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Where we ended last time
Let M be an oriented, compact, even-dim. Riemannian
manifold without boundary.
• Let E andF be Hermitian vector bundles onM and let

L : C∞(M,E)→ C∞(M,F )

be a “Gauss-Bonnet type operator” (technically called a
Dirac operator).
• (Atiyah-Singer Index Theorem, 1963) L is Fredholm
and the following index formula holds:

ind L
∫

M
KAS,

analytical geometrical

whereKAS is anexplicitly defined polynomial in the
curvatures ofM,E, andF .
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Questions

• Last lecture we talked about a “poor man’s”
Gauss-Bonnet operator, but a. . .

“poor man’s ” is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?
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Outline of talk

I. Review of differential operators
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Outline of talk

I. Review of differential operators

II. Review of the principal symbol and ellipticity

III. Dirac operators

IV. The true Gauss-Bonnet operator

V. The termKAS
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I. Review of differential operators

Preview of Part I

• A (linear) differential operator is a linear map given
by taking linear combinations of partial derivatives and
multiplying by smooth functions.

• The poor man’s Gauss Bonnet operator is a first order
differential operator.

The Atiyah-Singer Index Theorem II – p. 5/48



I. Review of differential operators
Ex 1. L : C∞(R2)→ C∞(R2) is theLaplacian or
Laplace operator:

L = ∆ = −∂2

x − ∂2

y ;

∆f = −∂2

xf − ∂2

yf.

∆ is an example of asecond order operator.
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I. Review of differential operators
Ex 1. L : C∞(R2)→ C∞(R2) is theLaplacian or
Laplace operator:

L = ∆ = −∂2

x − ∂2

y ;

∆f = −∂2

xf − ∂2

yf.

∆ is an example of asecond order operator.

Ex 2. L : C∞(R2)→ C∞(R2)

L = −∂2

x − ∂2

y + 5∂x − x2∂y + 10e−x−y.

Another second order operator.
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I. Review of differential operators
Ex 3. TheCauchy-Riemann operatoris the operator
L : C∞(R2)→ C∞(R2) defined by

DCR = ∂x + i∂y.

DCR is an example of afirst order operator . This
operator is the fundamental operator of complex
analysis!
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I. Review of differential operators
Ex 3. TheCauchy-Riemann operatoris the operator
L : C∞(R2)→ C∞(R2) defined by

DCR = ∂x + i∂y.

DCR is an example of afirst order operator . This
operator is the fundamental operator of complex
analysis!

Ex 4. Another first order operator is
L : C∞(R2)→ C∞(R2) defined by

L = ∂x + i∂y + 2 sin(x2 + y2).
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I. Review of differential operators
Ex 5. Recall that thepoor man’s Gauss-Bonnet
operator is the operator

LGB : C∞(M,TM)→ C∞(M, R2)

defined by

LGB(v) = (−curl v , div v)

wherev is a vector field onM .
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I. Review of differential operators
Ex 5. Recall that thepoor man’s Gauss-Bonnet
operator is the operator

LGB : C∞(M,TM)→ C∞(M, R2)

defined by

LGB(v) = (−curl v , div v)

wherev is a vector field onM .

Let M = R
2. Given a vector fieldv = f~ı + g~ onR

2,

curl v = (∂xg − ∂yf)~k

div v = ∂xf + ∂yg.
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I. Review of differential operators
Therefore,

LGB(f~ı + g~) = (∂yf − ∂xg, ∂xf + ∂yg).

We can also writeLGB as a matrix:

LGB

(

f

g

)

=

(

∂y −∂x

∂x ∂y

) (

f

g

)

.

Therefore, the poor man’s Gauss-Bonnet operator is a
first order differential operator.

In general, a differential operatorL is of m-th order if
each term ofL involves at mostm differentiations.
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I. Review of differential operators
Summary of Part I

• A differential operator is a linear map given by taking
linear combinations of partial derivatives and multiplying
by smooth functions.

• The Laplacian is a second order differential operator

• The Cauchy-Riemann operator and the poor man’s
Gauss Bonnet operator are first order differential
operators.
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II. Principal symbol and ellipticity

Preview of Part II

• Principal = first or of highest importance, rank, worth.

• The principal symbol of a differential operator is a
(matrix of) polynomials determined by the “most
important” part of the operator.

