Atlyah-Singer Index Theorem ||

Paul Loya



Let M be an oriented, compact, even-dim. Riemanniar
manifold without boundary.
Let £ and /' be Hermitian vector bundles of and let

L:C*(M,E)— C*(M,F)

be a “Gauss-Bonnet type operator” (technically called

Dirac operator).
(Atiyah-Singer Index Theorem, 1963 L is Fredholm
and the following index formula holds:

analytical geometrical

whereK 45 IS anexplicitly defined polynomial in the
curvatures of\/, F/, andF..

The Ativah-Sinaer Index Theorem |l — p.



Last lecture we talked about a “poor man’s”
Gauss-Bonnet operator, but a

“poor man’s " IS a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?
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Last lecture we talked about a “poor man’s”
Gauss-Bonnet operator, but a

“poor man’s " IS a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

What is a Dirac operator?

What ISK 447
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Review of differential operators

Review of the principal symbol and ellipticity
Dirac operators
The true Gauss-Bonnet operator

The termK 44
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l. Review of differential operators

o A(
by ta
multi

Preview of Part |

Inear) differential operator is a linear map given
KIng linear combinations of partial derivatives and

olying by smooth functions.

» The poor man’s Gauss Bonnet operator is a first orde
differential operator.
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l. Review of differential operators

Ex 1 L: C®(R?*) — C*(R?) is theLaplacian or
Laplace operator:

L=A=_-0

X

2,
_ ay’

Af=-0.f-0.f.

A IS an example of aecond order operatot
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l. Review of differential operators

Ex 1 L: C®(R?*) — C*(R?) is theLaplacian or
Laplace operator:

L=A=_-0

X

2,

_ ay’
Af=-0.f-0.f.

A IS an example of aecond order operator

Ex 2. L:C®(R?*) — O°(R?)
L=-0"— 05 + 50, — 2%0, + 10e "7V,

Another second order operator.
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l. Review of differential operators

=x 3. TheCauchy-Riemann operatoris the operator
L : C*(R?*) — C*~(R?) defined by

Dep = 0y + 10,

Dcg 1s an example of érst order operator. This
operator Is the fundamental operator of complex
analysis!
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l. Review of differential operators

=x 3. TheCauchy-Riemann operatoris the operator
L : C*(R?*) — C*~(R?) defined by

Dop = 0y + 0,

Dcg 1s an example of érst order operator. This
operator Is the fundamental operator of complex
analysis!

—x 4. Another first order operator Is
L : C*(R?*) — C*~(R?) defined by

L = 0, +i0, + 2sin(x” + y*).
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l. Review of differential operators

=x 5. Recall that thgpoor man’s Gauss-Bonnet
operator is the operator

Lap : C®°(M, TM) — C*®(M,R?)
defined by
Lap(v) = (—curlv , divv)

wherev Is a vector field on\/.
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l. Review of differential operators

=x 5. Recall that thgpoor man’s Gauss-Bonnet
operator is the operator

Lap : C®°(M, TM) — C*®(M,R?)
defined by
Lep(v) = (—curlv ; divv)
wherev Is a vector field on\/.
Let M = R?. Given a vector field = 7+ g7onR?,
curlv = (0,9 — (%f)/g
divv = 0, f + 0y9.
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Therefore,

LGB(fZ)_l_ gj) — (ayf — 5):1:97 aa:f - ayg)

We can also writd.;5 as a matrix:

f _ 5)y _5)513 f
LGB(Q - \& 9, ) \g/)
Therefore, the poor man’s Gauss-Bonnet operator Is a
first order differential operator.

In general, a differential operatadris of m-th order |if
each term of., involves at mostn differentiations.

The Ativah-Sinaer Index Theorem |l — p.



l. Review of differential operators

Summary of Part |

A differential operator Is a linear map given by taking
linear combinations of partial derivatives and multipkyin
by smooth functions.

The Laplacian is a second order differential operator

The Cauchy-Riemann operator and the poor man’s
Gauss Bonnet operator are first order differential
operators.

The Ativah-Sinaer Index Theorem Il -=bp. 1



ll. Principal symbol and ellipticity

Preview of Part Il

Principal = first or of highest importance, rank, worth.

The principal symbol of a differential operator is a
(matrix of) polynomials determined by the “most
Important” part of the operator.

A differential operator is elliptic if its principal symbol
IS Invertible.

