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Main idea

Definition
in·dex
n. pl. in·dex·esor in·di·ces

1. Something that serves to guide, point out, or
otherwise facilitate reference.

2. Something that reveals or indicates; a sign.

3. An indicator or pointer, as on a scientific instrument.

4. Mathematics: A number derived from a formula,
used to characterize a set of data.

Today we’ll study two indexes.
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Outline of talk: Five main points

I. The index of a space (Euler characteristic)
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Outline of talk: Five main points

I. The index of a space (Euler characteristic)

II. The index of a linear map

III. The Gauss-Bonnet theorem — traditional version

IV. The Gauss-Bonnet theorem — index version

V. The Atiyah-Singer index theorem
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I. The Euler characteristic

Preview of Part I

• The Euler Characteristic is an integer obtained by
taking thedifference of two numbers.

• The Euler Characteristic is a topological invariant.
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I. The Euler characteristic

TheEuler Characteristic of a compact spaceS (really,
a CW complex of dimension≤ 2) is obtained by

1. putting dots all over your object.

2. connecting the dots (no crossings and every dot must
be linked to any other one through lines).

3. Counting the number of even (0 or 2) dimensional
shapes formed (E).

4. Counting the number of odd (1) dimensional shapes
formed (O).

χ(S) = E − O.
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I. The Euler characteristic

The sphere:

χ(S2) = E − O = (1 + 1) − 0 = 2.
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I. The Euler characteristic
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I. The Euler characteristic

χ(S2) = E − O = (3 + 2) − 3 = 2.

χ(S2) = E − O = (4 + 4) − 6 = 2.

No matter how many dots you mark and how you
connect them, you get2.
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I. The Euler characteristic

χ(torus) = 0,

χ(double torus) = −2,

χ(triple torus) = −4.
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I. The Euler characteristic
• In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.
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I. The Euler characteristic
• In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.

Theorem 1:Two compact surfaces inR3 are
homeomorphic if and only if their Euler characteristics
are equal.

In other words, the EC is “stable” — if you deform a
shape the EC remains the same.
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I. The Euler characteristic
• In what sense is the Euler Characteristic an index?

It indicates, reveals, characterizes the topology.

Theorem 1:Two compact surfaces inR3 are
homeomorphic if and only if their Euler characteristics
are equal.

In other words, the EC is “stable” — if you deform a
shape the EC remains the same.

Theorem 2:For a compact surfaceS in R
3,

χ(S) = 2 − 2 × (the number of holes ofS).

How about 1-dimensional examples?
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I. The Euler characteristic

χ(S1) = 4 − 4 = 0.
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I. The Euler characteristic

χ(S1) = 4 − 4 = 0.

χ(R) = 4 − 3 = 1.

(For unbounded spaces we have to throw away
unbounded parts.)
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I. The Euler characteristic
Summary of Part I

• The Euler characteristic of a spaceS is

χ(S) = E − O,

a difference of two integers.

• The Euler characteristic is “stable” — it’s a topological
invariant.

• Examples:

2-dim: χ(S2) = 2 and χ(T) = 0.

1-dim: χ(S1) = 0 and χ(R) = 1.
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II. The index of a linear map
Preview of Part II

• The index of a linear map is an integer obtained by
taking thedifference of two numbers.

• The index is an “analytic” invariant.
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II. The index of a linear map

Let V andW be finite-dimensional vector spaces and let

L : V → W

be a linear map.What is a good notion of “index”?
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II. The index of a linear map

Let V andW be finite-dimensional vector spaces and let

L : V → W

be a linear map.What is a good notion of “index”?

What are some important objects associated toL?

• Kernel:ker L = {v ∈ V |Lv = 0}.

• Cokernel:W/ImL (quotient vector space) where
ImL = {w ∈ W |w = Lv somev ∈ V } ⊆ W .

coker L represents all vectors inW not in the image ofL.

How do you get an “index”?
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II. The index of a linear map

Definition:

ind L = dim(ker L) − dim
(

W/ImL
)

.

• Remark: We copy the Euler Characteristic, which is
also a difference of two integers.
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II. The index of a linear map

Definition:

ind L = dim(ker L) − dim
(

W/ImL
)

.

• Remark: We copy the Euler Characteristic, which is
also a difference of two integers.

Theorem: For any linear mapL : V → W , between
finite-dimensional vector spaces, we have

ind L = dim V − dim W.
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II. The index of a linear map

Proof: By the rank-nullity theorem,

dim ker L + dim ImL = dim V.
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II. The index of a linear map

Proof: By the rank-nullity theorem,

dim ker L + dim ImL = dim V.

Therefore,

dim ker L + dim Im L − dim W = dim V − dim W,

or
dim ker L −

(

dim W − dim ImL
)

= dim V − dim W.
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II. The index of a linear map

Proof: By the rank-nullity theorem,

dim ker L + dim ImL = dim V.