• A differential operator is elliptic if its principal symbol
is invertible.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 2 con’t: Consider the operator:

L = −∂2

x − ∂2

y + 5∂x − x2∂y + 10e−x−y.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 2 con’t: Consider the operator:

L = −∂2

x − ∂2

y + 5∂x − x2∂y + 10e−x−y.

The principal symbol ofL is

σ(L)(ξ1, ξ2) = −(iξ1)
2 − (iξ2)

2

= ξ2

1 + ξ2

2

= |ξ|2
(

whereξ = (ξ1, ξ2)
)

= squared length ofξ.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 1 con’t: Consider the Laplacian:

∆ = −∂2

x − ∂2

y .
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• Principal symbol.

Ex 1 con’t: Consider the Laplacian:

∆ = −∂2

x − ∂2

y .

The principal symbol of∆ is
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1 + ξ2
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 4 con’t: Consider the operator

L = ∂x + i∂y + 2 sin(x2 + y2).
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 4 con’t: Consider the operator

L = ∂x + i∂y + 2 sin(x2 + y2).

The principal symbol ofL is

σ(L)(ξ1, ξ2) = iξ1 + i(iξ2)

= iξ1 − ξ2.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 4 con’t: Consider the operator

L = ∂x + i∂y + 2 sin(x2 + y2).

The principal symbol ofL is

σ(L)(ξ1, ξ2) = iξ1 + i(iξ2)

= iξ1 − ξ2.

Ex 3 con’t: For the Cauchy-Riemann operator
DCR = ∂x + i∂y, we have

σ(DCR)(ξ1, ξ2) = iξ1 − ξ2.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 5 con’t: Consider the poor man’s Gauss-Bonnet
operator (written as a matrix)

LGB =

(

∂y −∂x

∂x ∂y

)

.
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II. Principal symbol and ellipticity
• Principal symbol.

Ex 5 con’t: Consider the poor man’s Gauss-Bonnet
operator (written as a matrix)

LGB =

(

∂y −∂x

∂x ∂y

)

.

The principal symbol ofL is

σ(LGB)(ξ1, ξ2) =

(

iξ2 −iξ1

iξ1 iξ2

)

.
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II. Principal symbol and ellipticity
• Principal symbol.

Let L be anm-th differential operator and let
x1, x2, . . . , xn be the variables it differentiates with
respect to.

In the terms ofL containingm partial derivatives, replace

∂x1
by iξ1 , ∂x2

by iξ2 , . . . , ∂xn
by iξn.

The resulting function of the real variablesξ1, . . . , ξn is
called theprincipal symbol of L:

σ(L)(ξ1, . . . , ξn) or σ(L)(ξ),

whereξ = (ξ1, . . . , ξn).

The Atiyah-Singer Index Theorem II – p. 16/48



II. Principal symbol and ellipticity
• Ellipticity.

Recall that
σ(∆)(ξ) = |ξ|2.

For ξ 6= 0; that is,ξ = (ξ1, ξ2) 6= (0, 0),

σ(∆)(ξ)−1

is defined.
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II. Principal symbol and ellipticity
• Ellipticity.

Recall that
σ(∆)(ξ) = |ξ|2.

For ξ 6= 0; that is,ξ = (ξ1, ξ2) 6= (0, 0),

σ(∆)(ξ)−1

is defined.

Similarly, for ξ 6= 0

σ(DCR)(ξ) = iξ1 − ξ2

is invertible.
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II. Principal symbol and ellipticity
• Ellipticity.

The poor man’s Gauss-Bonnet operator,

σ(LGB)(ξ) =

(

iξ2 −iξ1

iξ1 iξ2

)

,

also has the same property:

For ξ 6= 0, σ(LGB)(ξ) is an invertible matrix.

(Notice thatdet σ(LGB)(ξ) = −ξ2
2 − ξ2

1 = −|ξ|2.)
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II. Principal symbol and ellipticity
• Ellipticity.

A differential operatorL is elliptic if for ξ 6= 0, the
principal symbolσ(L)(ξ) is invertible.

Thus,∆, DCR, andLGB are elliptic.
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II. Principal symbol and ellipticity
• Ellipticity.

A differential operatorL is elliptic if for ξ 6= 0, the
principal symbolσ(L)(ξ) is invertible.

Thus,∆, DCR, andLGB are elliptic.

Most operators are not elliptic! E.g.

L = ∂2

x − ∂y + 10.