The Ativah-Sinaer Index Theorem Il -=bp. 1



ll. Principal symbol and ellipticity

» Principal symbol.

=x 2 con’t: Consider the operator:
L=-8 —0;+50, —z°0y + 10e""".
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ll. Principal symbol and ellipticity

» Principal symbol.

=x 2 con’t: Consider the operator:
L=-8 —0;+50, —z°0y + 10e""".

The principal symbol of_ Is

o(L) (&1, &) = —(i&)" — (i&2)°
=&+
= |¢]° (where¢ = (&1,6))
= sqguared length of.
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ll. Principal symbol and ellipticity

» Principal symbol.

=x 1 con’'t: Consider the Laplacian:
A=-9—-0.

The principal symbol ofA is

o(A)(&1, &) = —(i&)* — (i&)°
=&+
= [¢]* (where¢ = (&1,6))
= sqguared length of.

The Ativah-Sinaer Index Theorem Il -=bp. 1



ll. Principal symbol and ellipticity

» Principal symbol.

=x 4 con't: Consider the operator
L = 0, +i0, + 2sin(z* + y*).
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ll. Principal symbol and ellipticity

» Principal symbol.

=x 4 con't: Consider the operator
L = 0, +i0, + 2sin(z* + y*).

The principal symbol of_ Is

o(L)(&1,82) = 1&1 + i(2&2)
= 1§1 — &2.
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ll. Principal symbol and ellipticity

» Principal symbol.

=x 4 con't: Consider the operator
L = 0, +i0, + 2sin(z* + y*).

The principal symbol of_ Is

o(L)(&1,82) = &1 +i(i&>)
= 1&1 — &2.

—x 3 con't: For the Cauchy-Riemann operator
Dcr = 0, +10,, we have

o(Dcr)(&1,&2) =16 — &
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ll. Principal symbol and ellipticity

» Principal symbol.

=x 5 con’t: Consider the poor man’s Gauss-Bonnet
operator (written as a matrix)

=5 0y)

The Ativah-Sinaer Index Theorem Il -=bp. 1



ll. Principal symbol and ellipticity

» Principal symbol.

=x 5 con’t: Consider the poor man’s Gauss-Bonnet
operator (written as a matrix)

(0, —O0,
o= 3))
The principal symbol of_ Is

o(Lag)(§1,82) = (7;62 _ifl) .

&1 1€

The Ativah-Sinaer Index Theorem Il -=bp. 1



Principal symbol.

Let L be anm-th differential operator and let
x1,%a,...,T, be the variables it differentiates with
respect to.

In the terms ofL containingm partial derivatives, replace

O, byi&, 0, byi& , ..., 0, byig&,.

The resulting function of the real variablées. . ., &, IS
called theprincipal symbol of L:

O(L)(flv O 7€n) or O'(L)(f),
whereé = (&1,...,&,).

The Ativah-Sinaer Index Theorem Il = p. 1



ll. Principal symbol and ellipticity
» Ellipticity.

Recall that
o(A)(&) = €)%,
For¢ # 0; thatis,§ = (§1,&2) # (0,0),
o(A)(&)™

IS defined.



ll. Principal symbol and ellipticity
» Ellipticity.

Recall that
a(A)(€) = [¢]*.
Forg +# 0; thatis,§ = (£1,&) # (0,0),
o(A)(E)™
IS defined.

Similarly, for& # 0
o(Dcr)(§) = &1 — &

IS Invertible.



ll. Principal symbol and ellipticity
o Ellipticity.

The poor man’s Gauss-Bonnet operator,

otten)(© = (i o).

also has the same property:

Foré £ 0, o(Lap)(€) is an invertible matrix

(Notice thatdet o (Lap)(§) = —& — —|€]%.)
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ll. Principal symbol and ellipticity
» Ellipticity.

A differential operatotL is elliptic if for & # 0, the
principal symbols(L)(&) is invertible.

Thus,A, Dcg, andLqp are elliptic.
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ll. Principal symbol and ellipticity
Ellipticity.

A differential operatotL is elliptic if for & # 0, the
principal symbols(L)(&) is invertible.

Thus,A, Dcg, andLqp are elliptic.

Most operators are not elliptic! E.g.
L=03:—09,+ 10.