Therefore,

dim ker L + dim Im L − dim W = dim V − dim W,

or
dim ker L −

(

dim W − dim ImL
)

= dim V − dim W.

Therefore,

dim ker L − dim
(

W/ImL
)

= dim V − dim W.
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II. The index of a linear map

• Some thought reveals a “deep” connection:

ind L dim V − dim W

linear algebraic topological

This is a “deep” result.

Therefore, the index is “stable” — if you change the
linear map, the index remains the same.

What about infinite-dimensional vector spaces?
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II. The index of a linear map
Let L : V → W be a linear map between two possibly
infinite-dimensional vector spaces.

(Same)Definition:

ind L = dim(ker L) − dim
(

W/ImL
)

.

ind L is only defined when the dimensions on the RHS
are finite. . . otherwiseind L is undefined.

Linear maps for whichind L is defined are called
Fredholm. The index, it turns out, is still “stable” when
V andW are infinite-dimensional.

What does Fredholm mean intuitively?
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II. The index of a linear map
Fredholm means:

1) dim(ker L) < ∞ and 2) dim
(

W/ImL
)

< ∞
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II. The index of a linear map
Fredholm means:

1) dim(ker L) < ∞ and 2) dim
(

W/ImL
)

< ∞

Recall:
L is injective⇐⇒ ker L = 0.
L is surjective⇐⇒ ImL = W ; that is,W/Im L = 0.
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II. The index of a linear map
Fredholm means:

1) dim(ker L) < ∞ and 2) dim
(

W/ImL
)

< ∞

Recall:
L is injective⇐⇒ ker L = 0.
L is surjective⇐⇒ ImL = W ; that is,W/Im L = 0.

Conclusion:
Fredholm conveys thatL is

1) “almost” injective and 2) “almost” surjective.

That is,L is “almost” an isomorphism.

What doesind L indicate, reveal, characterize?
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II. The index of a linear map
Write V = ker L ⊕ V ′ , W = W ′ ⊕ Im L.
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II. The index of a linear map
Write V = ker L ⊕ V ′ , W = W ′ ⊕ Im L.

L :

ker L

⊕

V ′

→

W ′

⊕

ImL

(

NB: W ′ ∼= W/Im L
)

Can we make makeL invertible by changing L on its
kernel?
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II. The index of a linear map
Write V = ker L ⊕ V ′ , W = W ′ ⊕ Im L.

L :

ker L

⊕

V ′

→

W ′

⊕

ImL

(

NB: W ′ ∼= W/Im L
)

Can we make makeL invertible by changing L on its
kernel?

Cases:

ind L = 0 =⇒ can makeL invertible

ind L > 0 =⇒ excess of null vectors

ind L < 0 =⇒ deficiency of null vectors
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II. The index of a linear map
Conclusion:

• ind L indicates, reveals, characterizes how “far”L is
from being made invertible.

I.e., we can modifyL onker L to get an invertible
operator iffind L = 0.

The furtherind L is from zero, the more “non-invertible”
L is.

Examples of Fredholm operators?
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II. The index of a linear map
Ex 1: Let V = W = C∞(R) and letL =

d

dx
: V → W .

(That is,L(f) = f ′.)

The Atiyah-Singer Index Theorem I – p. 21/43



II. The index of a linear map
Ex 1: Let V = W = C∞(R) and letL =

d

dx
: V → W .

(That is,L(f) = f ′.)
• ker L:

ker L = {f ∈ C∞(R) | f ′ = 0} = const. functions∼= R.

Thus,dim(ker L) = 1.
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II. The index of a linear map
Ex 1: Let V = W = C∞(R) and letL =

d

dx
: V → W .

(That is,L(f) = f ′.)
• ker L:

ker L = {f ∈ C∞(R) | f ′ = 0} = const. functions∼= R.

Thus,dim(ker L) = 1.
• W/ImL: Claim: Im L = W . Let g ∈ W = C∞(R).
Define

f(x) =

∫ x

0

g(t) dt.

Thenf ∈ V andL(f) = g. Thus,

dim(W/Im L) = dim(W/W ) = dim(0) = 0.
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II. The index of a linear map

Ex 1 con’t:
Thus,

ind L = dim(ker L) − dim
(

W/ImL
)

= 1 − 0 = 1.
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II. The index of a linear map

Ex 1 con’t:
Thus,

ind L = dim(ker L) − dim
(

W/ImL
)

= 1 − 0 = 1.

• Hence,

ind L χ(R)

analytical topological

This is a “deep” result.

How about one more example?
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II. The index of a linear map

Ex 2: Let V = W = C∞(S1) and let

L =
d

dθ
: V → W.
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II. The index of a linear map

Ex 2: Let V = W = C∞(S1) and let

L =
d

dθ
: V → W.