We haveσ(L)(ξ1, ξ2) = −(iξ1)
2 = ξ2

1. Then
ξ = (0, 1) 6= 0, but

σ(L)(ξ) = 0 is not invertible.
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II. Principal symbol and ellipticity
Summary of Part II

• Examples:σ(∆)(ξ) = |ξ|2, σ(DCR)(ξ) = iξ1 − ξ2, and

σ(LGB)(ξ) =

(

iξ2 −iξ1

iξ1 iξ2

)

• Significance: Laplacians involve geometry. What is the
significance of the last two examples?

• The three operators above are elliptic.

• Can also define differential operators, principal
symbols, and ellipticity when manifolds and vector
bundles are involved.
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III. Dirac operators
Preview of Part III

• Recall the Laplacian is a second order operator such
that

σ(∆)(ξ) = |ξ|2.

Thus,∆ captures geometry.

• A Dirac operator is a first order operator whose
principal symbol “squared” is|ξ|2.
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III. Dirac operators
Ex. ForDCR = ∂x + i∂y, we have

σ(DCR)(ξ) = iξ1 − ξ2,

so

σ(DCR)(ξ) σ(DCR)(ξ) = (iξ1 − ξ2)(iξ1 − ξ2)

= (−iξ1 − ξ2)(iξ1 − ξ2)

= ξ2

1 + ξ2

2

= |ξ|2.

Hence we can obtain lengths (geometry) by conjugating
and then multiplying!
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III. Dirac operators
Ex. For the poor man’s Gauss-Bonnet operator, we have

σ(LGB)(ξ) =

(

iξ2 −iξ1

iξ1 iξ2

)

.
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III. Dirac operators
Ex. For the poor man’s Gauss-Bonnet operator, we have

σ(LGB)(ξ) =

(

iξ2 −iξ1

iξ1 iξ2

)

.

Therefore,

σ(LGB)(ξ)∗ σ(LGB)(ξ) =

(

−iξ2 −iξ1

iξ1 −iξ2

) (

iξ2 −iξ1

iξ1 iξ2

)

=

(

ξ2
1 + ξ2

2 0

0 ξ2
1 + ξ2

2

)

= |ξ|2.
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III. Dirac operators
Definition: A first order differential operatorL is called
aDirac(-type) operator if L is elliptic and

σ(L)(ξ)∗σ(L)(ξ) = |ξ|2.

Therefore,DCR andLGB are Dirac operators.
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III. Dirac operators
Definition: A first order differential operatorL is called
aDirac(-type) operator if L is elliptic and

σ(L)(ξ)∗σ(L)(ξ) = |ξ|2.

Therefore,DCR andLGB are Dirac operators.

• Recall
σ(∆)(ξ) = |ξ|2.

Thus, we can think of a Dirac operator as an operator
such that when you square it (really, the principal
symbol), you get the (principal symbol of the) Laplacian.

Hence, a Dirac operator is a type of “square root” of a
Laplacian.
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III. Dirac operators
• Dirac operators can be defined when Riemannian
manifolds and Hermitian vector bundles are involved: as
a first order differential operatorL that is elliptic and

σ(L)(ξ)∗σ(L)(ξ) = |ξ|2.

The Atiyah-Singer Index Theorem II – p. 25/48



III. Dirac operators
• Dirac operators can be defined when Riemannian
manifolds and Hermitian vector bundles are involved: as
a first order differential operatorL that is elliptic and

σ(L)(ξ)∗σ(L)(ξ) = |ξ|2.

• Now we understand the hypothesis of Atiyah-Singer!

“Let E andF be Hermitian vector bundles onM and let

L : C∞(M,E)→ C∞(M,F )

be a “Gauss-Bonnet type operator” (technically called a
Dirac operator).”
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III. Dirac operators
Summary of Part III

• A Dirac operator is a first order differential operator
whose principal symbol “squared” is the symbol of the
Laplacian.

• Like Laplacians, Dirac operators capture the geometry
of the manifold.

• Advantage of Dirac operators: They are first order
instead of second order. (Hence are simpler “in
principle.”)
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IV. The true Gauss-Bonnet operator
Preview of Part IV

• Differential forms are objects you integrate (in line and
area integrals).

• The exterior derivatived is just the gradient and curl
“all-in-one”.

• The Gauss-Bonnet operator isDGB = d + d∗.
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IV. The true Gauss-Bonnet operator
• Differential forms.(Focus onR

2.)

