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Abstract. In this expository article, we survey index theory of Dirac oper-

ators using the Gauss-Bonnet formula as the catalyst to discuss index for-

mulas on manifolds with and without boundary. Considered in detail are the

Atiyah-Singer and Atiyah-Patodi-Singer index theorems, their heat kernel

proofs, and their generalizations to manifolds with corners of codimension
two via the method of ‘attaching cylindrical ends’.

1. Introduction: The Gauss-Bonnet formula and index theory

The purpose of this paper is to serve as an overview of index theory for Dirac
operators on manifolds with corners with emphasis on the b-geometry approach of
Melrose [59] to such a theory. The underlying theme of this paper is that index
formulas are basically generalizations of the classical Gauss-Bonnet formula.

This paper is organized as follows. First, to understand what index theory is
and why it is important, we recall the Gauss-Bonnet formula. In particular, we
interpret the Gauss-Bonnet formula as an index formula. This interpretation leads
us naturally to the Atiyah-Singer index formula for Dirac operators on manifolds
without boundary published in 1963 [6], which we discuss in Section 2. In 1973,
Atiyah, Patodi, and Singer in the seminal paper [4] extended the Atiyah-Singer
formula for Dirac operators to manifolds with smooth boundary. We present this
formula from the ‘cylindrical end’ point of view in Section 3. We also reformulate
the Atiyah-Patodi-Singer (henceforth APS) problem using the language and no-
tation of the b-geometry. In Section 4, we present a b-geometric proof of the APS
index formula. Currently, there is no direct analog of the ‘APS index formula’ for
manifolds with corners of codimension two, except under certain restrictive non-
degeneracy conditions [51], [67], which we discuss in Section 5. However, in joint
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Figure 1. The manifold Pθ, where −π < θ < π, is the unit
sphere with a wedge removed.

work with Melrose [53], these restrictions are removed by perturbing Dirac opera-
tors using b-smoothing operators. We discuss such perturbations and the resulting
index formulas for the perturbed Dirac operators in Section 6.

Finally, I thank Gerd Grubb, Rafe Mazzeo, and Richard Melrose for helping
to make this research possible. I also thank the referees for valuable suggestions.

1.1. The classical Gauss-Bonnet formula. Let M be a compact, oriented,
two-dimensional Riemannian manifold without boundary. Then the Gauss-Bonnet
theorem states that

(1.1) χ(M) =
1

2π

∫

M

K,

where χ(M) is the Euler characteristic of M and K is the Gaussian curvature
of M . The interesting aspect of the Gauss-Bonnet formula is that the left-hand
side is a topological/combinatorial object while the right-hand side is a geometric
object.1 This formula was proved by Bonnet in 1848, but is attributed also to
Gauss because he proved a special case of it earlier. See [68, Ch. 8] for a proof of
the Gauss-Bonnet formula.

A natural question to ask is: Does the Gauss-Bonnet formula continue to hold
if M has a smooth boundary, or more generally, if M has corners; that is, has a
crooked boundary? To answer this question, we consider a concrete example. Cut
out a wedge from the unit sphere producing the manifold Pθ, where −π < θ < π,
as shown in Figure 1. This manifold is an example of a manifold with corners
of codimension two. Let us check if (1.1) holds verbatim for Pθ. Note that Pθ

is topologically equivalent to a disk and hence to a triangle and so has Euler
characteristic equal to one (since the number of vertices − edges + faces = 1 for a
triangle). Since the Gaussian curvature of the unit sphere is one,

∫
Pθ

K = Area(Pθ).

Thus
∫

Pθ
K changes with θ: It is approximately 4π when θ is close to −π and it

decreases to 0 as θ approaches +π. Hence,

χ(Pθ) 6=
1

2π

∫

Pθ

K for general θ.

Thus the Gauss-Bonnet formula (1.1) does not hold verbatim when M has corners.
Intuitively, one might guess that the formula does not hold because of the presence

1The right-hand side of (1.1) turns out to be topological as well since −K/2π defines the

Chern class of M .
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of the boundary and corners. In fact, one can verify directly that the following
formula does hold:

(1.2) χ(Pθ) =
1

2π

∫

Pθ

K +
1

2π
(2θ).

The angle 2θ is called the total exterior angle of the corners. This formula is a
special case of the general Gauss-Bonnet formula:

Theorem 1.1 (Gauss-Bonnet, 1878). Given a compact, oriented, two-dimen-
sional Riemannian manifold M with corners, we have

χ(M) =
1

2π

∫

M

K

+
1

2π
(total geodesic curvature of ∂M)

+
1

2π
(sum of the exterior angles at the corners).

(1.3)

Here, the geodesic curvature of ∂M measures the deviation of the smooth
components of ∂M from being geodesics. There is no middle term in the formula
(1.2) since the smooth components of ∂Pθ are great circles, which are geodesics
on the sphere. Hence, the total geodesic curvature of ∂Pθ is zero.

The Gauss-Bonnet formula in (1.3) is very beautiful as it bridges topology,
geometry, and now linear algebra: The left-hand side belongs to combinatorial
topology while the first two terms on the right are geometrical and the last term is
linear algebraic since it has to do with angles between vectors at the corners.
Functional analysis also comes into the picture when we interpret the Gauss-
Bonnet formula as an index formula. We remark that comparing the Gauss-Bonnet
formula (1.1) for a manifold without boundary to the general formula (1.3), we see
that the second and third terms on the right in (1.3) can be thought of as correction
terms coming from the smooth boundary components and corners respectively.

1.2. The Gauss-Bonnet formula as an index formula. We now explain
how the Gauss-Bonnet formula can be interpreted as an index formula. We first
need to introduce the Gauss-Bonnet operator. Let M be a compact, oriented,
two-dimensional Riemannian manifold without boundary. Let

d : C∞(M,Λk) → C∞(M,Λk+1)

be the exterior derivative, where C∞(M,Λk) denotes the space of smooth k-forms
on M , and let

d∗ : C∞(M,Λk+1) → C∞(M,Λk)

be the adjoint of d with respect to the natural L2 inner product on k-forms given
by integration with respect to the Riemannian volume form. Let Λev = Λ0 ⊕ Λ2

be the even form bundle and Λodd = Λ1 be the odd form bundle. Then both d and
d∗ map C∞(M,Λev) into C∞(M,Λodd). The operator

DGB = d + d∗ : C∞(M,Λev) → C∞(M,Λodd)
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is called the Gauss-Bonnet operator. By definition of the (nonnegative) Laplacian,

D∗
GBDGB = ∆,

where ∆ is the Laplacian on the even forms. Thus, DGB represents in some respects
a square root of the Laplacian. For this reason DGB is called a Dirac operator after
the physicist Paul Dirac who in the 1920’s was searching for, and found, a square
root of the Laplacian in his efforts to quantize the electron. However, in his case,
he was working with a Lorentz metric rather than a Riemannian metric.

Before presenting the index formula interpretation of the Gauss-Bonnet for-
mula, we recall two results from Hodge theory. We denote the Sobolev space of
order k by Hk. So, Hk(M,Λev) consists of those even-degree forms u on M such
that for each 0 ≤ j ≤ k, (d + d∗)ju is square integrable. Then H1(M,Λev) is the
natural domain of DGB .

Theorem 1.2. The operator DGB : H1(M,Λev) → L2(M,Λodd) is Fredholm,
which means that it is ‘almost invertible’ in the sense that

(1) DGB has a finite dimensional kernel; dim ker DGB < ∞.
(2) DGB has a finite dimensional cokernel;

dim coker DGB = dim
(
L2(M,Λodd)/Im(DGB)

)
< ∞.

The first condition means that DGB is ‘almost injective’ in the sense that
it is injective up to a finite dimensional space, and the second condition means
that DGB is ‘almost surjective’ in the sense that it is surjective up to a finite
dimensional space. The index is the difference between the dimensions of the kernel
and cokernel:

indDGB = dim ker DGB − dim coker DGB ∈ Z.

Theorem 1.2 follows from the fact that DGB is elliptic, and can be proved in a
variety of ways, for instance, using pseudodifferential operators [34], by embedding
properties of Sobolev spaces [74], or my favorite proof via the heat operator [9].
The second result we need is:

Theorem 1.3. The index of DGB is the Euler characteristic of M ,

indDGB = χ(M).

This result can be proved using the Hodge theorem, which is described as
follows. Define the k-th deRham cohomology of M by

Hk
dR(M) = {α ∈ C∞(M,Λk) ; dα = 0}/{dβ ; β ∈ C∞(M,Λk−1)}.