• ker L:

ker L = {f ∈ C∞(S1) | f ′(θ) = 0} = const. functions∼= R.

Thus,
dim(ker L) = 1.
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II. The index of a linear map
Ex 2 con’t:

Lemma: h ∈ ImL ⇐⇒

∫

2π

0

h(θ) dθ = 0.
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II. The index of a linear map
Ex 2 con’t:

Lemma: h ∈ ImL ⇐⇒

∫

2π

0

h(θ) dθ = 0.

Proof: Suff: Assumeh = Lf = f ′(θ). Then,
∫

2π

0

h(θ) dθ =

∫

2π

0

f ′(θ) dθ = f(2π) − f(0) = 0.
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II. The index of a linear map
Ex 2 con’t:

Lemma: h ∈ ImL ⇐⇒

∫

2π

0

h(θ) dθ = 0.

Proof: Suff: Assumeh = Lf = f ′(θ). Then,
∫

2π

0

h(θ) dθ =

∫

2π

0

f ′(θ) dθ = f(2π) − f(0) = 0.

Nec: Assume
∫

2π

0
h(θ) dθ = 0. Define

f(θ) =

∫ θ

0

h(t) dt.

Thenf(0) = f(2π) = 0. Therefore,f ∈ C∞(S1).
Moreover,

f ′(θ) = h(θ) =⇒ h = Lf ∈ Im L.
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II. The index of a linear map
Ex 2 con’t:
• W/ImL: Let g ∈ W = C∞(S1). Define

h := g −
1

2π

∫

2π

0

g(t) dt.

Then,
∫

2π

0
h(θ) dθ = 0.
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II. The index of a linear map
Ex 2 con’t:
• W/ImL: Let g ∈ W = C∞(S1). Define

h := g −
1

2π

∫

2π

0

g(t) dt.

Then,
∫

2π

0
h(θ) dθ = 0.

Lemma=⇒ h = Lf (somef ) =⇒ g = Lf + const.

=⇒ W/ImL ∼= R.

Thus,
dim(W/Im L) = dim(R) = 1.
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II. The index of a linear map
Ex 2 con’t:
Thus,

ind L = dim(ker L) − dim
(

W/ImL
)

= 1 − 1 = 0.

The Atiyah-Singer Index Theorem I – p. 26/43



II. The index of a linear map
Ex 2 con’t:
Thus,

ind L = dim(ker L) − dim
(

W/ImL
)

= 1 − 1 = 0.

• Hence,

ind L χ(S1)

analytical topological

This is a “deep” result.

The Atiyah-Singer Index Theorem I – p. 26/43



II. The index of a linear map
Summary of Part II

• For a linear mapL : V → W ,

ind L = dim(ker L) − dim
(

W/ImL
)

,

provided that the RHS is well-defined as an integer.

• ind L indicates, reveals, characterizes how farL is
from being made invertible.

• Specific examples suggest thatind L indicates, reveals,
characterizes certain topological information. The index
is “stable” — it’s an analytic invariant.

• The interplay ofanalysis andtopology through the
index is “deep” because it relates two distinct notions.
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III. The Gauss-Bonnet theorem

Preview of Part III

• The Gauss-Bonnet theorem gives a formula relating
two aspects of a surface: Thetopology and thegeometry.
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III. The Gauss-Bonnet theorem

• Topology: The Euler Characteristic. E.g. Recall that
χ(S2) = 2.
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III. The Gauss-Bonnet theorem

• Topology: The Euler Characteristic. E.g. Recall that
χ(S2) = 2.

• Geometry: The Curvature. E.g. considerS
2,

K = 1

•

The curvature measures how much the surface bends
away from the tangent plane.K > 0 “bending away”;
K < 0 “bending into”.

The Atiyah-Singer Index Theorem I – p. 29/43



III. The Gauss-Bonnet theorem

• Observation:

1

2π

∫

S2

K =
1

2π

∫

S2

1 =
1

2π
Area(S2)

=
1

2π
(4π) = 2.

• Therefore,

χ(S2) =
1

2π

∫

S2

K.
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III. The Gauss-Bonnet theorem

Another example: The TorusT. Recallχ(T) = 0.

K > 0 K = 0 K < 0
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III. The Gauss-Bonnet theorem

Another example: The TorusT. Recallχ(T) = 0.

K > 0 K = 0 K < 0

We have 1

2π

∫

T

K = 0.

• Therefore,

χ(T) =
1

2π

∫

T

K.
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III. The Gauss-Bonnet theorem

Gauss-Bonnet theorem:Given an oriented, compact,
2-dimensional, Riemannian manifoldM , we have

χ(M) 1

2π

∫

M
K

topological geometrical

• The G-B formula bridges two areas of math: topology
and geometry.