We haVGO'(L)(gl,gg) = —(igl)z — g% Then
£=(0,1) #£ 0, but

o(L)(&) = 0 is notinvertible

The Ativah-Sinaer Index Theorem Il -=bp. 1



Summary.of Part |l
Examplesio(A)(€) = |€]?, o(Dcr)(€) = i€ — &, and

oLen)(©) = (18 o)

Significance: Laplacians involve geometry. What is tl
significance of the last two examples?

The three operators above are elliptic.

Can also define differential operators, principal
symbols, and ellipticity when manifolds and vector
bundles are involved.

The Ativah-Sinaer Index Theorem Il = p. 2



Preview of Part Il

Recall the Laplacian is a second order operator such

that
o(A)(€) = [€]°.
Thus,A captures geometry.

A Dirac operator Is a first order operator whose
principal symbol “squared” i&|.

The Ativah-Sinaer Index Theorem Il = p. 2



lll. Dirac operators

For Dcr = 0, + 10, we have

o(Dcr)(§) = &1 — &,

SO

o(Dcr)(§) o(Der)(€§) = (i1 — &2)(i&1 — &)
= (—1&1 — &) (2&1 — &)
=&+ &
= |¢]%.

Hence we can obtain lengths (geometry) by conjugatin
and then multiplying!

The Ativah-Sinaer Index Theorem |l = p. 2



lll. Dirac operators
= x. For the poor man’s Gauss-Bonnet operator, we ha

otLen)(©) = (18 o)

The Ativah-Sinaer Index Theorem |l = p. 2



lll. Dirac operators
For the poor man’s Gauss-Bonnet operator, we ha

o(Lap)(§) = (22 ;251)

Therefore,

olLan)(©) o(Len)© = (o 72) (i )

<§%+§2 0 )
0 &+&



lll. Dirac operators

Definition. Afirst order differential operatok is called
a Dirac(-type) operator if L is elliptic and

(L))o (L)(E) = l&I".

Therefore,D~r and L g are Dirac operators.

The Ativah-Sinaer Index Theorem |l = p. 2



A first order differential operatak is called
a Dirac(-type) operator If L Is elliptic and

(L))o (L)(E) = l&I".

Therefore,D-r and L p are Dirac operators.

Recall
a(A)(E) = [
Thus, we can think of a Dirac operator as an operator

such that when you square it (really, the principal
symbol), you get the (principal symbol of the) Laplacia

Hence, a Dirac operator is a type of “square root” of a
Laplacian.

The Ativah-Sinaer Index Theorem Il = p. 2



Dirac operators can be defined when Riemannian
manifolds and Hermitian vector bundles are involved: :
a first order differential operatar that is elliptic and

o(L)(€) o (L)(€) = [¢].
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Dirac operators can be defined when Riemannian
manifolds and Hermitian vector bundles are involved: :
a first order differential operatar that is elliptic and

o(L)(€) o (L)(€) = [¢].

Now we understand the hypothesis of Atiyah-Snger!
“Let £ andF' be Hermitian vector bundles o and let

L:C*(M,F)— C>*(M,F)

be a “Gauss-Bonnet type operator” (technically called
Dirac operator).”

The Ativah-Sinaer Index Theorem Il = p. 2



Summary.of Part.lll

A Dirac operator Is a first order differential operator

whose principal symbol “squared” is the symbol of the
Laplacian.

Like Laplacians, Dirac operators capture the geomet
of the manifold.

Advantage of Dirac operators: They are first order

Instead of second order. (Hence are simpler “in
principle.”)

The Ativah-Sinaer Index Theorem Il = p. 2



IV The true Gauss-Bonnet operator

Preview of Part IV

» Differential forms are objects you integrate (in line an
area integrals).

» The exterior derivative Is just the gradient and curl
“all-in-one”.

» The Gauss-Bonnet operatoriig: g = d + d*.

The Ativah-Sinaer Index Theorem |l = p. 2



IV The true Gauss-Bonnet operator
» Differential forms.(Focus-onR>.)

C*(R* A”) = C*(R?) = O-forms
C*(R? A" = 1-forms  fdx + gdy

C*(R?,A*) = 2-forms  fdz A dy

There are no 3-forms dR?.
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IV The true Gauss-Bonnet operator
» Differential forms.(Focus-onR>.)

C*(R* A”) = C*(R?) = O-forms
C*(R? A" = 1-forms  fdx + gdy

C*(R?,A*) = 2-forms  fdz A dy
There are no 3-forms dR?.
Think of

de «— 7, dy+— 7, d:z:/\dy<—>E.
Remark:1-forms are objects usually found in line
Integrals and 2-forms are found in area integrals.
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IV The true Gauss-Bonnet operator
» The wedge.