The Hodge theorem states that given a deRham cohomology class [α] ∈ Hk
dR(M)

there exists a unique representative of this class β ∈ [α] such that (d+d∗)β = 0. It
is worthwhile mentioning that although the exterior derivative d is canonical, the
operator d∗ depends on the Riemannian metric chosen on the manifold. The work
of Connes with Gromov and Moscovici [25] treats a branch of index theory which
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deals with the analytic difficulties involved in not having a suitable invariant inner
product. In any case, the Hodge theorem implies the important fact

ker(d + d∗) on k forms ∼= Hk
dR(M).

Now using the description of the Euler characteristic in terms of the cohomology:

χ(M) =
∑

k even

dim Hk
dR(M) −

∑

k odd

dim Hk
dR(M)

= dim H0
dR(M) + dim H2

dR(M) − dim H1
dR(M),

and the fact that cokerDGB
∼= ker D∗

GB , one gets Theorem 1.3. In view of the
Gauss-Bonnet formula (1.1), we finally have

Theorem 1.4 (Index version of Gauss-Bonnet). For the Gauss-Bonnet op-
erator on a compact, oriented, two-dimensional Riemannian manifold M without
boundary, we have

indDGB =
1

2π

∫

M

K.

The profound aspect about this version of the Gauss-Bonnet formula is that
the left-hand side is a functional analytic object related to the existence and
uniqueness of solutions to the equation DGBu = f , while the right-hand side
is a topological/geometric object. Hence, this formula implies the important fact
that the topology/geometry of the manifold can be investigated using functional
analysis. We now discuss a far-reaching generalization of this formula to higher
dimensional manifolds without boundary. We discuss generalizations of the Gauss-
Bonnet formula (1.3) for manifolds with corners in Sections 3, 5, and 6.

2. The Atiyah-Singer index formula

According to Hirzebruch (cf. [14, p. vii]) the Atiyah-Singer formula is “one of
the deepest and hardest results in mathematics”, “probably has wider ramifications
in topology and analysis than any other single result”. Although the proof of the
Atiyah-Singer formula is difficult, understanding it is not if one keeps in mind that
it is basically a higher dimensional analog of the Gauss-Bonnet formula.

In this section, we describe the Atiyah-Singer index formula and we outline
its proof using the ‘heat kernel method’.

2.1. Statement of the Atiyah-Singer index theorem. There are two
ingredients to the Atiyah-Singer index formula. The first is topological/geometric
data: Let M be an even-dimensional, compact, oriented, Riemannian manifold
without boundary, and let E and F be Hermitian vector bundles over M . The
second ingredient is functional analytic/geometric data: Let

D : C∞(M,E) → C∞(M,F )
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be a Dirac type operator. This means that D is an elliptic first-order differential
operator such that “D∗D = ∆” in the sense that the principal symbol of D∗D is
just the metric σ(D∗D)(ξ) = |ξ|2 for all cotangent vectors ξ.2

The simplest example of a Dirac type operator is the Cauchy-Riemann oper-
ator. Let M = R

2 with its usual Euclidean metric and let E = F = C. Then

DCR = ∂x + i∂y

is the Cauchy-Riemann operator. In this case,

D∗
CRDCR =

(
− ∂x + i∂y

)(
∂x + i∂y

)
= −

(
∂2

x + ∂2
y

)

is exactly the Laplacian.
Another example is the higher-dimensional Gauss-Bonnet operator. Let M be

an even-dimensional, compact, oriented, Riemannian manifold without boundary,
and let E and F be the even and odd degree form bundles, respectively:

E = Λev =
⊕

k even

Λk and F = Λodd =
⊕

k odd

Λk.

Then,
DGB = d + d∗ : C∞(M,Λev) → C∞(M,Λodd)

is called the Gauss-Bonnet operator. By definition of the Laplacian on forms, we
have D∗

GBDGB = ∆, and so DGB is a Dirac operator. Since the even and odd form
bundles are real bundles, they of course are technically not Hermitian, but we can
always make them so by complexifying them. Regardless, the index formula below
still applies to the Gauss-Bonnet operator.

The celebrated Atiyah-Singer index theorem is the following.

Theorem 2.1 (Atiyah-Singer, 1963). Let D : C∞(M,E) → C∞(M,F ) be
a Dirac type operator on an even-dimensional, compact, oriented, Riemannian
manifold without boundary. Then, D : H1(M,E) → L2(M,F ) is Fredholm and

(2.1) indD =

∫

M

KAS ,

where the ‘Atiyah-Singer integrand’ KAS is an explicitly defined polynomial in the
curvature forms of the manifold M and the vector bundles E and F .

The integral of the polynomial KAS is by definition the integral of the volume
form component of KAS . For those readers familiar with characteristic classes, the
polynomial KAS is the product of the Â polynomial of M and the (relative) Chern
polynomials of E and F , see [9, Ch. 4]. Hence, KAS is both a topological and a
geometric object. The reason why we assume that M is even-dimensional is that
for odd-dimensional manifolds it turns out that both sides of (2.1) are zero.

Note the similarity between the index version of the Gauss-Bonnet formula
given in Theorem 1.4 and the Atiyah-Singer formula for the index of a Dirac type

2In some occasions, we will need D to be a compatible Dirac operator, which means that

it is associated to a ‘unitary Clifford connection’. For simplicity, we leave this notion undefined,

and at the few places where we actually need this extra hypothesis, we will state so in a footnote.



INDEX OF DIRAC OPERATORS 7

operator: The Gaussian curvature in the Gauss-Bonnet formula is replaced by
a polynomial in the curvature of the manifold and vector bundles. As with the
Gauss-Bonnet formula, the profound feature of the Atiyah-Singer formula is that
the left-hand side of (2.1) is a functional analytic object related to the existence
and uniqueness of solutions to the equation Du = f , while the right-hand side is
a topological/geometric object. In particular, the Atiyah-Singer formula has the
following deep consequence: It implies that the topology/geometry of a manifold
can be investigated using functional analytic tools, cf. [72], [55], and Section 2.3.

For an application of the Atiyah-Singer index theorem, consider the Gauss-
Bonnet operator defined above. As in the two-dimensional case explained before
Theorem 1.4, for a general even-dimensional, compact, oriented, Riemannian man-
ifold without boundary, Hodge theory implies that

indDGB = χ(M).

On the other hand, see [9, Ch. 4] for the details, working out the explicitly defined
polynomial KAS for E = Λev and F = Λodd gives, after a little bit of algebra,

KAS = e(M),

where e(M) is the Euler, or Pfaffian, polynomial defined by taking the n-th power
of the Riemannian curvature tensor of M and multiplying it by 1/n!× (−1/2π)n,
where 2n is the dimension of M . Thus, the Atiyah-Singer index formula implies

χ(M) =

∫

M

e(M).

This generalization of the Gauss-Bonnet formula is due to Chern [23].
Another important corollary of the Atiyah-Singer formula is Hirzebruch’s for-

mula for the signature of a manifold. Assume now that M is 4k dimensional. Then
the map

H2k
dR(M) × H2k

dR(M) 3 ([α ], [β ]) 7−→
∫

M

α ∧ β ∈ R

is a well-defined symmetric bilinear map (here, [ · ] denotes the corresponding co-
homology class). We can represent this map by a matrix by choosing any basis
of the finite dimensional real vector space H2k

dR(M). The signature of this matrix,
the number of positive eigenvalues minus the number of negative ones, is defined
independent of the basis chosen; the signature of the manifold, sign(M), is by def-
inition the signature of the matrix with respect to any such basis. Hirzebruch [42]
gives a formula for the signature:

sign(M) =

∫
L(M),

where L(M) is the L-class polynomial in the curvature tensor of M . This formula
is a simple corollary of the Atiyah-Singer index theorem. In this case, D is the
‘signature operator’, which is equal to d + d∗ like the Gauss-Bonnet operator, but
with the vector bundles E and F being essentially certain eigenspaces of the Hodge
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star operator. The details can be found in [9]. For those interested readers, the
L-class polynomial is given by

L(M) =

√
det

( R/2πi

tanh(R/2πi)

)
,

where R is the Riemannian curvature tensor.
Yet another classical formula that is a simple corollary of the Atiyah-Singer

index formula is the Riemann-Roch formula and its generalization to complex
manifolds, see [9], [34], [74].

2.2. Outline of the proof of the Atiyah-Singer formula. We outline
a proof of the Atiyah-Singer index theorem based on the heat kernel approach
of Mckean and Singer [57] as exploited by Atiyah, Bott, and Patodi in [2]. For
accessible versions of the proof, see [9], [34], [82]. I especially like the exposition
by Roe [74].

To start off, we need the heat operators e−tD∗D and e−tDD∗

. Consider for
instance e−tD∗D. Then, for each t > 0,

e−tD∗D : C∞(M,E) → C∞(M,E),

and it is the solution operator to the heat equation for D∗D in the sense that for
each u ∈ C∞(M,E), ut = e−tD∗Du is the unique solution to the heat equation

(∂t + D∗D)ut = 0, t > 0; u0 = u.

