.

Deg = 05+ 10, : C®°(M,C) — C®(M,C).
. ker Do =holomorphic functions on C that — 0 exp.
as |s| — oo and are 2z-periodic in y.

—00 «— Vanishes Vanishes

21 periodic
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Ill. The A(P)S theorem

con'tt: M =10,1]s X Si, and Dor = 0s + 0.
O O =‘]/\4\: <_O<>7 OO)S

Let C>(M,C) = smooth functions on (—oo, 0o) x S'

Consider that — 0 exp. as |s| — oco.

Deg = 05+ 10, : C®°(M,C) — C®(M,C).
. ker Do =holomorphic functions on C that — 0 exp.
as |s| — oo and are 2z-periodic in y.

—00 «— Vanishes Vanishes

. ker ECR — {O} 27 periodic
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Ill. The A(P)S theorem

cal: E, F are Hermitian vector bundles over an
en-dimensional, compact, oriented, Riemannian
anifold M with smooth boundary and

D:C®(M,E) — C®(M,F)
s a Dirac operator. Over the collar [0,1); x Y,

g=ds*+h

E = Els=o, = Fls=o
D =T'(0s + Dy).
Attach infinite cylinder:

N

M=10,1)sxY Attach oolind M = (—00,1)s x Y
aCll CYIINAEr - —

(—OO, O]S xY ° ) T

M il
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Ill. The A(P)S theorem

N

. M= (—00,1)sxY

Attach cylinder < Y —
(—OO, O]S XY = \/

M il

g = ds® + h extends to a metric on M
E extendstoav.b. Eon M
F extendstoavb. FonM

D extends to an operator Don M
Let

C>®(M, E) = smooth sections that — 0 exp. as s — —oc.

AN

Question: Is D : C®(M,E) — C®(M, F) Fredholm?
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Ill. The A(P)S theorem

lyah (1929-), Patodi (1945-1976), and Singer
924-)

m

Il 2
' ;
¥
i N
b ,
"
LAB Y M
g oo
S L Al

Answer: Atiyah-Patod'i-Singer iIndex theore 975):
D:C*®M,E)— C*(M,F)Is Fredholm, and

~ 1
ind D = / Kjg — 5 (n(Dy) + dim ker Dy).
M

where K 45 IS the Atlyah-Singer polynomial and r(Dy)
IS the eta invariant of Dy .

n(Dy) + dim ker DY/\@\IM Kas

44 79 .
boundary term interior term”
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Ill. The A(P)S theorem

~ 1
ind D = / Kjg — 5 (n(Dy) + dim ker Dy).
: M

1) Without a boundary, we have ind D = [,, K4s. Thus,
adding a boundary adds a boundary term.
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Ill. The A(P)S theorem

~ 1
ind D = / Kjg — 5 (n(Dy) + dim ker Dy).
M

1) Without a boundary, we have ind D = [,, K4s. Thus,
adding a boundary adds a boundary term.

otes:

2) n(Dy) Is a “spectral invariant”: Recall that if {\,} are
the eigenvalues of Dy,

n(Dy) “=" ) sign(\;)

A0

=) 1-> 1

)\j>0 )\j<0
= # of pos. e.v. — # of neg. e.v.
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Ill. The A(P)S theorem

otes:

Another expression for n(Dy) IS

1 > 2
n(Dy) = ﬁfo t=1/2 Ty (Dye_tDY) dt.
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Ill. The A(P)S theorem

otes:

Another expression for n(Dy) IS

1 > 2
n(Dy) = ﬁ/() t=1/2 Ty (Dye_tDY) dt.

“Proof:” We have

1 / —1/2 —tD? 1 / —1/2y —tA]
— t Tr (Dye Y) dt = g ¢ Aqe i dt
L —~ /T Jo /
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Ill. The A(P)S theorem

Summary of Part Il

- Dirac operators on compact manifolds without

oundary are always Fredholm. The Atiyah-Singer
heorem computes the index in terms of geo./top. data.

» On compact manifolds with boundary, Dirac
operators are never Fredholm. However, the operator

D on the noncompact manifold 1/ is always Fredholm.

analytical geometrical spectral
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V. Index formulas on mwcs

Preview of Part IV
Question: How does the APS formula

~ 1
ind D = / Ko — 5 (U(Dy) + dim ker Dy).
M
change when M has corners?

o Answer: We pick up additional terms from the
corners.

» Like the Gauss-Bonnet formula, these extra terms
are “exterior angles”.
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V. Index formulas on mwcs

Top/Geo Data: Let £, F be Hermitian vector bundles
er an even-dimensional, compact, oriented,
lemannian manifold A/ with a corner of codim. 2.