The “wedge”A has the defining “cross product” propert
alNB=—-0AN«a

for any 1-formso andg. (Cf. VX W=—wX7. )
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IV The true Gauss-Bonnet operator
» The wedge.

The “wedge”A has the defining “cross product” propert
alNfB=—-0N«
for any 1-formso andg. (Cf. VX W=—wX7. )

EX.
Xd:z:/\dy:—dy/\da:. (Cf. fZ’xj’:—j’xi’).
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IV The true Gauss-Bonnet operator
» The wedge.

The “wedge”A has the defining “cross product” propert
alNfB=—-0N«

for any 1-formso andg. (Cf. VX W=—wX7. )

E

X'dEAdy::—dyAdx. (dﬂijE:—jxi)

= aNa=—a .

Thereforea A o = 0. In particular,

de ANdx =0 and dyAdy = 0. (cf. ¥x 7= 0).

The Ativah-Sinaer Index Theorem |l = p. 2



IV The true Gauss-Bonnet operator
Theexterior.derivative

d: C™(R? A") — C®(R? A"
IS the differential operator

d = 0, dx + 0, dy

acting componentwisgcf. V = 9,7+ 9, J.)

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator
Theexterior.derivative

d: C™(R? A") — C®(R? A"
IS the differential operator

d = 0y dx + 0, dy
acting componentwisgcf. V = 9,7+ 9, J.)
Note: d really consists of three maps
C®(R2, A%) & C°(R?, AY) < C®(R2 A% 3 0.
(d = 0 on 2-forms since there are no 3-forms.)

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator

0-forms:
d: C=(R2,A%) — C®(R?, AY).
For f € C>*(R?, A”) = C*(RR?),
df = 0,f dz + 0, f dy.
(cf. Vf =0,f7+ 0,f J.) Thus,

d = gradient on O-forms

The Ativah-Sinaer Index Theorem Il —=p. 3



e true Gauss-Bonnet operator

gdy) =df Ndx + dg N dy




IV The true Gauss-Bonnet operator
1-forms.

d(fdx + gdy) = df Ndx + dg N dy
= (0, f dx + 0, f dy) N dzx + (0,9 dx + 0,9 dy) A dy
= 0, f dy Ndx + 0ygdx N dy
= —0,fdx Ndy + O,gdz N\ dy
= (0x9 — Oyf) dx N\ dy.

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator
1-forms:

d(fdx + gdy) = df Ndx + dg N dy
= (0, f dx + 0, f dy) N dzx + (0,9 dx + 0,9 dy) A dy
= 0, f dy Ndx + 0ygdx N dy
= —0,fdx Ndy + O,gdz N\ dy
= (0x9 — Oyf) dx N\ dy.

(cf. curl(f 7+ g7) = (9.9 — 9,f) k.) Thus,

d = curl on 1-forms

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator
o Adjoint. If _L.is.anm.x.n.matrix, we have

L:R"— R™.

The adjoint (conjugate transposk) is ann x m matrix,
SO

L*: R"™ — R",
Taking the adjoint switches the domain and codomain.

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator
Adjoint. If L.Is.anm x.n matrix, we have

L:R"— R™.

The adjoint (conjugate transposk) is ann x m matrix,
SO

L*: R" — R",
Taking the adjoint switches the domain and codomain.
Recall

C™(R2, A") & C®(R?, A!) < C(R2, A2).
There Is an adjoint

C™(R2, A%) & C®(R2, AY) S O (R2, AY).

The Ativah-Sinaer Index Theorem Il —=p. 3



e true Gauss-Bonnet operator

ISd*?



e true Gauss-Bonnet operator

ISd*?

s:d* 1 C°(R2,A?) L O(R2, AL):
d*(fdx Ndy) =0,fdr — 0.f dy.



IV The true Gauss-Bonnet operator
» What.isd*?

2-forms: d* : C®(R2, A?) & C=(R2, AL):
d*(fdx ANdy) =0,fdr — 0.f dy.

Note: 5
curl (f k) = Oyf U= 0.1 7.

Therefore,
d* = curl on 2-forms.