The heat operator e−tD∗D can be defined by means of the resolvent and the func-
tional calculus (cf. [34], [51]), it can be constructed asymptotically via Hadamard’s
method (cf. [9], [59]), or it can be defined using the spectrum as follows. Let {λj}
be the eigenvalues of the self-adjoint operator D∗D. Then,

e−tD∗D =
∑

j

e−tλj πj ,

where πj is the orthogonal projection onto the eigenspace associated to the eigen-
value λj . This sum converges uniformly and absolutely and in fact, it can be used
to show that the heat operator is, for each t > 0, a smoothing operator; that is,
for each t > 0 the heat operator is an integral operator with a smooth Schwartz
kernel [74]. In particular, for each t > 0, the heat operator is trace class and

(2.2) e−tD∗D = πker D∗D + F (t),

where the remainder F (t) → 0 exponentially in the space of smoothing operators
as t → ∞. A similar formula holds for e−tDD∗

.
The key steps of the Mckean-Singer proof are to consider the function

h(t) = Tr(e−tD∗D) − Tr(e−tDD∗

)
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and to prove the following amazing properties:

(1) lim
t→∞

h(t) = indD,

(2) lim
t→0

h(t) =

∫

M

KAS ,

(3)
d

dt
h(t) = 0 so that h(t) is constant.

Equating the values of the constant function h(t) at t = 0 and t = ∞ proves the
index formula. Consider property (1). The formula (2.2) implies that

lim
t→∞

h(t) = Tr(πker D∗D) − Tr(πker DD∗)

= dim ker D∗D − dim ker DD∗.

Integration by parts shows that kerD∗D = kerD and ker DD∗ = kerD∗. Indeed,
clearly ker D ⊂ ker D∗D and if (·, ·) denotes the L2 inner product, then

D∗Du = 0 ⇒ (D∗Du, u) = 0 ⇒ (Du,Du) = 0 ⇒ Du = 0.

Thus ker D∗D ⊂ ker D and so ker D∗D = kerD. Similarly, kerDD∗ = kerD∗.
Thus, as coker D ∼= ker D∗, we obtain

lim
t→∞

h(t) = indD.

To determine the limit as t → 0 of h(t), we use the trace formulas:

Tr(e−tD∗D) =

∫

M

tr e−tD∗D(p, p) dg, Tr(e−tDD∗

) =

∫

M

tr e−tDD∗

(p, p) dg,

obtained by integrating the pointwise trace of the heat kernels restricted to the
diagonal. Now the local index theorem states that3

lim
t→0

{
tr e−tD∗D(p, p) − tr e−tDD∗

(p, p)
}

= KAS(p)

uniformly in t, where the right-hand side really represents the coefficient of the
volume form component of the differential form KAS(p). This result was proved
originally by Mckean and Singer [57] for dimension two, generalized to higher
dimensions by Gilkey [32] using invariance theory, and by Patodi [70] using a
super-symmetry trick which was further developed by Alvarez-Gaumé [1] in the
setting of path integrals and by Getzler [30] in a pseudodifferential setting. Thus,

(2.3) lim
t→0

h(t) =

∫

M

KAS .

Hence, by the fundamental theorem of calculus, we have

(2.4) indD −
∫

M

KAS =

∫ ∞

0

d

dt
h(t) dt.

3This formula technically only applies to compatible Dirac operators, and not to arbitrary

Dirac type operators. In general, the left-hand side of (2.3) has an asymptotic expansion as t → 0

starting with negative powers of t and the right-hand side is the constant term in the expansion.
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We now show that d
dth(t) = 0. We first claim that D∗De−tD∗D = D∗e−tDD∗

D.

To see this, let u ∈ C∞(M,E). Then, vt = D∗De−tD∗Du and wt = D∗e−tDD∗

Du
agree at t = 0 and they both satisfy the equation (∂t +D∗D)ut = 0. By uniqueness
of solutions to the heat equation [59, p. 271], we must have vt = wt; hence,
D∗De−tD∗D = D∗e−tDD∗

D. Thus

d

dt
h(t) = Tr

(
− D∗De−tD∗D + DD∗e−tDD∗)

= Tr
(
− D∗e−tDD∗

D + DD∗e−tDD∗)

= Tr
(
[D,D∗e−tDD∗

]
)
,

(2.5)

where [D,D∗e−tDD∗

] is the commutator of D and D∗e−tDD∗

. Using the well-known
fact that the trace vanishes on commutators of pseudodifferential operators when
at least one factor is smoothing implies that d

dth(t) = 0. Hence, according to (2.4)
we have

indD =

∫

M

KAS ,

which is the Atiyah-Singer formula!

2.3. Some remarks on the Atiyah-Singer index theorem. The Atiyah-
Singer index formula can be generalized to elliptic pseudodifferential operators
using K-theory. However, in this generality, the form KAS occurring on the right-
hand side of the index formula is not explicitly defined in terms of the curvature
forms. The fact that KAS is explicitly defined in terms of the curvature forms for
Dirac type operators is a very special property of Dirac operators and is one of the
reasons why Dirac operators are important in applications. The original proof of
the Atiyah-Singer index theorem as sketched in [6] used cobordism theory, cf. [69].
A few years later, the proof was reworked in a series of papers [7, 8]. The ‘heat
kernel proof’ appeared in [2]. See [14] for a comparison of the various proofs.
The Atiyah-Singer formula has been generalized to many different contexts, for
example, to families of Dirac operators by Bismut [11], see [74], [9], and especially
[34, Ch. 5] for other generalizations.

The Atiyah-Singer index theorem has far-reaching applications (see [45, Ch. 4])
that include group actions on manifolds, immersions into Euclidean space, inte-
grality and divisibility of certain characteristic numbers, existence of metrics with
positive scalar curvature [37], twisted signature and Riemann-Roch-Hirzebruch
formulas, and formal dimensions of certain moduli spaces [27, 36].

3. The Atiyah-Patodi-Singer index formula

Now we ask a similar question concerning the Atiyah-Singer index formula
as we did for the Gauss-Bonnet formula in the introduction: Does the Atiyah-
Singer formula, indD =

∫
M

KAS , continue to hold verbatim if M has a smooth
boundary? From our experience with the Gauss-Bonnet formula, we expect that
the answer is “no”; there should be a correction term added to the right-hand side



INDEX OF DIRAC OPERATORS 11

� �� �� � �	
 � �
�

 � ��� � �

Figure 2. The manifold M with a collar neighborhood near its
boundary over which all geometric structures are of product type.

due to the presence of the boundary. This is in fact the case. It turns out that the
correction term is a spectral invariant of the boundary.

In this section, we describe the Atiyah-Patodi-Singer (or APS) index formula
[5], which extends the Atiyah-Singer formula to manifolds with boundary. For
manifolds with boundary, there are various ways to develop an index theory, for
instance, introducing boundary conditions or ‘attaching a cylindrical end’ to the
boundary. We focus on the latter method. For the BVP point of view, see [15]. Fi-
nally, we reformulate the index problem in terms of Melrose’s b-geometric objects.

3.1. Attaching a cylindrical end. The ingredients of the APS index for-
mula include topological/geometric data: Let M be an even-dimensional, compact,
oriented, Riemannian manifold with boundary and let E and F be Hermitian vec-
tor bundles over M . For simplicity, we assume that M has a collar neighborhood
M ∼= [0, 1)s × Y where the metric is a product g = ds2 + h with h a metric on
Y = ∂M , and where E and F are isomorphic to their restrictions E0 and F0

respectively to Y over this collar. See Figure 2.
We are also given functional analytic/geometric data: Let

D : C∞(M,E) → C∞(M,F )

be a Dirac type operator, a first-order elliptic differential operator such that the
principal symbol of D∗D is the metric σ(D∗D)(ξ) = |ξ|2 for all cotangent vectors
ξ. We assume that D is of product type on the collar of the following sort:

D = Γ(∂s + DY ),

where
DY : C∞(Y,E0) → C∞(Y,E0)

is a self-adjoint Dirac type operator on the odd-dimensional manifold Y , and where
Γ is a unitary isomorphism from E0 onto F0. With these hypotheses, one might
think that D : H1(M,E) → L2(M,F ) is Fredholm. This however is not the case.

Theorem 3.1. The Dirac type operator

D : H1(M,E) → L2(M,F )

is never Fredholm. In fact, its kernel is infinite dimensional!
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Figure 3. Attaching an infinite cylinder to M produces the man-

ifold with cylindrical end M̂ .

A proof of Theorem 3.1 can be found in [15]. To see why this theorem holds,
consider the following simple example. Let M0 = [0, 1] × S

1 with metric g =
ds2 + dθ2, let E = F = C, and let

D0 = ∂s + i∂θ.

