The Atiyah-Singer Index Theorem I

Paul Loya

Main idea

Definition

in·dex n. pl. in·dex·es or in·di·ces

- 1. Something that serves to guide, point out, or otherwise facilitate reference.
- 2. Something that reveals or indicates; a sign.
- 3. An indicator or pointer, as on a scientific instrument.
- 4. Mathematics: A number derived from a formula, used to characterize a set of data.

Today we'll study two indexes.

I. The index of a space (Euler characteristic)

I. The index of a space (Euler characteristic)

II. The index of a linear map

I. The index of a space (Euler characteristic)

II. The index of a linear map

III. The Gauss-Bonnet theorem — traditional version

- I. The index of a space (Euler characteristic)
- II. The index of a linear map
- III. The Gauss-Bonnet theorem traditional version
- IV. The Gauss-Bonnet theorem index version

- I. The index of a space (Euler characteristic)
- II. The index of a linear map
- III. The Gauss-Bonnet theorem traditional version
- IV. The Gauss-Bonnet theorem index version
- V. The Atiyah-Singer index theorem

Preview of Part I

• The Euler Characteristic is an integer obtained by taking the *difference* of two numbers.

• The Euler Characteristic is a topological invariant.

The Euler Characteristic of a compact space S (really, a CW complex of dimension ≤ 2) is obtained by

- 1. putting dots all over your object.
- connecting the dots (no crossings and every dot must be linked to any other one through lines).
- 3. Counting the number of even (0 or 2) dimensional shapes formed (E).
- 4. Counting the number of odd (1) dimensional shapes formed (O).

$$\chi(S) = E - O.$$

$\chi(\mathbb{S}^2) = E - \overline{O} = (1+1) - 0 = 2.$

The Atiyah-Singer Index Theorem I – p. 6/4

The Atiyah-Singer Index Theorem I – p. 7/4

No matter how many dots you mark and how you connect them, you get 2.

 χ (torus) = 0, χ (double torus) = -2, χ (triple torus) = -4.

I. The Euler characteristic In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.

I. The Euler characteristic In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.

Theorem 1: Two compact surfaces in \mathbb{R}^3 are homeomorphic if and only if their Euler characteristics are equal.

In other words, the EC is "stable" — if you deform a shape the EC remains the same.

I. The Euler characteristic In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.

Theorem 1: Two compact surfaces in \mathbb{R}^3 are homeomorphic if and only if their Euler characteristics are equal.

In other words, the EC is "stable" — if you deform a shape the EC remains the same.

Theorem 2: For a compact surface S in \mathbb{R}^3 ,

 $\chi(S) = 2 - 2 \times$ (the number of holes of S).

How about 1-dimensional examples?

(For unbounded spaces we have to throw away unbounded parts.)

Summary of Part I

• The Euler characteristic of a space S is

 $\chi(S) = E - O,$

a *difference* of two integers.

• The Euler characteristic is "stable" — it's a topological invariant.

• Examples:

2-dim: $\chi(\mathbb{S}^2) = 2$ and $\chi(\mathbb{T}) = 0$.

1-dim: $\chi(\mathbb{S}^1) = 0$ and $\chi(\mathbb{R}) = 1$.

Preview of Part II

• The index of a linear map is an integer obtained by taking the *difference* of two numbers.

• The index is an "analytic" invariant.

Let V and W be finite-dimensional vector spaces and let

$$L:V \to W$$

be a linear map. What is a good notion of "index"?

Let V and W be finite-dimensional vector spaces and let $L:V \to W$

be a linear map. What is a good notion of "index"? What are some important objects associated to L? • Kernel: ker $L = \{v \in V \mid Lv = 0\}.$ • Cokernel: W/ImL (quotient vector space) where $ImL = \{ w \in W \mid w = Lv \text{ some } v \in V \} \subset W.$ coker L represents all vectors in W not in the image of L. How do you get an "index"?

Definition:

$$\operatorname{ind} L = \operatorname{dim}(\operatorname{ker} L) - \operatorname{dim}\left(W/\operatorname{Im} L\right).$$

• Remark: We copy the Euler Characteristic, which is also a difference of two integers.