C∞(R2,Λ0) = C∞(R2) = 0-forms

C∞(R2,Λ1) = 1-forms f dx + g dy

C∞(R2,Λ2) = 2-forms f dx ∧ dy

There are no 3-forms onR2.
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IV. The true Gauss-Bonnet operator
• Differential forms.(Focus onR

2.)

C∞(R2,Λ0) = C∞(R2) = 0-forms

C∞(R2,Λ1) = 1-forms f dx + g dy

C∞(R2,Λ2) = 2-forms f dx ∧ dy

There are no 3-forms onR2.

Think of

dx←→~ı , dy ←→ ~ , dx ∧ dy ←→ ~k.

Remark:1-forms are objects usually found in line
integrals and 2-forms are found in area integrals.
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IV. The true Gauss-Bonnet operator
• The wedge.

The “wedge”∧ has the defining “cross product” property

α ∧ β = −β ∧ α

for any 1-formsα andβ.
(

cf. v × w = −w × v .
)
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IV. The true Gauss-Bonnet operator
• The wedge.

The “wedge”∧ has the defining “cross product” property

α ∧ β = −β ∧ α

for any 1-formsα andβ.
(

cf. v × w = −w × v .
)

Ex.
dx ∧ dy = −dy ∧ dx.

(

cf. ~ı× ~ = −~×~ı
)

.
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IV. The true Gauss-Bonnet operator
• The wedge.

The “wedge”∧ has the defining “cross product” property

α ∧ β = −β ∧ α

for any 1-formsα andβ.
(

cf. v × w = −w × v .
)

Ex.
dx ∧ dy = −dy ∧ dx.

(

cf. ~ı× ~ = −~×~ı
)

.

Ex.
α ∧ α = −α ∧ α.

Therefore,α ∧ α = 0. In particular,

dx ∧ dx = 0 and dy ∧ dy = 0.
(

cf. ~ı×~ı = 0
)

.
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IV. The true Gauss-Bonnet operator
Theexterior derivative

d : C∞(R2,Λk)→ C∞(R2,Λk+1)

is the differential operator

d = ∂x dx + ∂y dy

acting componentwise.
(

cf.∇ = ∂x~ı + ∂y ~.
)
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IV. The true Gauss-Bonnet operator
Theexterior derivative

d : C∞(R2,Λk)→ C∞(R2,Λk+1)

is the differential operator

d = ∂x dx + ∂y dy

acting componentwise.
(

cf.∇ = ∂x~ı + ∂y ~.
)

Note:d really consists of three maps

C∞(R2,Λ0)
d
→ C∞(R2,Λ1)

d
→ C∞(R2,Λ2)

d
→ 0.

(d = 0 on 2-forms since there are no 3-forms.)
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IV. The true Gauss-Bonnet operator

0-forms:

d : C∞(R2,Λ0)→ C∞(R2,Λ1).

Forf ∈ C∞(R2,Λ0) = C∞(R2),

df = ∂xf dx + ∂yf dy.

(

cf. ∇f = ∂xf~ı + ∂yf ~.
)

Thus,

d = gradient on 0-forms.
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IV. The true Gauss-Bonnet operator
1-forms:
d(f dx + g dy) = df ∧ dx + dg ∧ dy
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IV. The true Gauss-Bonnet operator
1-forms:
d(f dx + g dy) = df ∧ dx + dg ∧ dy

= (∂xf dx + ∂yf dy) ∧ dx + (∂xg dx + ∂yg dy) ∧ dy

= ∂yf dy ∧ dx + ∂xg dx ∧ dy

= −∂yf dx ∧ dy + ∂xg dx ∧ dy

= (∂xg − ∂yf) dx ∧ dy.
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IV. The true Gauss-Bonnet operator
1-forms:
d(f dx + g dy) = df ∧ dx + dg ∧ dy

= (∂xf dx + ∂yf dy) ∧ dx + (∂xg dx + ∂yg dy) ∧ dy

= ∂yf dy ∧ dx + ∂xg dx ∧ dy

= −∂yf dx ∧ dy + ∂xg dx ∧ dy

= (∂xg − ∂yf) dx ∧ dy.

(

cf. curl(f~ı + g ~) = (∂xg − ∂yf)~k.
)

Thus,

d = curl on 1-forms.
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IV. The true Gauss-Bonnet operator
• Adjoint: If L is anm× n matrix, we have

L : R
n → R

m.

The adjoint (conjugate transpose)L∗ is ann×m matrix,
so

L∗ : R
m → R

n.