Certainly, the manifold and operator are of product type. Moreover, kerD0 consists
of all functions f(s, θ) that are holomorphic in z = s+iθ for 0 ≤ s ≤ 1 and periodic
in θ with period 2π. Of course, there are infinitely many such functions, for example
ekz where k ∈ Z. Thus, dim kerD0 = ∞.

Since D is not Fredholm, it might look like our hopes for an index formula
are crushed. By the way, it turns out that in general, D : H1(M,E) → L2(M,F )
is surjective [15]. Thus, the problem with D is its kernel on H1(M,E). There are
various ways that have been developed to ‘tame’ the infinite dimensional kernel.
One successful method is the theory of boundary value problems pioneered by
Calderón [19] and Seeley [77] as explained in [15]. However, we will focus on the
method of attaching a cylindrical end, which is described as follows.

Consider D̂0 = ∂s + i∂θ on the enlarged manifold M̂0 = (−∞,∞)s ×S
1 rather

than on M0 = [0, 1]s×S
1. Here, M̂0 has the naturally extended metric g = ds2+dθ2.

We claim that on M̂0, we have ker D̂0 = 0 on H1(M̂0). Indeed, ker D̂0 consists of

all functions f(s, θ) ∈ H1(M̂0) that are holomorphic in z = s + iθ for s ∈ R and
periodic in θ with period 2π. By Sobolev embedding, f is bounded in s and hence
is a bounded holomorphic function on C, so is constant by Liouville’s theorem.

Since f ∈ H1(M̂0), the constant must be zero.
With this example as motivation, in the general case we enlarge the compact

manifold with boundary M to a noncompact manifold M̂ as follows: Let M̂ be the
manifold formed by taking the infinite cylinder (−∞, 0]s × Y and gluing it onto
the end of the collar [0, 1)s × Y of M as shown in Figure 3:

M̂ = (−∞, 0]s × Y t∂M M.

Since all the geometric structures and the Dirac operator were of product type on

the collar of M , they all have natural extensions to the manifold M̂ . We denote

these extended structures on M̂ using the same notations for the original objects on
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M ; however, since the extended Dirac operator on M̂ has a completely different
domain than the Dirac operator on M , we denote the extension of the Dirac

operator by D̂. Note that the natural domain of D̂ is H1(M̂,E), which consists

of those sections u on M̂ such that D̂u is square integrable with respect to the

measure dg on M̂ . Now we ask: Does this idea work? Is the operator D̂ Fredholm
on its natural domain? The answer is: sometimes. It turns out that the boundary

operator DY , which can be considered the model operator for D̂ ‘at infinity’ on
the cylindrical end, determines the Fredholm condition.

Theorem 3.2. The Dirac type operator

D̂ : H1(M̂,E) → L2(M̂, F )

is Fredholm if and only if the boundary operator DY : H1(Y,E0) → L2(Y,E0) is
invertible; that is, if it has zero kernel.

It turns out that the kernel of D̂ is always finite dimensional, so the enlarge-

ment of M to M̂ did tame the infinite dimensional kernel of D as expected, but the

cokernel of D̂ is infinite dimensional unless DY is invertible. For a proof of Theo-
rem 3.2, see [59, Th. 5.60]. There is a general principle underlying the Fredholm
properties of Dirac operators on noncompact manifolds:

General Principle: A Dirac operator on a noncompact

manifold is Fredholm if and only if it is invertible ‘at infinity’.
(3.1)

Recall that a Fredholm operator is an operator that is ‘almost invertible’. Roughly
speaking, a Dirac operator is always ‘almost invertible’ on the ‘compact end’ of a
noncompact manifold simply because a Dirac operator is elliptic so we can always
construct a parametrix for it on the compact end; however, to construct a global
parametrix for the Dirac operator, we need to invert the Dirac operator ‘at infinity’.

We now show that Dirac operators can always be made Fredholm on weighted
Sobolev spaces. To see this, extend the coordinate function s on the cylindrical

end of M̂ into the compact end of M̂ to be a positive function there. Let α ∈ R.
Then observe that on the cylindrical end we have

e−αsD̂ eαs = Γ(∂s + DY + α),

and DY + α is invertible for |α| > 0 less than the smallest absolute value of a
nonzero eigenvalue of DY . Hence, the ‘General Principle’ implies that

e−αsD̂eαs : H1(M̂,E) → L2(M̂, F )

is Fredholm for all |α| > 0 sufficiently small, which is equivalent to

D̂ : eαsH1(M̂,E) → eαsL2(M̂, F )

is Fredholm on weighted Sobolev spaces. Thus we have the following:
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Theorem 3.3. There exists a δ > 0 such that for all 0 < |α| < δ, the Dirac
type operator

D̂ : eαsH1(M̂,E) → eαsL2(M̂, F )

is Fredholm.

For the proof of this theorem, see [59, Th. 5.60]. We next state the APS

formula for the index of the operator D̂ on weighted Sobolev spaces.

3.2. Statement of the Atiyah-Patodi-Singer index theorem. Before

stating the APS index theorem for the operator D̂, we first need to define the
eta invariant. Since DY is a self-adjoint elliptic operator on the closed compact
manifold Y , it has discrete spectrum {λj} ⊂ R. The eta function, η(z), is the
holomorphic function

η(z) =
∑

λj 6=0

sign λj

|λj |z
.

One of the main results of [5] was that η(z) defines a meromorphic function on C

that is regular at z = 0. The eta invariant of DY is the value of the eta function
at zero, η(DY ) = η(0), which represents a formal signature of the operator DY :

“ η(DY ) =
∑

λj 6=0

sign λj = #{λj > 0} − #{λj < 0} ”.

Thus, η(DY ) is a measurement of the spectral asymmetry of DY . Another way to
express the eta function is through the heat operator:

(3.2) η(z) =
1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 Tr(DY e−tD2
Y ) dt,

where Γ(z) is the Gamma function. This formula follows from the fact that

Tr(DY e−tD2
Y ) =

∑

λj 6=0

λj e−tλ2
j

and that

1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 λj e−tλ2
j dt =

λj

|λj |z+1

1

Γ( z+1
2 )

∫ ∞

0

t
z−1

2 e−t dt =
sign λj

|λj |z
,

where we made the change of variables t 7→ t/|λj |2. Moreover, the local index
theorem for odd-dimensional manifolds proved by Bismut and Freed [10] states

that Tr(DY e−tD2
Y ) is a smooth function of t1/2 vanishing at t = 0, and so the
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formula (3.2) can be used to prove that4

(3.3) η(DY ) =
1√
π

∫ ∞

0

t−1/2 Tr(DY e−tD2
Y ) dt.

We are now ready to state the Atiyah-Patodi-Singer index theorem.

Theorem 3.4 (Atiyah-Patodi-Singer, 1973). Let D be a Dirac type operator
on an even-dimensional, compact, oriented, Riemannian manifold with boundary
with product type structures specified. Then there exists a δ > 0 such that for all
0 < |α| < δ, the Dirac type operator

D̂ : eαsH1(M̂,E) → eαsL2(M̂, F )

is Fredholm and if its index is denoted by indα D̂, then

indα D̂ =

∫

M

KAS − 1

2

{
η(DY ) + sign α · dim kerDY

}
,

where KAS is the Atiyah-Singer integrand and η(DY ) is the eta invariant.

The APS theorem in [5] technically only applies to the case of α > 0; as
presented above, the theorem is due to Melrose [59]. We prove this theorem using
Melrose’s b-geometry approach in Section 4. An important corollary is the notable
generalization of Hirzebruch’s signature formula to manifolds with boundary: If D

is the signature operator, then using the fact that indα D̂ + ind−α D̂ = 2 sign(M)
for α > 0 sufficiently small (see [59, Sec. 9.3]) gives

2 sign(M) =

∫

M

L(M) − 1

2

{
η(DY ) + dim kerDY

}

+

∫

M

L(M) − 1

2

{
η(DY ) − dim ker DY

}
,

or

sign(M) =

∫

M

L(M) − 1

2
η(DY ).

Hirzebruch’s conjecture for the signature-defect, the difference between the signa-
ture of M and the integral of the L-class polynomial, was the original motivation
of Atiyah, Patodi, and Singer in the discovery of the eta invariant [4, 5].

4Actually, the local index theorem for odd-dimensional manifolds is not true for arbitrary
DY but only for those associated to a ‘unitary Clifford connection’, cf. the discussion in footnote

(3) concerning the local index theorem for even-dimensional manifolds. In general, Tr(DY e−tD
2
Y )

only has an asymptotic expansion as t → 0 starting from negative powers of t. In this case, the
lower limit 0 in the integral (3.3) must be replaced by ε > 0 and the resulting integral has

an asymptotic expansion as ε → 0. The right-hand side of the above equation represents the

constant term in the expansion.
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Figure 4. The compact manifold with boundary X is the com-

pactification of the manifold with cylindrical end M̂ .