Definition:

$$\operatorname{ind} L = \operatorname{dim}(\operatorname{ker} L) - \operatorname{dim}\left(W/\operatorname{Im} L\right).$$

• Remark: We copy the Euler Characteristic, which is also a difference of two integers.

Theorem: For any linear map $L: V \rightarrow W$, between finite-dimensional vector spaces, we have

 $\operatorname{ind} L = \dim V - \dim W.$

Proof: By the rank-nullity theorem,

 $\dim \ker L + \dim \operatorname{Im} L = \dim V.$

Proof: By the rank-nullity theorem,

 $\dim \ker L + \dim \operatorname{Im} L = \dim V.$

Therefore, dim ker L + dim Im L - dim W = dim V - dim W, or dim ker L - (dim W - dim Im L) = dim V - dim W.

Proof: By the rank-nullity theorem, $\dim \ker L + \dim \operatorname{Im} L = \dim V.$ Therefore, $\dim \ker L + \dim \operatorname{Im} L - \dim W = \dim V - \dim W,$ or $\dim \ker L - (\dim W - \dim \operatorname{Im} L) = \dim V - \dim W.$ Therefore, $\dim \ker L - \dim (W/\operatorname{Im} L) = \dim V - \dim W.$

Some thought reveals a "deep" connection:

$\operatorname{ind} L$	= dim V - dim W
linear algebraic	topological

This is a "deep" result.

Therefore, the index is "stable" — if you change the linear map, the index remains the same.

What about infinite-dimensional vector spaces?

Let $L: V \rightarrow W$ be a linear map between two possibly infinite-dimensional vector spaces.

(Same) **Definition:**

$$\operatorname{ind} L = \operatorname{dim}(\operatorname{ker} L) - \operatorname{dim}\left(W/\operatorname{Im} L\right).$$

ind L is only defined when the dimensions on the RHS are finite . . . otherwise ind L is undefined.

Linear maps for which ind L is defined are called Fredholm. The index, it turns out, is still "stable" when V and W are infinite-dimensional.

What does Fredholm mean intuitively?

Fredholm means:

1) $\dim(\ker L) < \infty$ and 2) $\dim(W/\mathrm{Im}L) < \infty$

Fredholm means:

1) $\dim(\ker L) < \infty$ and 2) $\dim(W/\mathrm{Im}L) < \infty$

Recall: *L* is injective $\iff \ker L = 0$. *L* is surjective $\iff \operatorname{Im} L = W$; that is, $W/\operatorname{Im} L = 0$.

Fredholm means:

1) $\dim(\ker L) < \infty$ and 2) $\dim(W/\mathrm{Im}L) < \infty$ **Recall:** *L* is injective $\iff \ker L = 0$. L is surjective $\iff \operatorname{Im} L = W$; that is, $W/\operatorname{Im} L = 0$. Conclusion: Fredholm conveys that L is 1) "almost" injective and 2) "almost" surjective. That is, L is "almost" an isomorphism. What does ind L indicate, reveal, characterize?

Write $V = \ker L \oplus V'$, $W = W' \oplus \operatorname{Im} L$.

II. The index of a linear map Write $V = \ker L \oplus V'$, $W = W' \oplus \operatorname{Im} L$. $\underline{\ker L}$ W' $L: \oplus \rightarrow \oplus$ (NB: $W' \cong W/\operatorname{Im} L$) $\operatorname{Im} L$ V'**Can we make make** L invertible by changing L on its kernel?

II. The index of a linear map Write $V = \ker L \oplus V'$, $W = W' \oplus \operatorname{Im} L$. $\ker L \qquad W'$ $L: \oplus \rightarrow \oplus$ $(NB: W' \cong W/Im L)$ V' $\operatorname{Im} L$ **Can we make make** L invertible by changing L on its kernel? Cases: $\operatorname{ind} L = 0 \implies \operatorname{can} \operatorname{make} L \operatorname{invertible}$ ind $L > 0 \implies$ excess of null vectors

ind $L < 0 \implies$ deficiency of null vectors

II. The index of a linear map -Conclusion:

• ind *L* indicates, reveals, characterizes how "far" *L* is from being made invertible.