• The G-B formula is a “deep” result because it relates
two seemingly distinct properties of a surface.
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III. The Gauss-Bonnet theorem

Ex. Each of the surfaces

satisfies
1

2π

∫

M

K = 2.

Not at all obvious!
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III. The Gauss-Bonnet theorem
Summary of Parts I, II, III

• The Euler Characteristic is a topological invariant.

• The index of a linear map is an analytical invariant and
for one-dimensional topological spaces (the line and the
circle), we saw that

ind L = Euler Characteristic.

• The Gauss-Bonnet formula: For a two-dimensional
surface,

Euler Characteristic=
1

2π

∫

M

K.
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IV. Index version of Gauss-Bonnet

Preview of Part IV

• As expected, given two-dimensional surface, there is a
differential operatorL such that

ind L = Euler Characteristic=
1

2π

∫

M

K.
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IV. Index version of Gauss-Bonnet

Let M be an oriented, compact, 2-dim., Riemannian
manifold.
• Vector spaces:

V = C∞(M,TM)

= infinitely differentiable tangent vector fields onM

W = C∞(M, R2)

= (basically) pairs of infinitely differentiable functions on M

“TM ” is for “tangent bundle ofM ”.

The Atiyah-Singer Index Theorem I – p. 36/43



IV. Index version of Gauss-Bonnet

• Linear map:L : C∞(M,TM) → C∞(M, R2) is the
map

L(v) = (−curl v , div v).

L is called thepoor man’s Gauss-Bonnet operator.
�

?
6

�

^�
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IV. Index version of Gauss-Bonnet

Exercise: Think of the torus asT = S
1

θ × S
1

ϕ. Let

curl (f~ıθ + g~ϕ) =
∂g

∂θ
−

∂f

∂ϕ
.

div (f~ıθ + g~ϕ) =
∂f

∂θ
+

∂g

∂ϕ
.

Prove that
ind L = 0.

Recall thatχ(T) = 0 =⇒ ind L = χ(T).
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IV. Index version of Gauss-Bonnet
• Theorem: (Consequence of Hodge theory). We have

ind L = χ(M).

This theorem is a generalization of theR andS
1

examples we did earlier!

• Sinceχ(M) = 1

2π

∫

M
K, we have

ind L 1

2π

∫

M
K

analytical geometrical

This is a “deep” result.
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IV. Index version of Gauss-Bonnet
Summary of Part IV

If L : C∞(M,TM) → C∞(M, R2) is the poor man’s
G-B operator(−curl , div ), then

ind L 1

2π

∫

M
K

analytical geometrical

This is the index formula version of the Gauss-Bonnet
formula.

The Atiyah-Singer index formula is a higher-dimensional
version of the above formula!
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Part IV: The Atiyah-Singer formula
Let M be an oriented, compact, even-dim. Riemannian
manifold.
• Let E andF be Hermitian vector bundles onM and let

L : C∞(M,E) → C∞(M,F )

be a “Gauss-Bonnet type operator” (technically called a
Dirac operator).
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Part IV: The Atiyah-Singer formula
Let M be an oriented, compact, even-dim. Riemannian
manifold.
• Let E andF be Hermitian vector bundles onM and let

L : C∞(M,E) → C∞(M,F )

be a “Gauss-Bonnet type operator” (technically called a
Dirac operator).
• (Atiyah-Singer Index Theorem, 1963) ind L is
Fredholm and the following index formula holds:

ind L
∫

M
KAS,

analytical geometrical

whereKAS is anexplicitly defined polynomial in the
curvatures ofM,E, andF .
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Summary of Talk

Question: Can a linear map “detect” topological
information?

Answer: Yes, via the index of the operator.

Question: Are the topology and geometry related for a
smooth surface? What about the analysis and the
geometry?

Answer: Yes, via the Gauss-Bonnet formula; the
traditional and index versions.

Question: Can all the above be generalized to higher
dimensional manifolds and vector bundles?

Answer: Yes — the Atiyah-Singer index formula.
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Questions you may have

• We discussed a “poor man’s” Gauss-Bonnet operator,
but a. . .

“poor man’s ” is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?
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Questions you may have

• We discussed a “poor man’s” Gauss-Bonnet operator,
but a. . .

“poor man’s ” is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?
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Questions you may have

• We discussed a “poor man’s” Gauss-Bonnet operator,
but a. . .

“poor man’s ” is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?

• What isKAS?
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Questions you may have

• We discussed a “poor man’s” Gauss-Bonnet operator,
but a. . .

“poor man’s ” is a cheaper, simpler version of .

So, what is the true Gauss-Bonnet operator?

• What is a Dirac operator?

• What isKAS?

• Answers in next index theory lecture!
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