3.3. Interpretation as b-objects. One of the primary tools used to prove
Fredholm properties of Dirac operators, or elliptic differential operators in general,
on compact manifolds without boundary is the algebra of pseudodifferential opera-
tors. Such an algebra would be useful on a manifold with cylindrical end in order to
prove Fredholm properties of Dirac operators on such manifolds. For various classes
of operators defined on noncompact manifolds, see Lockhart and McOwen [49],
Rabinovič [73], or Schrohe [76]. One usually requires the noncompact manifold to
have a finite atlas with control at infinity of the coordinate changes and special
estimates at infinity on the symbols of the operators considered on the manifold.
In particular, a direct definition of pseudodifferential operators on manifolds with
a cylindrical end might be considered unbalanced as the analysis is treated in
distinctly differently ways on the cylindrical end and the compact end.

Melrose’s novel idea was to unify the analysis on these two ends by making
the whole manifold compact; that is, compactifying the cylindrical end forming a
compact manifold with boundary. On this new compact manifold with boundary,
he defines a space of pseudodifferential operators, imitating as close as possible,
the global geometric definition of pseudodifferential operators on compact man-
ifolds without boundary in terms of their Schwartz kernels as discussed in, for
example, Hörmander [43]. The resulting operators are called b-pseudodifferential
operators. For excellent introductions to this subject, see Grieser [35], Mazzeo [56],
or Melrose [59].

We now explain the compactification. On the cylindrical end (−∞, 0]s × Y of

M̂ we make the change of variables x = es. As s → −∞, x → 0. Thus, under

this change of variables, M̂ becomes the interior of the compact manifold with

boundary X, where X has the same compact end as M̂ but with the cylindrical
end (−∞, 0]s × Y replaced with the compact manifold [0, 1]x × Y , see Figure 4.
Since x = es, we have ds = dx/x and ∂s = x∂x. Thus the geometric objects on
the manifold with cylindrical end transform into corresponding singular geometric
‘b-objects’ on the compact manifold with boundary:

g = ds2 + h  g =
(dx

x

)2

+ h (b-metric),

dg = ds dh  dg =
dx

x
dh (b-measure),
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and consequently,

Hk(M̂)  Hk
b (X) (b-Sobolev space),

D̂ = Γ(∂s + DY )  D̂ = Γ(x∂x + DY ) (b-differential operator).

Although the manifold X is topologically compact, its interior is geometrically a
manifold with cylindrical end since X inherited all its geometric structures from

M̂ . In particular, the boundary of X is geometrically at infinity. The fact that
X is compact is key to the definition of b-pseudodifferential operators since these
operators are defined using only the usual classes of smooth functions and dis-
tributions on compact manifolds with boundary. Of course, there is a trade off:
The distributions defining the Schwartz kernels of b-pseudodifferential operators
are required to have a special structure, which takes some time getting used to
[59, Ch. 4].

We repeat the statement of the APS index theorem in the current context.

Theorem 3.5. With the same hypotheses as in Theorem 3.4, but now in the
b-geometry context, there exists a δ > 0 such that for all 0 < |α| < δ, the Dirac
type operator

D̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm and if its index is denoted by indα D̂, then

indα D̂ =

∫

M

KAS − 1

2

{
η(DY ) + sign α · dim kerDY

}
,

where KAS is the Atiyah-Singer integrand and η(DY ) is the eta invariant

η(DY ) =
1√
π

∫ ∞

0

t−1/2Tr(DY e−tD2
Y ) dt.

In Section 4, we prove this theorem.

3.4. Some remarks on the Atiyah-Patodi-Singer index theorem. The
original Atiyah-Patodi-Singer index theorem was proved in the context of (pseudo-
differential) boundary value problems. A nice introduction to these methods can be
found in the book by Booß-Bavnbek and Wojciechowski [15]. The ‘direct approach’
to the APS boundary value problem based on asymptotic expansions of the heat
operator was initiated by Grubb and Seeley [39], see also Grubb’s book [38]. The
approach of ‘attaching cylinders’ was mentioned in [5], but was not developed.
Besides attaching a cylinder to the boundary, another way to develop an index
theory on manifolds with boundary is by attaching a cone, see Cheeger [22]; for
other generalizations, see Atiyah, Donnelly, and Singer [3], Müller [64], Stern [81],
Brüning [16], Fedosov and Schulze [29], Schulze, Sternin, and Shatalov [79], and
Carron [21]. Melrose introduced the b-geometry in the seminal paper [58], and
these ideas were developed by Melrose and Mendoza in [60]. The APS index for-
mula was generalized to Fredholm b-pseudodifferential operators by Piazza [71].

The eta invariant itself has become a topic of much interest. In particular, the
extension of the eta function and its regularity properties for pseudodifferential
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operators has been examined by Gilkey [33] and Wodzicki [85] among others. For
a survey of various topics on the eta invariant, including its decomposition under
gluing of manifolds, see Mazzeo and Piazza [55].

The index theorem for families of Dirac operators was extended to the case
when the fibers are manifolds with boundary by Bismut and Cheeger [12, 13] un-
der the assumption that the Dirac operators on the fibers of the boundary fibration
are invertible. Later, this result was generalized by Melrose and Piazza [62, 63]
with no assumptions on the boundary Dirac operators. For further extensions of
the index formula, see Getzler [31], Wu [86], Melrose and Nistor [61], and Leicht-
nam, Lott, and Piazza [46].

Other expository articles incorporating recent developments on the APS in-
dex theorem include Müller [66], Piazza [72], and Seeley [78]. Because of space
constraints, we have only touched the surface on some of the many extensions and
generalizations of the Atiyah-Patodi-Singer problem, a list of references can be
found in the book by Gilkey [34, Ch. 5].

4. Melrose’s b-geometry proof of the Atiyah-Patodi-Singer theorem

Let D be a Dirac type operator on an even-dimensional, compact, oriented,
Riemannian manifold with boundary M with product type structures near the
boundary as described in Section 3.1. For simplicity, we assume that the boundary

Dirac operator DY is invertible. Now form the manifold with cylindrical end M̂
and then compactify it under the change of variables x = es, where s is the variable

on the cylinder, to form the manifold X as described in Section 3.3. Then D̂ defines
an operator on X such that

D̂ : H1
b (X,E) → L2

b(X,F )

is Fredholm. We now give the b-geometry proof of the APS index formula in
Theorem 3.5 modeling, as close as possible, the proof the Atiyah-Singer formula
given in Section 2.2. We shall see that there are certain variations to the proof
that need to be fleshed out in order to make the proof work.

4.1. The proof of APS with details left out. As with the Atiyah-Singer
proof given in Section 2.2, we would like to define the Mckean-Singer function

“ Tr(e−tD̂∗D̂) − Tr(e−tD̂D̂∗

)”.

Here, we meet our first variation to the Atiyah-Singer proof – the reason for the
quotation marks is that the heat operators are not trace class, and so the traces are
not even defined! Basically, the heat operators are not trace class because X has
infinite volume (is geometrically not compact) which implies that the heat kernels
restricted to the diagonal are not integrable. Thus, we cannot prove the APS
formula by imitating the proof of the Atiyah-Singer formula verbatim. However,
in Section 4.3, we define a natural extension of the trace called the b-trace, denoted
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by bTr, such that the heat operators are b-trace class. We can now define a modified
Mckean-Singer function

h(t) = bTr(e−tD̂∗D̂) − bTr(e−tD̂D̂∗

),

and continue as in Section 2.2. As in the manifold without boundary case, the
following limits hold:

lim
t→∞

h(t) = ind D̂,

and5

lim
t→0

h(t) =

∫

M

KAS .

In fact, using b-pseudodifferential operators, the proofs of these two results are not
much different from the corresponding proofs in the manifold without boundary
case, see Chapters 7 and 8 of [59] for the proofs. Continuing as in Section 2.2, we
find that

ind D̂ =

∫

M

KAS +

∫ ∞

0

d

dt
h(t) dt,

where repeating the same algebraic calculation as before, we have

d

dt
h(t) = bTr

(
[D̂, D̂∗e−tD̂D̂∗

]
)
.

Here, we meet our second variation – in the proof of the Atiyah-Singer index for-
mula, this expression is zero, in this present case it is not. Figuratively speaking,
the b-trace is a trace on the interior of X and only fails to be a trace on the bound-

ary of X. Thus intuitively, bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

should be a boundary integral of
some sort. This is in fact the case; in Section 4.4 we compute that

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= − 1√
4πt

Tr(DY e−tD2
Y ) =

1

2
√

π
t−1/2 Tr(DY e−tD2

Y ).

Hence,

ind D̂ =

∫

X

KAS − 1

2
η(DY ),

where

η(DY ) =
1√
π

∫ ∞

0

t−1/2 Tr(DY e−tD2
Y ) dt,

and the Atiyah-Patodi-Singer index formula is proved!