I.e., we can modify L on ker L to get an invertible operator iff ind L = 0.

The further ind L is from zero, the more "non-invertible" L is.

Examples of Fredholm operators?
II. The index of a linear map Ex 1: Let $V = W = C^{\infty}(\mathbb{R})$ and let $L = \frac{d}{dx} : V \to W$. (That is, L(f) = f'.)

II. The index of a linear map Ex 1: Let $V = W = C^{\infty}(\mathbb{R})$ and let $L = \frac{d}{dx} : V \to W$. (That is, L(f) = f'.) • ker L:

 $\ker L = \{ f \in C^{\infty}(\mathbb{R}) \mid f' = 0 \} = \text{const. functions} \cong \mathbb{R}.$

Thus, $\dim(\ker L) = 1$.

Ex 1: Let $V = W = C^{\infty}(\mathbb{R})$ and let $L = \frac{d}{dx} : V \to W$. (That is, L(f) = f'.) • ker L:

 $\ker L = \{ f \in C^{\infty}(\mathbb{R}) \mid f' = 0 \} = \text{const. functions} \cong \mathbb{R}.$

Thus, dim(ker L) = 1. • W/Im L: Claim: Im L = W. Let $g \in W = C^{\infty}(\mathbb{R})$. Define

$$f(x) = \int_0^\infty g(t) \, dt.$$

Then $f \in V$ and L(f) = g. Thus, $\dim(W/\operatorname{Im} L) = \dim(W/W) = \dim(0) = 0.$

Ex 1 con't: Thus,

$\operatorname{ind} L = \dim(\ker L) - \dim\left(W/\operatorname{Im} L\right) = 1 - 0 = 1.$

Ex 1 con't: Thus,

$$\operatorname{ind} L = \dim(\ker L) - \dim\left(W/\operatorname{Im} L\right) = 1 - 0 = 1.$$

• Hence,

This is a "deep" result.

How about one more example?

Ex 2: Let $V = W = C^{\infty}(\mathbb{S}^1)$ and let

$$L = \frac{d}{d\theta} : V \to W.$$

Ex 2: Let
$$V = W = C^{\infty}(\mathbb{S}^1)$$
 and let

$$L = \frac{d}{d\theta} : V \to W.$$

• ker L: ker $L = \{f \in C^{\infty}(\mathbb{S}^1) \mid f'(\theta) = 0\} = \text{const. functions} \cong \mathbb{R}$ Thus,

 $\dim(\ker L) = 1.$

Lemma: $h \in \operatorname{Im} L \iff \int_{0}^{2\pi} h(\theta) \, d\theta = 0.$

Lemma: $h \in \operatorname{Im} L \iff \int_{0}^{2\pi} h(\theta) \, d\theta = 0.$ **Proof:** Suff: Assume $h = Lf = f'(\theta)$. Then,

$$\int_0^{2\pi} h(\theta) \, d\theta = \int_0^{2\pi} f'(\theta) \, d\theta = f(2\pi) - f(0) = 0.$$

Lemma:
$$h \in \text{Im } L \iff \int_{0}^{2\pi} h(\theta) \, d\theta = 0.$$

Proof: Suff: Assume $h = Lf = f'(\theta)$. Then,

$$\int_{0}^{2\pi} h(\theta) \, d\theta = \int_{0}^{2\pi} f'(\theta) \, d\theta = f(2\pi) - f(0) = 0.$$

Nec: Assume $\int_0^{2\pi} h(\theta) d\theta = 0$. Define

 $f(\theta) = \int_0^\theta h(t) \, dt.$ Then $f(0) = f(2\pi) = 0$. Therefore, $f \in C^\infty(\mathbb{S}^1)$. Moreover,