The Ativah-Sinaer Index Theorem Il —=p. 3



e true Gauss-Bonnet operator

ISd*?

s:d* 1 C°(R2,AY) L C(R2, A):
d*(f dz + gdy) = —(0uf + 0y9).



IV The true Gauss-Bonnet operator
» What.isd*?

1-forms: d* : C®(R2, AY) S C=(R2, AY):
(f dv+ gdy) = (0] +0,9).

Note:
div (f 7+ g7) = Orf + 0y9.

Therefore,
d* = —div on 1-forms.

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator
» The true Gauss-Bonnet operator. Recall

d: C®(R* A*) — C>®(R?, A",
d* - COO(RQ’A]C—Fl) _ COO(RQ’A]C)
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IV The true Gauss-Bonnet operator
» The true Gauss-Bonnet operator. Recall

d: C®(R?* A*) — C®(R* A",
d* - OOO(RQ’A]{—Fl) _ OOO(RQ’A]{)
» C°(R?*, A®) = linear combination o and2 forms
o C®(R? A% = C°(R?, A') = 1-forms. Then,
DGB — d+ d* - COO(R27AGU) . COO(RQ’AOCZCZ)

IS called theTHE Gauss-Bonnet operator

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator

» EXxercises.:
1) Check thatD 3 Is a Dirac operator.
2) How Is the poor man’s Gauss-Bonnet operator relat:

tod andd*?

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator

EXxercises.
1) Check thatD.g Is a Dirac operator.
2) How Is the poor man’s Gauss-Bonnet operator relat:
tod andd*?

Given any Riemannian manifoltf/, we can define
differential forms,d, andd*. Let

C>®(M, A®) = even forms, C™(M,A*") = odd forms
Then,
Dap =d+d* : C®(M,A?) — C°(M, A\*?)

IS calledTHE Gauss-Bonnet operator D¢ IS a Dirac
operator.

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator

The operator
A = (d+ d*)’
IS called thd_aplacian or Laplace operator.

By definition,d 4+ d* I1s a square root of the Laplacian.

d + d* andA are important in “Hodge theory,” a
subject which relates the kernels and cokernels of thes
operators to the topology of the manifold. In particular,

ind Dgp = x(M).

The Ativah-Sinaer Index Theorem Il —=p. 3



IV The true Gauss-Bonnet operator

Summary of Part IV
Differential forms are objects you integrate.

The exterior derivative Is the gradient and curl
“all-in-one”.

The adjointd* is the curl and divergence “all-in-one”.
The Gauss-Bonnet operator is the Dirac operator

Dap = d+d* : C®(M,A?) — C®(M, A%,

The Ativah-Sinaer Index Theorem Il —=p. 3



V. The integrand K 45

Preview of Part V

(One of the) most beautiful formulas in the world:

dL = d
i 47?2 / \/e

K/2

smh (K/2)

) STr (GKE“LK“L%K) :

The Ativah-Sinaer Index Theorem |l = p. 4



DEIL:H

Let M be an oriented, compact, even-dim. Riemanni
manifold and lett' and F’ be Hermitian vector bundles
on\M.

Let X' = curvature ofM, K = curvature oft), K =
curvature ofF'.

LetL : C*(M, E) — C*(M, F') be a Dirac operator.

The Ativah-Sinaer Index Theorem Il = p. 4



DEIL:H

Let M be an oriented, compact, even-dim. Riemanni
manifold and letE' and F' be Hermitian vector bundles

on M.

Let X' = curvature ofM, K = curvature oft), K =
curvature ofF'.

LetL : C*(M, E) — C*(M, F') be a Dirac operator.
Atiyah-Singer: L Is Fredholm and

ind L :/ KAS;
M

wherekK 44 Is anexplicitly defined polynomial ink,
Kg, Kp.

The Ativah-Sinaer Index Theorem Il = p. 4



V. The integrand K 45

» A-genus ofM:
\/det ( K2 )

sinh (K /2)

You can actually make sense of this.

The Ativah-Sinaer Index Theorem |l = p. 4



A-genus of)M: /
K/2
\/det (Sinh(K/Q) )

You can actually make sense of this.
Twisted Chern character

STr (eKEjLKFjL%K) :

where ‘STr” Is called a “super trace”.

The Ativah-Sinaer Index Theorem Il = p. 4



det( K2 )

A-genus of)M:
\/ sinh(K/2)

You can actually make sense of this.
Twisted Chern character

STr (eKEjLKFjL%K) ;
where ‘STr” Is called a “super trace”.