Taking the adjoint switches the domain and codomain.
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IV. The true Gauss-Bonnet operator
• Adjoint: If L is anm× n matrix, we have

L : R
n → R

m.

The adjoint (conjugate transpose)L∗ is ann×m matrix,
so

L∗ : R
m → R

n.

Taking the adjoint switches the domain and codomain.

Recall

C∞(R2,Λ0)
d
→ C∞(R2,Λ1)

d
→ C∞(R2,Λ2).

There is an adjoint

C∞(R2,Λ2)
d∗

→ C∞(R2,Λ1)
d∗

→ C∞(R2,Λ0).
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IV. The true Gauss-Bonnet operator
•What isd∗?
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IV. The true Gauss-Bonnet operator
•What isd∗?

2-forms: d∗ : C∞(R2,Λ2)
d∗

→ C∞(R2,Λ1):

d∗(f dx ∧ dy) = ∂yf dx− ∂xf dy.
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IV. The true Gauss-Bonnet operator
•What isd∗?

2-forms: d∗ : C∞(R2,Λ2)
d∗

→ C∞(R2,Λ1):

d∗(f dx ∧ dy) = ∂yf dx− ∂xf dy.

Note:
curl (f ~k) = ∂yf~ı− ∂xf ~.

Therefore,
d∗ = curl on 2-forms.
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IV. The true Gauss-Bonnet operator
•What isd∗?

1-forms: d∗ : C∞(R2,Λ1)
d∗

→ C∞(R2,Λ0):

d∗(f dx + g dy) = −(∂xf + ∂yg).
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IV. The true Gauss-Bonnet operator
•What isd∗?

1-forms: d∗ : C∞(R2,Λ1)
d∗

→ C∞(R2,Λ0):

d∗(f dx + g dy) = −(∂xf + ∂yg).

Note:
div (f~ı + g ~) = ∂xf + ∂yg.

Therefore,
d∗ = −div on 1-forms.
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IV. The true Gauss-Bonnet operator
• The true Gauss-Bonnet operator. Recall

d : C∞(R2,Λk)→ C∞(R2,Λk+1).

d∗ : C∞(R2,Λk+1)→ C∞(R2,Λk).

The Atiyah-Singer Index Theorem II – p. 36/48



IV. The true Gauss-Bonnet operator
• The true Gauss-Bonnet operator. Recall

d : C∞(R2,Λk)→ C∞(R2,Λk+1).

d∗ : C∞(R2,Λk+1)→ C∞(R2,Λk).

• C∞(R2,Λev) = linear combination of0 and2 forms
• C∞(R2,Λodd) = C∞(R2,Λ1) = 1-forms. Then,

DGB = d + d∗ : C∞(R2,Λev)→ C∞(R2,Λodd)

is called theTHE Gauss-Bonnet operator.
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IV. The true Gauss-Bonnet operator
• Exercises:
1) Check thatDGB is a Dirac operator.
2) How is the poor man’s Gauss-Bonnet operator related
to d andd∗?
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IV. The true Gauss-Bonnet operator
• Exercises:
1) Check thatDGB is a Dirac operator.
2) How is the poor man’s Gauss-Bonnet operator related
to d andd∗?

• Given any Riemannian manifoldM , we can define
differential forms,d, andd∗. Let

C∞(M,Λev) = even forms, C∞(M,Λodd) = odd forms.

Then,

DGB = d + d∗ : C∞(M,Λev)→ C∞(M,Λodd)

is calledTHE Gauss-Bonnet operator. DGB is a Dirac
operator.
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IV. The true Gauss-Bonnet operator
Notes:

• The operator
∆ := (d + d∗)2

is called theLaplacian or Laplace operator.

• By definition,d + d∗ is a square root of the Laplacian.

• d + d∗ and∆ are important in “Hodge theory,” a
subject which relates the kernels and cokernels of these
operators to the topology of the manifold. In particular,

ind DGB = χ(M).
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IV. The true Gauss-Bonnet operator
Summary of Part IV

• Differential forms are objects you integrate.

• The exterior derivatived is the gradient and curl
“all-in-one”.

• The adjointd∗ is the curl and divergence “all-in-one”.

• The Gauss-Bonnet operator is the Dirac operator

DGB = d + d∗ : C∞(M,Λev)→ C∞(M,Λodd).
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V. The integrand KAS

Preview of Part V

• (One of the) most beautiful formulas in the world:

ind L =
1

(4πi)m

∫

M

√

det
( K/2

sinh(K/2)

)

STr
(

eKE+KF +
1

4
K

)

.
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V. The integrand KAS
Data:

• Let M be an oriented, compact, even-dim. Riemannian
manifold and letE andF be Hermitian vector bundles
onM .