 $f'(\theta) = h(\theta) \implies h = Lf \in \operatorname{Im} L.$

The Ativah-Singer Index Theorem I – p. 24/

• $W/\operatorname{Im} L$: Let $g \in W = C^{\infty}(\mathbb{S}^1)$. Define

$$h := g - \frac{1}{2\pi} \int_0^{2\pi} g(t) \, dt.$$

Then, $\int_0^{2\pi} h(\theta) d\theta = 0.$

• $W/\operatorname{Im} L$: Let $g \in W = C^{\infty}(\mathbb{S}^1)$. Define

$$h := g - \frac{1}{2\pi} \int_0^{2\pi} g(t) \, dt.$$

Then, $\int_0^{2\pi} h(\theta) d\theta = 0.$

Lemma $\implies h = Lf \text{ (some } f) \implies g = Lf + \text{const.}$ $\implies W/\text{Im } L \cong \mathbb{R}.$

Thus,

$$\dim(W/\operatorname{Im} L) = \dim(\mathbb{R}) = 1.$$

Thus,

ind $L = \dim(\ker L) - \dim(W/\operatorname{Im}L) = 1 - 1 = 0.$

Thus,

$$\operatorname{ind} L = \dim(\ker L) - \dim\left(W/\operatorname{Im} L\right) = 1 - 1 = 0.$$

• Hence,

This is a "deep" result.

Summary of Part II

• For a linear map $L: V \to W$,

ind $L = \dim(\ker L) - \dim(W/\operatorname{Im}L)$,

provided that the RHS is well-defined as an integer.

• ind L indicates, reveals, characterizes how far L is from being made invertible.

• Specific examples suggest that ind L indicates, reveals, characterizes certain topological information. The index is "stable" — it's an analytic invariant.

• The interplay of *analysis* and *topology* through the index is "deep" because it relates two distinct notions.

Preview of Part III

• The Gauss-Bonnet theorem gives a formula relating two aspects of a surface: The *topology* and the *geometry*.

• Topology: The Euler Characteristic. E.g. Recall that $\chi(\mathbb{S}^2) = 2$.

• Topology: The Euler Characteristic. E.g. Recall that $\chi(\mathbb{S}^2) = 2$.

• Geometry: The Curvature. E.g. consider \mathbb{S}^2 ,

The curvature measures how much the surface bends away from the tangent plane. K > 0 "bending away"; K < 0 "bending into".

• Observation:

$$\frac{1}{2\pi} \int_{\mathbb{S}^2} K = \frac{1}{2\pi} \int_{\mathbb{S}^2} 1 = \frac{1}{2\pi} \operatorname{Area}(\mathbb{S}^2)$$
$$= \frac{1}{2\pi} (4\pi) = 2.$$

• Therefore,

$$\chi(\mathbb{S}^2) = \frac{1}{2\pi} \int_{\mathbb{S}^2} K.$$

Another example: The Torus \mathbb{T} . Recall $\chi(\mathbb{T}) = 0$.

Another example: The Torus \mathbb{T} . Recall $\chi(\mathbb{T}) = 0$.

We have

$$\frac{1}{2\pi} \int_{\mathbb{T}} K = 0.$$

• Therefore,

$$\chi(\mathbb{T}) = \frac{1}{2\pi} \int_{\mathbb{T}} K.$$

Gauss-Bonnet theorem: Given an oriented, compact, 2-dimensional, Riemannian manifold M, we have

$$\chi(M) = \frac{1}{2\pi} \int_M K$$

topological geometrical

• The G-B formula bridges two areas of math: topology and geometry.

• The G-B formula is a "deep" result because it relates two seemingly distinct properties of a surface.

Ex. Each of the surfaces

satisfies

$$\frac{1}{2\pi} \int_M K = 2.$$

Not at all obvious!

Summary of Parts I, II, III

• The Euler Characteristic is a topological invariant.

• The index of a linear map is an analytical invariant and for one-dimensional topological spaces (the line and the circle), we saw that

ind
$$L =$$
 Euler Characteristic.

• The Gauss-Bonnet formula: For a two-dimensional surface,

Euler Characteristic =
$$\frac{1}{2\pi} \int_M K$$
.

Preview of Part IV

• As expected, given two-dimensional surface, there is a differential operator L such that

ind L = Euler Characteristic = $\frac{1}{2\pi} \int_{M} K$.

- Let *M* be an oriented, compact, 2-dim., Riemannian manifold.
- Vector spaces:
- $V = C^{\infty}(M, TM)$
 - = infinitely differentiable tangent vector fields on M
- $W = C^{\infty}(M, \mathbb{R}^2)$
 - = (basically) pairs of infinitely differentiable functions on N
- "TM" is for "tangent bundle of M".