5The same discussion as in footnote (3) concerning the local index theorem on manifolds
without boundary applies in this situation too. The integral of KAS is over M because the

product type assumption implies that the volume form component of KAS is supported on the

manifold M regarded as a subset of X.
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4.2. Some facts about the heat kernels. To implement the proof in Sec-
tion 2.2, we need the heat operators

e−tD̂∗D̂ : L2
b(X,E) → H2

b (X,E) and e−tD̂D̂∗

: L2
b(X,F ) → H2

b (X,F ).

It turns out that these heat operators are b-smoothing operators; that is, they are
b-pseudodifferential operators of order −∞ [59, Ch. 7], which implies a couple of
useful results. These results can be proved using other methods, but the theory of
b-pseudodifferential operators gives these results more or less ‘for free’. First, the
Schwartz kernels of these heat operators are smooth on the interior of X2 vanishing
to infinite order at ∂X2 except at ∂X × ∂X. The second result is that these heat
operators have a simple structure on the collar of X described as follows. For

concreteness, we focus on e−tD̂D̂∗

. On the collar [0, 1]x × Y of X we have

D̂ = Γ(x∂x + DY ),

where Γ is a unitary isomorphism of E0 onto F0. Thus, on the collar,

D̂D̂∗ = Γ(x∂x + DY )(−x∂x + DY )Γ∗ = Γ((xDx)2 + D2
Y )Γ∗,

where Dx = i−1∂x. This suggests that near ∂X we have

e−tD̂D̂∗

= Γe−t(xDx)2e−tD2
Y Γ∗ + O(x),

where e−t(xDx)2 is the heat operator for xDx on [0,∞)x, and where O(x) is an
operator smooth in x and vanishing at x = 0. In fact, even a stronger result is true.
Under the change of variables s = log x, which takes the interior of [0,∞)x onto

(−∞,∞)s, we have xDx = Ds. Since the Schwartz kernel of e−tD2
s on (−∞,∞)s

is given by the well-known formula

K̃1(s, s
′, t) =

1√
4πt

e−(s−s′)2/4t,

the Schwartz kernel of e−t(xDx)2 is obtained by setting s = log x:

K1(x, x′, t) =
1√
4πt

e−(log x−log x′)2/4t.

The second result is that the Schwartz kernel of e−tD̂D̂∗

near ∂X ×∂X is given by

(4.1) e−tD̂D̂∗

(x, y, x′, y′) = Γ(y)K1(x, x′, t) e−tD2
Y (y, y′) Γ(y′)∗ + O(x),

where O(x) is a smooth function of the variables x, log x − log x′, y, and y′ that
vanishes at x = 0.

4.3. Filling in the details for the b-trace. The simple fact that dx/x
is not integrable over [0, 1]x implies that the heat operators are not trace class.

Indeed, consider the heat operator e−tD̂D̂∗

. By (4.1), on the collar [0, 1]x × Y we
have

(4.2) tr e−tD̂D̂∗

(x, y, x, y) =
1√
4πt

tr e−tD2
Y (y, y) + O(x),
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where we used that ΓΓ∗ = Id since Γ is a unitary isomorphism, and where O(x)
is smooth in x and vanishes at x = 0. Since dg = (dx/x) dh on this collar and

∫

[0,1]×Y

tr e−tD2
Y (y, y)

dx

x
dh =

(∫ 1

0

dx

x

)
·
∫

Y

tr e−tD2
Y (y, y) dh,

the following trace formula does not make sense:

Tr(e−tD̂D̂∗

) =

∫

X

tr e−tD̂D̂∗

(p, p) dg.

Similarly, the corresponding integral for e−tD̂∗D̂ does not exist. Although the trace
formula above does not make sense, we can ‘force’ it to make sense by the con-
sidering another notion of trace and integral as we now describe. Note that for
Re z > 0, xz is integrable with respect to dx/x over [0, 1]x. Extend the coordinate
function x on the collar of X to be a smooth function on X which is positive off

the collar. Then it follows that xze−tD̂D̂∗

is trace class for Re z > 0 with trace
given by

Tr(xze−tD̂D̂∗

) =

∫

X

xz tr e−tD̂D̂∗

(p, p) dg, Re z > 0.

This argument is the basis for defining a new functional called the b-trace, which
we introduce after the following lemma.

Lemma 4.1. Let f ∈ C∞(X). Then for all complex numbers z with Re z > 0,
the integral

F (z) =

∫

X

xzf dg

exists, and it extends from Re z > 0 to define a meromorphic function on all of C.
The b-integral of f is by definition the regular value of F (z) at z = 0:

(4.3) b

∫

X

f dg = Regz=0 F (z).

Finally, the residue of F (z) at z = 0 given by

Resz=0 F (z) =

∫

Y

f(0, y) dh.

To understand why this lemma is true, note that xz = ez log x is an entire
function of z for x > 0. Thus, we may assume that f is supported on the collar
[0, 1]x×Y of X. Then F (z) is well defined for Re z > 0 since xzf(x, y) is integrable
with respect to the measure (dx/x) dh as long as Re z > 0. Now expand f(x, y) in
Taylor series at x = 0: f(x, y) ∼ ∑∞

k=0 xkfk(y). Since
∫

[0,1]×Y

xz+kfk(y)
dx

x
dh =

1

z + k

∫

Y

fk(y) dh
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it follows that F (z) extends from Re z > 0 to be a meromorphic function on C

with only simple poles at z = {0,−1,−2, . . .} with residue at z = 0 given by
∫

Y

f0(y) dh =

∫

Y

f(0, y) dh.

To see why the notion of the b-integral is natural, note that if f(0, y) = 0,
then F (z) is regular at z = 0, and

b

∫

X

f dg = Regz=0 F (z) = F (0) =

∫

X

f dg,

which is the usual integral of f .

The b-trace of the heat operator e−tD̂D̂∗

is by definition

bTr(e−tD̂D̂∗

) = b

∫

X

tr e−tD̂D̂∗

(p, p) dg,

where the b-integral of the function tr e−tD̂D̂∗

(p, p) is defined by (4.3):

b

∫

X

tr e−tD̂D̂∗

(p, p) dg = Regz=0 Tr(xze−tD̂D̂∗

).

The b-trace of e−tD̂∗D̂ is defined similarly.

4.4. Filling in the details for the eta invariant. In this section, we show
that

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= − 1√
4πt

Tr(DY e−tD2
Y ).

The proof is just a computation using the definition of the b-trace,

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= Regz=0 Tr xz[D̂, D̂∗e−tD̂D̂∗

],

where Tr xz[D̂, D̂∗e−tD̂D̂∗

] is meromorphically extended from Re z > 0. Observe
that

xz[D̂, D̂∗e−tD̂D̂∗

] = [xz, D̂]D̂∗e−tD̂D̂∗

+ [D̂, xzD̂∗e−tD̂D̂∗

].

Since the trace vanishes on commutators, we have Tr[D̂, xzD̂∗e−tD̂D̂∗

] = 0 for
Re z > 0, and thus its meromorphic extension to all of C is also zero. Hence,

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= Regz=0 Tr[xz, D̂]D̂∗e−tDD∗

= Regz=0 Tr xza(z),

where

a(z) = x−z[xz, D̂]D̂∗e−tD̂D̂∗

= D̂D̂∗e−tD̂D̂∗ − x−zD̂xzD̂∗e−tD̂D̂∗

.

Note that a(0) = 0. We claim that a(z) is an entire function of z. Indeed, since xz

is an entire function of z for x > 0, we may consider a(z) on the collar [0, 1]x × Y

over which D̂ = Γ(x∂x + DY ). In this case, x−zD̂xz = Γ(x∂x + DY + z) which is
entire, so a(z) is entire. Since a(z) is entire and vanishes at z = 0, we can write

a(z) = zA + O(z2),
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where A is independent of z. It follows that

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= Regz=0 Tr xza(z) = Resz=0 Tr xzA,

and so by Lemma 4.1,

(4.4) bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

=

∫

Y

tr A(x, y, x, y)|x=0 dh.

To calculate this integral, we work over the collar [0, 1]x × Y . Here,

x−zD̂xz = Γ(x∂x + DY + z) = D̂ + z Γ,

and thus

a(z) = D̂D̂∗e−tD̂D̂∗ − x−zD̂xzD̂∗e−tD̂D̂∗

= −zΓD̂∗e−tD̂D̂∗

,

which implies that over the collar,

A = −ΓD̂∗e−tD̂D̂∗

.

As D̂∗ = (−x∂x + DY )Γ∗ and Γ∗Γ = Id, by (4.1) we have

A = −Γ(y)(−x∂x + DY )
1√
4πt

e−(log x−log x′)2/4te−tD2
Y (y, y′) Γ(y′)∗

modulo a term that vanishes on the boundary. It follows that

A(x, y, x, y)|x=0 = − 1√
4πt

Γ(y)DY e−tD2
Y (y, y) Γ(y)∗,

which in view of (4.4) gives

bTr
(
[D̂, D̂∗e−tD̂D̂∗

]
)

= − 1√
4πt

∫

Y

tr DY e−tD2
Y (y, y) dh

= − 1√
4πt

Tr(DY e−tD2
Y ).

