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In-dex
n. pl. in-dex-esor in-di-ces

1. Something that serves to guide, point out, or
otherwise facilitate reference.

2. Something that reveals or indicates; a sign.

3. An indicator or pointer, as on a scientific instrumer

4. Mathematics: A number derived from a formula,
used to characterize a set of data.

Today we’ll study two indexes.
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Outline of talk: Five main points

The index of a space (Euler characteristic)
The index of a linear map
The Gauss-Bonnet theorem — traditional version
The Gauss-Bonnet theorem — index version

The Atiyah-Singer index theorem
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l. The Euler characteristic

Preview of Part |

» The Euler Characteristic is an integer obtained by
taking thedifference of two numbers.

» The Euler Characteristic is a topological invariant.
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TheEuler Characteristic of a compact spac€ (really,
a CW complex of dimensioq 2) is obtained by

1. putting dots all over your object.

2. connecting the dots (no crossings and every dot m
be linked to any other one through lines).

3. Counting the number of evef ¢r 2) dimensional
shapes formed (E).

4. Counting the number of odd) dimensional shapes
formed (O).

x(S)=FE—O.
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l. The Euler characteristic

X§H=E-0=(3+2)-3=2
XSHN=E—-0=(4+4) —6=2.

No matter how many dots you mark and how you
connect them, you gét
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l. The Euler characteristic

x(torug = 0,
x(double torug = —2,
x(triple torug = —4.



|. The Euler characteristic
» In what sense. iIs the Euler Characteristic. an.index?

It Indicates, reveals, characterizes the topology.
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In what . sense.is.the Euler. Characteristic.an.index?

It Indicates, reveals, characterizes the topology.

Theorem 1: Two compact surfaces iR® are
homeomorphic if and only if their Euler characteristics

are equal.

In other words, the EC Is “stable” — if you deform a
shape the EC remains the same.
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In what . sense.is.the Euler. Characteristic.an.index?

It Indicates, reveals, characterizes the topology.

Theorem 1: Two compact surfaces iR® are
homeomorphic if and only if their Euler characteristics

are equal.

In other words, the EC Is “stable” — if you deform a
shape the EC remains the same.

Theorem 2: For a compact surfacg in R?,

x(S) = 2 — 2 x (the number of holes af).

How about 1-dimensional examples?
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» Euler characteristic

L

x(S')=4—-4=0.




l. The Euler characteristic

x(SH=4—-4=0.

Y(R)=4-3=1.

(For unbounded spaces we have to throw away
unbounded parts.)
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l. The Euler characteristic

Summary of Part |
The Euler characteristic of a spages

a difference of two integers.

The Euler characteristic Is “stable” — it's a topologice
Invariant.

Examples:
2-dim: x(S*) =2 and x(T) = 0.
1-dim: x(S)Y =0 and x(R)=1
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ll. The index of a linear map

Preview of Part 11

» The index of a linear map is an integer obtained by
taking thedifference of two numbers.

» The Index Is an “analytic” invariant.
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ll. The index of a linear map

Let IV and1V be finite-dimensional vector spaces and |
L:V —-W

be a linear mapwWhat is a good notion of “index™?
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Let IV andWV be finite-dimensional vector spaces and ¢
L:V —-W

be a linear mapWhat is a good notion of “index™?

What are some important objects associated td.?
Kernel:ker L = {v € V' | Lv = 0}.

Cokernel:WW/ImL (quotient vector space) where
ImL ={weW|w=Lvsomev eV} CW.

coker L represents all vectors i not in the image of..

How do you get an “index”?
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ll. The index of a linear map

Definition:

ind L = dim(ker L) — dim (W/ImL).

» Remark: We copy the Euler Characteristic, which is
also a difference of two integers.
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ll. The index of a linear map

ind L = dim(ker L) — dim (W/ImL).

Remark: We copy the Euler Characteristic, which is
also a difference of two integers.