B (47T1i)m \/ el (smﬁf/z))srﬁ (GKEHM%K)’

wheredim M = 2m.

The Ativah-Sinaer Index Theorem Il = p. 4



TheAtiyah-Singer.theorem.in.allits glory:. Given

An oriented, compact, even dimensional (2ay)
Riemannian manifold/

Hermitian vector bundleg and ' over M
Dirac operatot. : C*°(M, E) — C>*(M, F).
Then,

K/2 !
a7 — det ) T ( KE+KF+ZK).
i 47rg)™ / \/ ct Smh (K/2) STr{e

The Ativah-Sinaer Index Theorem Il = p. 4



V. The integrand K 45

Consider the Gauss-Bonnet operator:
Dgp : C®(M,A®) — C®(M, A%%).

Recall that (via “Hodge theoryhd Dgp = x(M).
One can work out that

1 (K™ 1
Ras = 2m)™ m! (ZW)mPf(_K)’

wherePf(— K) is called the Pfaffian of/.
. Gauss-Bonnet-Chern theorem:

The Ativah-Sinaer Index Theorem Il = p. 4



Whatis the true Gauss-Bonnet operator?

Answer: The operator! + d* acting on even formsi Is
the exterior derivative=t gradient and curl “all-in-one”)
andd* Is the adjoint ofd.

What is a Dirac operator?

Answer: Basically a “square root” of a Laplacian.
What ISK 447

Answer: So beautiful, the AS thm. has to be repeated:

K/2 !
a7 — det ) T ( KE+KF+ZK).
i 47rg)™ / \/ ot Smh (K/2) STr{e

The Ativah-Sinaer Index Theorem Il = p. 4



Isn’t this supposed to be a

conference on SINGULAR
analysis?



A-S on singular manifolds

We know that for aamooth manifold M without

boundary,
ind L = / KAS-
7

What about SINGULAR manifolds like

What is the A-S theorem for such manifolds?

The Ativah-Sinaer Index Theorem |l = p. 4



A-S on singular manifolds

We know that for aamooth manifold M without

boundary,
ind L = / KAS-
7

What about SINGULAR manifolds like

What is the A-S theorem for such manifolds?

ANSWer: Next week!

The Ativah-Sinaer Index Theorem |l = p. 4



We'll talk about
1) Index theorems on singular manifolds.

2) The proof of the A-S theorem: pseudodifferential
operators and the heat kernel.

3) The proof of the A-S theorem for a singular manifolc
“Exotic” pseudodifferential operators and the heat kern
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We'll talk about
1) Index theorems on singular manifolds.

2) The proof of the A-S theorem: pseudodifferential
operators and the heat kernel.

3) The proof of the A-S theorem for a singular manifolc
“Exotic” pseudodifferential operators and the heat kern

K/2 K .
L = Tr( efetirtak )
nd (4me)™ / \/de smh (K/2 ))S r(e )

The Ativah-Sinaer Index Theorem Il = p. 4



	vspace {-.5cm} Where we ended last time
	Questions
	Questions
	Questions

	Outline of talk
	Outline of talk
	Outline of talk
	Outline of talk
	Outline of talk

	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} I. Review of differential operators

	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} I. Review of differential operators

	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} I. Review of differential operators

	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} I. Review of differential operators
	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} II. Principal symbol and ellipticity

	vspace {-.5cm} II. Principal symbol and ellipticity
	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} III. Dirac operators

	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} III. Dirac operators

	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} III. Dirac operators

	vspace {-.5cm} III. Dirac operators
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator

	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} IV. The true Gauss-Bonnet operator
	vspace {-.5cm} V. The integrand $K_{AS}$
	vspace {-.5cm} V. The integrand $K_{AS}$
	vspace {-.5cm} V. The integrand $K_{AS}$

	vspace {-.5cm} V. The integrand $K_{AS}$
	vspace {-.5cm} V. The integrand $K_{AS}$
	vspace {-.5cm} V. The integrand $K_{AS}$

	vspace {-.5cm} V. The integrand $K_{AS}$
	vspace {-.5cm} V. The integrand $K_{AS}$
	Summary of Talk
	center Huge 
ed 	extbf {WAIT!}
	vspace {-.5cm} A-S on singular manifolds
	vspace {-.5cm} A-S on singular manifolds

	An advertisement
	An advertisement