_

codim 1 codim 2 codim 3

=)

» Functional Ana. Data: Let
D:C®(M,E)— C®(M,F)
be a Dirac operator.
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V. Index formulas on mwcs

Assume D : C*°(M, E) — C>*(M, F) is of product-type
ar oM.
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V. Index formulas on mwcs

Assume D : C*°(M, E) — C>*(M, F) is of product-type
ar oM.

M = [07_1)31 X H1
H, M
Y HQ M = [07 1)82 X H2
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V. Index formulas on mwcs

Assume D : C*°(M, E) — C>*(M, F) is of product-type
ar oM.

M =10,1),, x H
Dy| H, M
Y H2 M = [07 1)82 X H2
DY D2
E.g. over the collar [0,1),, x Hy, assume
g =dsi+ h

Eg E|81=07 F%J F|81=0

D = Fl(ﬁsl -+ Dl),
where D, Is a (formally) s.a. Dirac operator on H; and
I'1: Els,=0 — F|s,=0 Satisfies I'{T'; = Id.
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V. Index formulas on mwcs

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?
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V. Index formulas on mwcs

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dim ker D = .
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V. Index formulas on mwcs

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dim ker D = .

Ex: Consider M = [0,1]s x [0, 1], and Dgogr = 0s + i0,,.

M

ker Dor = hol. functions on the rectangle.

—> dimker Do = 0.
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V. Index formulas on mwcs

vestion: IS D : C*(M, E) — C*°(M, F') Fredholm, and if
~what IS ind D =?

Theorem: D : C®°(M,E) — C*(M, F)is NEVER
Fredholm. In fact, dim ker D = .

Ex: Consider M = [0,1]s x [0, 1], and Dgogr = 0s + i0,,.

M

ker Dor = hol. functions on the rectangle.
—> dimker Do = 0.

What do we do? Copy mwb case: Attach infinite cylinders.
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V. Index formulas on mwcs

con't: M =10,1]s x [0,1], and Dgogr = 0s + i0,,.

M
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V. Index formulas on mwcs

con't: M =1[0,1]s x [0,1]y and D¢ggr = 05 + 10,

let o

C>®(M,C) = smooth functions on M that — 0

Consider exp. as |s| — oo and |y| — oo.

Deg = 05+ 10, : C®°(M,C) — C®(M,C).
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V. Index formulas on mwcs

con't: M =1[0,1]s x [0,1]y and D¢ggr = 05 + 10,

let o

C>®(M,C) = smooth functions on M that — 0

Consider exp. as |s| — oo and [y| — oo.

Deg = 05+ 10, : C®°(M,C) — C®(M,C).
— ker Dog = holomorphic functions on C that — 0
exp. as |s| — oo and |y| — oo
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V. Index formulas on mwcs

ecall: E, I are Hermitian vector bundles over an
en-dimensional, compact, oriented, Riemannian
manifold A with a corner of codim. 2 and

D:C®(M,E) — C®(M,F)
IS a Dirac operator of product-type near oM
M = 0,1)s, x H

Dy|H, M
Y H, M =10,1)s, x H,
Dy D,
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V. Index formulas on mwcs

ecall: E, I are Hermitian vector bundles over an
en-dimensional, compact, oriented, Riemannian
manifold A with a corner of codim. 2 and

D:C®(M,E) — C®(M,F)
IS a Dirac operator of product-type near oM

Dy | H,

(—o00,0) x H; :
............................................................ Y Hy —
Dy Dy M
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V. Index formulas on mwcs

ecall: E, I are Hermitian vector bundles over an
en-dimensional, compact, oriented, Riemannian
manifold A with a corner of codim. 2 and

| | D:C*(M,E)— C*(M,F)
IS a Dirac operator of product-type near oM

Dy | Hy

(—O0,0) X H1 |
............................................................ Y Hy —
Dy Dy M

(—00,0) X (—00,0) XY
| (—00,0) x Ho

The Riemannian metric, F, F, and D extend to M
denote the extended objects by “hats”.

. Index theorv on sinaular manifolds | — p. 39/¢



V. Index formulas on mwcs

(—00,0) X (—00,0) XY
As before, let (—00,0) x H,

C>®(M, E) = smooth sectlons that — 0 exp. at co.

AN AN AN AN

Question: Is D : C®(M,E) — C®(M, F) Fredholm?
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V. Index formulas on mwcs

............................................................ Hy —~
D, M
As before, Iet (—00.0) x H,

C>®(M, E) = smooth sectlons that — 0 exp. at co.