Theorem: For any linear mafd. : V. — W, between
finite-dimensional vector spaces, we have

ind L =dimV — dim W.
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e Index of a linear map

By the rank-nullity theorem,

dimker L +dimIm L = dim V.



ll. The index of a linear map

“rool. By the rank-nullity theorem,

dimker L +dimIm L = dim V.

Therefore,

dimker L +dimIm L —dim W =dimV — dim W,
or
dim ker L — (dimW — dimImL) = dimV — dim W.
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ll. The index of a linear map

“rool. By the rank-nullity theorem,

dimker L +dimIm L = dim V.

Therefore,

dimker L +dimIm L —dim W =dimV — dim W,
or
dim ker L — (dimW — dimImL) = dimV — dim W.

Therefore,

dimker L — dim (W/Im L) = dim V' — dim W.
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Some thought reveals a “deep” connection:

ind L —— dimV —dim W

linear algebraic topological

This is a “deep” result.

Therefore, the index Is “stable” — if you change the
linear map, the index remains the same.

What about infinite-dimensional vector spaces?
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Let L : V" — W be alinear map between two possibly
Infinite-dimensional vector spaces.

(Same)

ind L = dim(ker L) — dim (W/ImL).

ind L Is only defined when the dimensions on the RHS
are finite. . . otherwiseind L Is undefined.

Linear maps for whichnd L is defined are called
Fredholm. The index, It turns out, Is still “stable” when
V andW are infinite-dimensional.

What does Fredholm mean intuitively?
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e Index of a linear map

o | s v AN N N RN O

m(ker L) < oo and 2) dim (W/ImL) < 00



ll. The index of a linear map

Fredholm means:
1) dim(ker L) < o0 and 2) dim (W/ImL) < 00
Recall:

L I1s Injective<=> ker L = 0.
L is surjective<— Im L = W, that is,IW/Im L = 0.
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Fredholm means:
1) dim(ker L) < o0 and 2) dim (W/ImL) < 00

Recall:

L I1s Injective<=> ker L = 0.

L is surjective<— Im L = W, that is,IW/Im L = 0.
Fredholm conveys thdt is

1) “almost” injective and 2) “almost” surjective

That Is, L Is “almost” an isomorphism.
What doesind L indicate, reveal, characterize?
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e Index of a linear map

s




ll. The index of a linear map
WriteV =ker LoV, W=W"oImL.

ker L W’
L: @ — @& (NB:W =W/ImL)
%4 Im L

Can we make makeL invertible by changing L on its
kernel?
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ll. The index of a linear map
WriteV =ker LoV, W=W"oImL.

ker L W’
L: @ — @& (NB:W =W/ImL)
%4 Im L

Can we make makeL invertible by changing L on its
kernel?

Ccases:

indL =0 = can makel invertible
indL >0 = excess of null vectors

indL <0 = deficiency of null vectors

The Ativah-Sinaer Index Theorem | -=p. 1



ind L indicates, reveals, characterizes how “faris
from being made invertible.

l.e., we can modifyl. onker L to get an invertible
operator Iffind L = 0.

The furtherind L is from zero, the more “non-invertible”
LS.

Examples of Fredholm operators?
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e Index of a linear map

etV =W = C°(R) anc etL::V—>W.
T
s,.L(f)=[")




ll. The index of a linear map

d
cx LLetV =W =C*R)andletL=—:V — V.

dx
(Thatis,L(f) = f'.)
e ker L:

ker L = {f € C*(R)| f/ = 0} = const. functions® R.
Thus,dim(ker L) = 1.
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ll. The index of a linear map

d
LetV =W =C>*R)andletL =—:V — V.

dx
(Thatis,L(f) = f'.)
ker L:

ker L = {f € C*(R)| f/ = 0} = const. functions® R.

Thus,dim(ker L) = 1.
W/Im L: Claim: Im L = W. Letg € W = C*°(R).

Define x
fz) = / g(t) dt.

Thenf € V andL(f) = g. Thus,
dim(W/Im L) = dim(W /W) = dim(0) = 0.
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e Index of a linear map

on't;

— dim(ker L) — dim (W/ImL) —1-0=1.



ll. The index of a linear map

EX 1 con't:
Thus,

ind L = dim(ker L) — dim (W/ImL) —1-0=1

» Hence,

ind, ——  x(R)

analytical topological

This Is a “deep” resuilt.