• Let K = curvature ofM , KE = curvature ofE, KF =
curvature ofF .

• Let L : C∞(M,E)→ C∞(M,F ) be a Dirac operator.
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V. The integrand KAS
Data:

• Let M be an oriented, compact, even-dim. Riemannian
manifold and letE andF be Hermitian vector bundles
onM .

• Let K = curvature ofM , KE = curvature ofE, KF =
curvature ofF .

• Let L : C∞(M,E)→ C∞(M,F ) be a Dirac operator.

Atiyah-Singer: L is Fredholm and

ind L =

∫

M

KAS,

whereKAS is anexplicitly defined polynomial inK,
KE, KF .
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V. The integrand KAS
• Â-genus ofM : √

det
( K/2

sinh(K/2)

)

.

You can actually make sense of this.
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V. The integrand KAS
• Â-genus ofM : √

det
( K/2

sinh(K/2)

)

.

You can actually make sense of this.

• Twisted Chern character

STr
(

eKE+KF +
1

4
K

)

.

where “STr” is called a “super trace”.
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V. The integrand KAS
• Â-genus ofM : √

det
( K/2

sinh(K/2)

)

.

You can actually make sense of this.

• Twisted Chern character

STr
(

eKE+KF +
1

4
K

)

.

where “STr” is called a “super trace”.

• KAS =
1

(4πi)m

√

det
( K/2

sinh(K/2)

)

STr
(

eKE+KF +
1

4
K

)

,

wheredim M = 2m.
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V. The integrand KAS
TheAtiyah-Singer theorem in all its glory: Given

• An oriented, compact, even dimensional (say2m)
Riemannian manifoldM

• Hermitian vector bundlesE andF overM

• Dirac operatorL : C∞(M,E)→ C∞(M,F ).

Then,

ind L =
1

(4πi)m

∫

M

√

det
( K/2

sinh(K/2)

)

STr
(

eKE+KF +
1

4
K

)

.
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V. The integrand KAS
Ex. Consider the Gauss-Bonnet operator:

DGB : C∞(M,Λev)→ C∞(M,Λodd).

Recall that (via “Hodge theory”)ind DGB = χ(M).

One can work out that

KAS =
1

(2π)m

(−K)m

m!
=

1

(2π)m
Pf(−K),

wherePf(−K) is called the Pfaffian ofM .

∴ Gauss-Bonnet-Chern theorem:

χ(M) =
1

(2π)m

∫

M

Pf(−K).
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Summary of Talk
Question: What is the true Gauss-Bonnet operator?

Answer: The operatord + d∗ acting on even forms.d is
the exterior derivative (= gradient and curl “all-in-one”)
andd∗ is the adjoint ofd.

Question: What is a Dirac operator?

Answer: Basically a “square root” of a Laplacian.

Question: What isKAS?

Answer: So beautiful, the AS thm. has to be repeated:

ind L =
1

(4πi)m

∫

M

√

det
( K/2

sinh(K/2)

)

STr
(

eKE+KF +
1

4
K

)

.
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WAIT!

Isn’t this supposed to be a
conference on SINGULAR
analysis?
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A-S on singular manifolds

We know that for asmooth manifoldM without
boundary,

ind L =

∫

M

KAS.

What about SINGULAR manifolds like

What is the A-S theorem for such manifolds?
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A-S on singular manifolds

We know that for asmooth manifoldM without
boundary,

ind L =

∫

M

KAS.

What about SINGULAR manifolds like

What is the A-S theorem for such manifolds?

Answer: Next week!
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An advertisement

We’ll talk about

1) Index theorems on singular manifolds.

2) The proof of the A-S theorem: pseudodifferential
operators and the heat kernel.

3) The proof of the A-S theorem for a singular manifold:
“Exotic” pseudodifferential operators and the heat kernel.
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An advertisement

We’ll talk about

1) Index theorems on singular manifolds.

2) The proof of the A-S theorem: pseudodifferential
operators and the heat kernel.

3) The proof of the A-S theorem for a singular manifold:
“Exotic” pseudodifferential operators and the heat kernel.

ind L =
1

(4πi)m

∫

M

√

det
( K/2

sinh(K/2)

)

STr
(

eKE+KF +
1

4
K

)

.
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