AN

Question: Is D : C®(M,E) — C®(M, F) Fredholm?
Theorem: D : C°°(M, E) — C>°(M, F) is Fredholm if and
only if ker Dy = 0.

AN

Corner Principle: A : C®°(M, E) — C>(M, F) is Fredholm
. If and only if ker Ay = 0.

Index theorv on sinaular manifolds | — p. 40/¢



V. Index formulas on mwcs

Spectral .

Dr

Y Ho

DY \ D2 \
No Contribution Spectral

Theorem (Miiller, 1996): If ker Dy = 0, then

indD —— [y Kas—3 27?:1 (n(Di)—l— dim ker Di)
analytical geometrical spectral

What happens if ker Dy # 07
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V. Index formulas on mwcs

eorem (Melrose-Nistor):  ker Dy IS a symplectic vector
ace and given any Lagrangian subspace A C ker Dy,
ere IS an operator R such that

AN

D+R:C®M,E)— C®(M,F)
IS Fredholm.
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V. Index formulas on mwcs

eorem (Melrose-Nistor):  ker Dy IS a symplectic vector
ace and given any Lagrangian subspace A C ker Dy,
there is an operator R such that

AN

D+R:C®M,E)— C®(M,F)
IS Fredholm.

idea: Write ker Dy = A @ A+ and defipe

+1 onA
: ker D ker D b =
r . kKer Dy — Ker Dy Y T 1 on AL

Choose R such that its restriction Ry to Y Is r. Then
ker(Dy + Ry) =0, SO0 D + R Is Fredholm.

Question: What IS ind (ZA? +R) =
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V. Index formulas on mwcs

ASHBACK: For an oriented, compact, 2-dimensional,
lemannian manifold A7 with corners,

1 1
(M) = 5 /M K + %(curv of OM)
1 1 1
topological geometrical boundary correction

+5=(sum of exterior angles)

1
linear algebra, correction from corners
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V. Index formulas on mwcs

Spectra,l\
D, Kas
M
Y Hy
Dy\ D,
Theorem (L-Melrose): Linear Algebraje  SPectral
S = |
ind(D+R) = Kas — 5 Z (n(Di) + dim ker Di>
M :
1=1

1. 1
=5 dim(A N Age) + o —ext. Z(A, Ase),

Remarks o Recall A C ker Dy-.
» Ay C ker Dy IS the “scattering Lagrangian.”
o First explain ext. 2, then Aq..
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V. Index formulas on mwcs

Let V be a Hermitian symplectic vector space (E.g.
= ker Dy.)

If A, and A, are two Lagrangian subspaces of V,
hen one can show that

VeC?*eCie---aC? sit.

A1 =span (1,1) In k-th copy of C x C

As = span (¢!"%) 1) in k-th copy of C x C.
Then ext. Z(A1,A2) =01 +6s+603+--- .

Ag
0;. ;
7T -
- A
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V. Index formulas on mwcs

o What's A,.?

Consider D, and let « be bounded on &, such that
Dou = 0. A-P-S showed that
lim  u(s2,y) €XISts

Sog—>—00
and this limit lies in ker Dy-.
Asc2 := {limiting values} C ker Dy

Similarly, can define A ;.

. Index theorv on sinaular manifolds | — p. 46/¢



V. Index formulas on mwcs

Summary of Part V

- On compact mwcs of codim. 2, Dirac operators are

ever Fredholm. Unfortunately, there is no theory of
VP’s for Dirac operators on mwcs.

» S0, we try to get a Fredholm problem by considering
the operator D on the noncompact manifold .

» The operator D is Fredholm if and only if ker(Dy ) = 0.

» (Mdller) In this case, we have the index formula:

1 2

ind D = / Kag — 5 Z (n(D;) + dimker D;)
M i=1
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V. Index formulas on mwcs

Summary of Part V
If ker Dy # 0, then to any A C ker Dy there is an
perator R such that D + R is Fredholm.

We have
ind(D + R) ——[,, Kas —2 3.7, (77(Di)+ dim ker D")
T T T

analytical geometrical spectral
— 2 dim(A N Age) + 5=ext. Z(A, Age)

T

symplectic geometry
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Summary of Talk

- The Gauss-Bonnet formula for a mwc has
ontributions from the interior of the manifold and the
aces of its boundary.

» The Atiyah-Singer theorem (and its extensions to
mwb and mwc) are “higher” Gauss-Bonnet formulas.

e Advertisement: Main ingredient to do index theory: A
space of wdos tailored to the geometric situation at
hand.

Next lecture we’ll discuss the b-calculus, the “right”
space of wdos for manifolds with cylindrical ends.
Then we’ll use It to prove the A-P-S index theorem.
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