How about one more example?
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e Index of a linear map

etV =W = C>(S') and let

d



ll. The index of a linear map

Ex 2 LetV =W = C>®(S!) and let
d

L=—": .

o V - W

o ker L.
ker L = {f € C>(S") | f/(6) = 0} = const. functions= R

Thus,
dim(ker L) = 1.
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e Index of a linear map

ahelml <— / h(6)df = 0.
0




ll. The index of a linear map
EX 2 Con.i.

27
Lemma: h € ImL <~ / h(6)df = 0.
0
“roof: Suff: Assumeh = Lf = f'(6). Then,

/O " h(6) do : " F(0)do = f(2r) — F(0) = 0.
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ll. The index of a linear map
EX 2 Con.i.

2T
Lemma: h € ImL <= / h(6)df = 0.
0
Proof: Suff: Assumeh = Lf = f'(0). Then,

27 27
/O h(0) df = 0 f(0)do = f(2r) — f(0) = 0.
\[=Tox Assumef(f” h(0) df = 0. Define

0
(0) = /O h(t) dt.

Thenf(0) = f(2r) = 0. Therefore,f € C><(S').
Moreover,

f(0)=h) = h=LfcImlL.
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e Index of a linear map

L: Letg € W = C*(S!). Define

1 27‘(‘
h:=qg— — t) dt.
g 27T/0 g(t)




ll. The index of a linear map

EX 2 Con.t.
o W/Im L: Letg € W = C*°(S!). Define

1 2T
h::g——/ o(t) dt.
27T 0

Then, [" h(8) df = 0.

Lemma=— h = Lf (somef) =— g = Lf + const.
— W/Im L = R.

Thus,
dim(W/Im L) = dim(R) = 1.
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e Index of a linear map

— dim(ker L) — dim (W/ImL) —1-1=0.



ll. The index of a linear map
EX 2 Con.i.
Thus,
ind I = dim(ker L) — dim (W/ImL) —1-1=0.

» Hence,

analytical topological

This is a “deep” resuilt.
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Summary of Part Il
Foralinearmag. : V — W,

ind L = dim(ker L) — dim (W/ImL),

provided that the RHS is well-defined as an integer.

ind L Indicates, reveals, characterizes howfas
from being made invertible.

Specific examples suggest thatl L indicates, reveals,
characterizes certain topological information. The inde
IS “stable” — It’s an analytic invariant.

The interplay ofanalysis andtopology through the
Index is “deep” because it relates two distinct notions.

The Ativah-Sinaer Index Theorem | = p. 2



lll. The Gauss-Bonnet theorem

Preview of Part |l

» The Gauss-Bonnet theorem gives a formula relating
two aspects of a surface: Thapology and thegeometry.
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lll. The Gauss-Bonnet theorem

» Topology: The Euler Characteristic. E.g. Recall that
X(5%) = 2.
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Topology: The Euler Characteristic. E.g. Recall that
X(5%) = 2.
Geometry: The Curvature. E.g. consi@&r

The curvature measures how much the surface bends
away from the tangent plan& > 0 “bending away”;
K < 0 “bending into”.
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lll. The Gauss-Bonnet theorem

e Observation:

| | |
~ [ K= —/ | — — AreaS?)
2T Js2 2T Js2 2T
1
= —(4m) = 2.
27T( )

» Therefore,

1
M%:—/K
27T S2
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e Gauss-Bonnet theorem

er example: The TordB. Recally (T

=

K <0



lll. The Gauss-Bonnet theorem

Another example: The ToruB. Recally(T) = 0.

We have 1
L / K =0,
27T T
» Therefore,
1
T =— [ K
x(T) o |-
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Gauss-Bonnet theorem:Given an oriented, compact,
2-dimensional, Riemannian manifold, we have

xM) — + [, K
topological geometrica

The G-B formula bridges two areas of math: topology
and geometry.