5. Index theory on manifolds with corners of codimension two

In this section, we describe an extension of the APS index formula to manifolds
with corners of codimension two. As we discussed for manifolds with boundary,
there were various ways to develop an index theory for Dirac operators, e.g., in-
troducing boundary conditions or attaching a ‘cylindrical end’ to the boundary.
For manifolds with corners, it turns out that there is no well-developed theory of
boundary value problems for Dirac operators. However, we can still formulate an
index problem by attaching ‘multi-cylindrical ends’ and considering an L2-index
problem.
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Figure 5. Examples of manifolds with corners of codimension
one, two, and three respectively.

5.1. Dirac operators on manifolds with corners. We begin by defining
manifolds with corners. An n-dimensional manifold with corners X is a paracom-
pact Hausdorff topological space with local charts of the form [0, 1)k × (−1, 1)n−k,
where k can run anywhere between 0 and n depending on where the chart is lo-
cated on the manifold, such that the transition maps between any two charts is
smooth. A codimension k face Z is a connected closed subset of X such that given
any interior point of Z there is a coordinate patch on X centered at the point of
the form [0, 1)k × (−1, 1)n−k. The largest codimension face that occurs is called
the codimension of X. A boundary hypersurface is the same as a codimension
one face. For technical reasons we assume that each boundary hypersurface has
a boundary defining function; that is, for each hypersurface H of X, there is a
nonnegative smooth function ρH ∈ C∞(X) which vanishes only on H where it
has a nonzero differential. Note that a manifold with corners of codimension one
is just a manifold with boundary. Examples of manifolds with corners are found
in Figure 5. The disk is a manifold with corners of codimension one. The square is
a manifold with corners of codimension two; its edges are boundary hypersurfaces
and its corners are codimension two faces. Lastly, the solid cube is a manifold with
corners of codimension three; its sides are boundary hypersurfaces, its edges are
codimension two faces, and its corners are codimension three faces.

To build a geometric index theory, we first need topological/geometric data.
We focus on manifolds with corners of codimension two. Thus let M be an even-
dimensional, compact, oriented, Riemannian manifold with corners of codimension
two, and let E and F be Hermitian vector bundles over M . For simplicity, we
assume that M has exactly two boundary hypersurfaces that intersect in exactly
one codimension two face Y . We fix a labeling M1 and M2 of the hypersurfaces.
Near each hypersurface Mi, we assume that M has a collar neighborhood M ∼=
[0, 1)si

× Mi where the metric is a product g = ds2
i + hi with hi a metric on Mi,

and where E and F are isomorphic to their restrictions Ei and Fi respectively to
Mi. For compatibility we assume that the product decompositions near each Mi

give a common decomposition M ∼= [0, 1)s1
× [0, 1)s2

× Y near the corner where
the metric is a product g = ds2

1 + ds2
2 + h with h a metric on Y , and where E and

F are isomorphic to their restrictions E0 and F0, respectively, to Y . See Figure 6.
Next, we need analytic/geometric data: Let

D : C∞(M,E) → C∞(M,F )
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Figure 6. The manifold M near the corner Y . On the common
intersection of the collars, M is isomorphic to [0, 1)s1

×[0, 1)s2
×Y .

be a Dirac type operator, a first-order elliptic differential operator such that the
principal symbol of D∗D is the metric σ(D∗D)(ξ) = |ξ|2 for all cotangent vectors
ξ, which is of product type near each hypersurface:

(5.1) D = Γi(∂si
+ Di)

on the collar M ∼= [0, 1)si
× Mi, where Γi is a unitary isomorphism from Ei onto

Fi, and where

Di : C∞(Mi, Ei) → C∞(Mi, Ei)

is a (formally) self-adjoint Dirac type operator on the odd-dimensional manifold
with boundary Mi. We assume that on the product decomposition near the corner,
M ∼= [0, 1)s1

× [0, 1)s2
× Y , the Dirac operator takes the form

(5.2) D = Γ1∂s1
+ Γ2∂s2

+ B,

where

B : C∞(Y,E0) → C∞(Y, F0)

is a Dirac type operator on the even-dimensional manifold without boundary Y .
Hidden in these assumptions are some interesting algebraic consequences at

the corner as we now describe. Comparing (5.1) and (5.2), we find that on the
collar M ∼= [0, 1)s1

× [0, 1)s2
× Y , we have

Γi(∂si
+ Di) = Γ1∂s1

+ Γ2∂s2
+ B, i = 1, 2.

Multiplying each side by Γ∗
i = Γ−1

i and solving for Di gives

(5.3) D1 = Γ∗
1 Γ2∂s2

+ Γ∗
1 B and D2 = Γ∗

2 Γ1∂s1
+ Γ∗

2 B.

Since each Di is assumed (formally) self-adjoint: D∗
i = Di, we must have Γ∗

1 Γ2 =
−Γ∗

2 Γ1 and Γ∗
i B = B∗ Γi; that is,

(5.4) Γ∗
i Γj + Γ∗

j Γi = 2 δij , B∗ Γi = Γ∗
i B,

where δij is the Kronecker delta. The reader familiar with Clifford multiplication
might recognize the left equality as representing a ‘Clifford two structure’ at the
corner. Factoring out the Γ∗

1 Γ2 from the right-hand side of D1 in (5.3) gives

D1 = Γ(∂s2
+ DY ), where Γ = Γ∗

1 Γ2, DY = Γ∗
2 B.
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We call DY the induced Dirac operator on Y . We really should call DY the induced
operator from D1. However, the induced operator from D2 is related to DY in a
simple way. Indeed, one can verify that

D2 = −Γ(∂s1
+ D̃Y ), D̃Y = ΓDY .

The induced Dirac operator on Y refers only to DY and not D̃Y .
As part of the ‘Clifford two package’, the induced operator DY has a nice

splitting property as we now describe. First, the left-hand identity in (5.4) implies
that

Γ2 = −Id.

Hence, Γ : E0 → E0 has eigenvalues ±i. Let E±
0 denote the eigenspaces corre-

sponding to the eigenvalues ±i; these are subbundles of E0 and

E0 = E+
0 ⊕ E−

0

is an orthogonal decomposition since Γ is unitary. Also, a short computation uti-
lizing (5.4) gives

DY Γ = −ΓDY .

Thus DY is odd with respect to Γ; hence odd with respect to the Z2-grading
E0 = E+

0 ⊕ E−
0 . We summarize this property in the following lemma.

Lemma 5.1. With respect to the orthogonal decomposition E0 = E+
0 ⊕ E−

0 ,
where E±

0 are the ±i eigenspaces of Γ = Γ∗
1 Γ2, the induced Dirac operator DY =

Γ∗
2 B takes the following form

[
0 D−

Y

D+
Y 0

]
: C∞(Y,E+

0 ⊕ E−
0 ) → C∞(Y,E+

0 ⊕ E−
0 ),

where D±
Y are the restrictions of DY to C∞(Y,E±

0 ).

Note that since DY is self-adjoint, we have (D+
Y )∗ = D−

Y . The following the-
orem follows from the cobordism theorem of Atiyah-Singer, which is published in
Palais’ book [69]. The cobordism theorem was one of the key steps in the original
proof of the Atiyah-Singer index theorem [6].

Theorem 5.2. The index of the Dirac type operator

D+
Y : H1(Y,E+

0 ) → L2(Y,E−
0 )

on the even-dimensional manifold without boundary Y is zero: indD+
Y = 0. Since

(D+
Y )∗ = D−

Y , it follows that dim kerD+
Y = dim kerD−

Y .

5.2. Attaching multi-cylindrical ends. As in the manifold with boundary
case, we cannot build an index theory of D with its natural domain on the manifold
with corners M :

Theorem 5.3. The Dirac type operator

D : H1(M,E) → L2(M,F )

is never Fredholm. In fact, dim kerD = ∞.
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Figure 7. A view of M̂ near Y . The manifold with ‘multi-cylin-

drical ends’ M̂ is obtained by gluing multiple cylinders onto M .

The corresponding theorem for manifolds with boundary (Theorem 3.1) can
be used to prove this result. For a concrete example consider the Cauchy-Riemann
operator DCR = ∂x + i∂y on the square [−1, 1]x × [−1, 1]y. Certainly, the manifold
and operator are both of product type. Then, kerDCR is infinite dimensional since
the kernel of the DCR consists of all holomorphic functions on the square.6

Currently there is no suitable theory of elliptic boundary value problems for
manifolds with corners of codimension two because the Calderón projector [19] in
this context is not understood. However, in analogy with the case of a manifold
with boundary, we can build an index theory through attaching multi-cylinders
and then compactifying again forming the corresponding b-theory.