• Linear map: $L: C^{\infty}(M, TM) \to C^{\infty}(M, \mathbb{R}^2)$ is the map

 $\overline{L(v)} = (-\operatorname{curl} v, \operatorname{div} v).$

L is called the **poor man's Gauss-Bonnet operator**.

Exercise: Think of the torus as $\mathbb{T} = \mathbb{S}^1_{\theta} \times \mathbb{S}^1_{\varphi}$. Let

$$\operatorname{curl}\left(f\vec{\imath}_{\theta} + g\vec{\jmath}_{\varphi}\right) = \frac{\partial g}{\partial \theta} - \frac{\partial f}{\partial \varphi}.$$
$$\operatorname{div}\left(f\vec{\imath}_{\theta} + g\vec{\jmath}_{\varphi}\right) = \frac{\partial f}{\partial \theta} + \frac{\partial g}{\partial \varphi}.$$

Prove that

ind L = 0.

Recall that $\chi(\mathbb{T}) = 0 \implies \text{ind } L = \chi(\mathbb{T}).$

• Theorem: (Consequence of Hodge theory). We have

ind $L = \chi(M)$.

This theorem is a generalization of the \mathbb{R} and \mathbb{S}^1 examples we did earlier!

• Since
$$\chi(M) = \frac{1}{2\pi} \int_M K$$
, we have

$\operatorname{ind} L$		$\frac{1}{2\pi}\int_M K$
analytical		geometrical

This is a "deep" result.

Summary of Part IV

If $L: C^{\infty}(M, TM) \to C^{\infty}(M, \mathbb{R}^2)$ is the poor man's G-B operator (-curl, div), then

ind
$$L = \frac{1}{2\pi} \int_M K$$

analytical geometrical

This is the index formula version of the Gauss-Bonnet formula.

The Atiyah-Singer index formula is a higher-dimensional version of the above formula!

Part IV: The Atiyah-Singer formula Let *M* be an oriented, compact, even-dim. Riemannian manifold.

• Let E and F be Hermitian vector bundles on M and let

 $L: C^{\infty}(M, E) \to C^{\infty}(M, F)$

be a "Gauss-Bonnet type operator" (technically called a **Dirac operator**).

Part IV: The Atiyah-Singer formula Let *M* be an oriented, compact, even-dim. Riemannian manifold.

• Let E and F be Hermitian vector bundles on M and let

 $L: \overline{C^{\infty}(M, E)} \to \overline{C^{\infty}(M, F)}$

be a "Gauss-Bonnet type operator" (technically called a **Dirac operator**).

• (Atiyah-Singer Index Theorem, 1963) ind *L* is Fredholm and the following index formula holds:

ind
$$L = \int_M K_{AS}$$
,
analytical geometrical

where K_{AS} is an **explicitly** defined polynomial in the curvatures of M, E, and F.

Question: Can a linear map "detect" topological information?

Answer: Yes, via the index of the operator.

Question: Are the topology and geometry related for a smooth surface? What about the analysis and the geometry?

Answer: Yes, via the Gauss-Bonnet formula; the traditional and index versions.

Question: Can all the above be generalized to higher dimensional manifolds and vector bundles?

Answer: Yes — the Atiyah-Singer index formula.

Questions you may have

• We discussed a "poor man's" Gauss-Bonnet operator, but a . .

"poor man's _____" is a cheaper, simpler version of _____

So, what is the true Gauss-Bonnet operator?

Questions you may have

• We discussed a "poor man's" Gauss-Bonnet operator, but a . .

"poor man's _____" is a cheaper, simpler version of _____

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?

Questions you may have

• We discussed a "poor man's" Gauss-Bonnet operator, but a . .

"poor man's _____" is a cheaper, simpler version of _____

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?

• What is K_{AS} ?
Questions you may have

• We discussed a "poor man's" Gauss-Bonnet operator, but a . .

"poor man's _____" is a cheaper, simpler version of ____

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?

• What is K_{AS} ?

• Answers in next index theory lecture!