The G-B formula is a “deep” result because it relates
two seemingly distinct properties of a surface.
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lll. The Gauss-Bonnet theorem

= x. Each of the surfaces

satisfies

1
— K = 2.
2T Wi

Not at all obvious!
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Summary of Parts I, II, 11l
The Euler Characteristic is a topological invariant.

The index of a linear map is an analytical invariant an
for one-dimensional topological spaces (the line and tr
circle), we saw that

ind L. = Euler Characteristic.

The Gauss-Bonnet formula: For a two-dimensional
surface,

. 1
Euler Characteristie- —/ K.
27T Wi
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I\ Index version of Gauss-Bonnet

Preview of Part IV

» As expected, given two-dimensional surface, there is
differential operatol. such that

. 1
ind L. = Euler Characteristie= —/ K.
27'(' M
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I\ Index version of Gauss-Bonnet

Let M be an oriented, compact, 2-dim., Riemannian
manifold.
\ector spaces:

V =C(M,TM)
— Infinitely differentiable tangent vector fields dd

W = C>=(M,R?)
= (basically) pairs of infinitely differentiable functionsd

“T'M” is for “tangent bundle of\/”.
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I\ Index version of Gauss-Bonnet

e Linear map:L : C*°(M,TM) — C*(M,R?) is the
map
L(v) = (—curlv , divo).

L i1s called thepoor man’s Gauss-Bonnet operator
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I\ Index version of Gauss-Bonnet

—xercise: Think of the torus a¥ = S x S;,. Let

. . 0, 9,
curl (fii +97,) = 59 — 5

. . > o, 0
div (fis-+ 97,) = G5 + 5

Prove that
ind L = 0.

Recall thaty(T) =0 = ind L = x(T).
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I\ Index version of Gauss-Bonnet

Theorem: (Consequence of Hodge theory). We have
ind L = x(M).

This theorem is a generalization of tReandS*
examples we did earlier!

Sincex(M) = 5~ [,, K, we have

indL —— o [,K

analytical geometrical

This Is a “deep” result.
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I\ Index version of Gauss-Bonnet

Summary of Part IV
If L:C(M, TM)— C>®(M,R?) is the poor man’s
G-B operator{ —curl , div ), then

ndL —— o [,K

analytical geometrical

This Is the iIndex formula version of the Gauss-Bonnet
formula.

The Atiyah-Singer index formula is a higher-dimension
version of the above formula!
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Part V. The Atiyah-Singer formula
Let M be an.oriented, compact, even-dim. Riemannial
manifold.

» Let £ andF' be Hermitian vector bundles avi and let

L:C*(M,F)— C>*(M,F)

be a “Gauss-Bonnet type operator” (technically called
Dirac operator).
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Let M be an oriented, compact, even-dim. Riemanniat
manifold.
Let £ andF' be Hermitian vector bundles o and let

L:C*(M,F)— C>*(M,F)

be a “Gauss-Bonnet type operator” (technically called
Dirac operator).

(Atiyah-Singer Index Theorem, 1963 ind L IS
Fredholm and the following index formula holds:

analytical geometrical

wherekK 45 Is anexplicitly defined polynomial in the
curvatures of\/, £/, andF..
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Can a linear map “detect” topological
Information?

Answer: Yes, via the index of the operator.

Are the topology and geometry related for a
smooth surface? What about the analysis and the
geometry?

Answer: Yes, via the Gauss-Bonnet formula; the
traditional and index versions.

Can all the above be generalized to higher
dimensional manifolds and vector bundles?

Answer: Yes — the Atiyah-Singer index formula.
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Questions you may have

We discussed a “poor man’s” Gauss-Bonnet operato
but a. ..

“poor man’s " Is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?
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We discussed a “poor man’s” Gauss-Bonnet operato
but a. ..

“poor man’s " IS a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

What is a Dirac operator?

What ISK 447
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Questions you may have

We discussed a “poor man’s” Gauss-Bonnet operato
but a. ..

“poor man’s " Is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

What is a Dirac operator?
What ISK 447

Answers In next index theory lecture!
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