We attach multi-cylinders as follows: Let M̂ be the manifold formed by taking
the infinite cylinder (−∞, 0]s1

×M1 and attaching it onto the collar [0, 1)s1
×M1 of

M , then taking (−∞, 0]s2
×M2 and attaching it onto the collar [0, 1)s2

×M2, and
finally taking (−∞, 0]s1

× (−∞, 0]s2
×Y and attaching it onto the remaining open

quadrant; see Figure 7. Since all the geometric structures and the Dirac operator
are of product type near the boundary of M , they all have natural extensions

to the manifold M̂ . We denote these extended structures on M̂ using the same
notations as were used for the original objects on M , except for the Dirac operator

which we denote by D̂.
The ‘General Principle’ (3.1) gives the following theorem (see [53] for a proof).

Theorem 5.4. The Dirac type operator

D̂ : H1(M̂,E) → L2(M̂, F )

is Fredholm if and only if D̂i : H1(M̂i, Ei) → L2(M̂i, Ei) for i = 1, 2, and the
corner operator DY : H1(Y,E0) → L2(Y,E0) are each invertible.

6Although the square has four corners instead of one, this example illustrates the point of

the theorem.
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Here, M̂i is the manifold with cylindrical end formed by attaching an infinite

cylinder to the odd-dimensional compact manifold with boundary Mi, and D̂i is

the natural extension of the Dirac operator Di to M̂i.
From Theorem 3.3, we know that the Dirac operator on a manifold with

a cylindrical end formed from a manifold with boundary can always be made
Fredholm by considering it on weighted Sobolev spaces. For a manifold with corners
of codimension two, this is not the case.

Theorem 5.5. There exists a δ > 0 such that for all 0 < |α| < δ, the Dirac
type operator

D̂ : eαsH1(M̂,E) → eαsL2(M̂, F )

is Fredholm if and only if the corner operator DY : H1(Y,E0) → L2(Y,E0) is
invertible (has zero kernel).

See [53] or [52] for a proof. Here, each coordinate function si is extended into

the rest of M̂ to be a positive bounded function there, α = (α1, α2) is a pair
of real numbers, 0 < |α| < δ means that 0 < |αi| < δ for i = 1, 2, and finally,
eαs = eα1s1 eα2s2 . We remark that in many cases the kernels of Dirac operators
represent topological quantities. In these cases, the invertibility of the corner Dirac
operator would require certain cohomology groups of the corner Y to vanish. Thus
the Fredholm condition in Theorem 5.5 is actually very restrictive.

5.3. Müller’s generalization of the APS index formula. We now ex-
plain Müller’s generalization [67] of the APS formula in Theorem 3.4 to manifolds
with corners of codimension two under the assumption that the corner Dirac op-
erator DY is invertible. We remove this assumption in Section 6.

We first need to introduce the b-eta invariants of the operators D̂1 and D̂2,

cf. [59, Sec. 9.7]. Consider the operator D̂1 on M̂1. Here, M̂1 is the manifold with
cylindrical end formed by attaching an infinite cylinder to the odd-dimensional

compact manifold with boundary M1. The operator D̂1 turns out to have contin-

uous spectrum, and not discrete spectrum, due to the fact that M̂1 has infinite
volume. Thus its eta invariant cannot be defined as a regularized signature in the
same way as in the case of a manifold with boundary considered in Section 3.2.

However, since the heat operator of D̂2
1 does exist, we can still try to define the

eta invariant via the integral (3.3):

“ η(D̂1) =
1√
π

∫ ∞

0

t−1/2 Tr(D̂1 e−tD̂2
1 ) dt ”.

Unfortunately, the operator D̂1 e−tD̂2
1 is not trace class, cf. Section 4.3, so the

right-hand side is not defined, which is the reason for the quotes. However, the

b-trace of D̂1 e−tD̂2
1 is defined.7 Replacing Tr with bTr in the above formula defines

7We first compactify M̂1, and then define the b-trace as in Section 4.3.
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the b-eta invariant8,

bη(D̂1) =
1√
π

∫ ∞

0

t−1/2 bTr(D̂1 e−tD̂2
1 ) dt.

The b-eta invariant of D̂2 is defined in the same way. The APS formula in Theo-
rem 3.4 generalizes as follows.

Theorem 5.6 (Müller, 1996). Let D be a Dirac type operator on an even-
dimensional, compact, oriented, Riemannian manifold with corners of codimension
two with exactly two boundary hypersurfaces intersecting in exactly one corner and
with product type structures specified. Then there exists a δ > 0 such that for all
0 < |α| < δ, the Dirac type operator

D̂ : eαsH1(M̂,E) → eαsL2(M̂, F )

is Fredholm if and only if the corner operator DY : H1(Y,E0) → L2(Y,E0) is
invertible (has zero kernel); in which case,

indα D̂ =

∫

M

KAS − 1

2

∑

i=1,2

{
bη(D̂i) + sign α · dim ker D̂i

}
.

Müller’s theorem in [67] technically only applies to the case of α > 0; in the
generality presented above, the theorem is due to Melrose, cf. [53]. The formula

for indα D̂ is almost exactly the same as the APS formula in Theorem 3.4. In fact,
using the b-calculus, the proof of Theorem 5.6 proceeds in almost identical fashion
as the proof of Theorem 3.4. The only ‘hard’ part is defining the appropriate
generalization of b-pseudodifferential operators and the b-trace to manifolds with
corners of codimension two. Once this machinery is set up, the proof of the APS
index formula can be used to prove Theorem 5.6.

5.4. b-version of Müller’s theorem. In analogy with the case of a mani-

fold with boundary, we now compactify the manifold M̂ by introducing the change
of variables x1 = es1 and x2 = es2 . As si → −∞, xi → 0, and so this change of

variables compactifies M̂ to be the interior of a compact manifold with corners
of codimension two, which we denote by X. Moreover, since dsi = dxi/xi and

∂si
= xi∂xi

, the geometric objects on M̂ transform into corresponding singular
geometric ‘b-objects’ on the compact manifold with corners:

g = ds2
1 + ds2

2 + h  g =
(dx1

x1

)2

+
(dx2

x2

)2

+ h (b-metric),

dg = ds1 ds2 dh  dg =
dx1

x1

dx2

x2
dh (b-measure),

Hk(M̂)  Hk
b (X) (b-Sobolev space),

8The same discussion as in footnote (4) concerning the local index theorem on odd-

dimensional manifolds without boundary applies in this situation too.
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and finally,

D̂ = Γ1∂s1
+ Γ2∂s2

+ B  D̂ = Γ1 x1∂x1
+ Γ2 x2∂x2

+ B,

a b-differential operator. We repeat the statement of Müller’s theorem in the
present context.

Theorem 5.7. Let D be a Dirac type operator on an even-dimensional, com-
pact, oriented, Riemannian manifold with corners of codimension two with exactly
two boundary hypersurfaces intersecting in exactly one corner and with product
type structures specified. Then there exists a δ > 0 such that for all 0 < |α| < δ,
the Dirac type operator

D̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm if and only if the corner operator DY : H1(Y,E0) → L2(Y,E0) is
invertible (has zero kernel); in which case,

indα D̂ =

∫

M

KAS − 1

2

∑

i=1,2

{
bη(D̂i) + sign α · dim ker D̂i

}
.

As already mentioned, with a proper generalization of b-pseudodifferential op-
erators and the b-trace to manifolds with corners of codimension two, the proof of
Theorem 5.7 proceeds in almost identical fashion as the proof of Theorem 3.4. In
fact, the above theorem and its proof generalize to not only Dirac type operators
but also b-pseudodifferential on manifolds with corners of arbitrary codimension
(see [50, 51, 52, 53]). These generalizations are due to Melrose (for Dirac op-
erators) and the author (for b-pseudodifferential operators), cf. Lauter and Mo-
roianu [44] for the cusp case. The ability to handle arbitrary codimensions is a
nice feature of using b-pseudodifferential operators to attack index problems on
manifolds with corners.

5.5. Some remarks on index theory on manifolds with corners. In
[75] Salomenson builds an index theory for Dirac operators on manifolds with
corners of codimension two by attaching cylinders in a very different way than
considered here. Instead of attaching separate cylinders to each hypersurface Mi

and then filling in the lower quadrant with a product cylinder as shown in Fig-
ure 7, he notes that ∂M has a natural smooth structure and attaches the cylinder
(−∞, 0] × ∂M onto M . This creates a manifold with cylindrical end like in the
case of a manifold with boundary, except that it has a ‘wedge singularity’ at the
original corner Y . Results of Cheeger [22] or Chou [24] can be used to handle the
wedge singularity.

In a different direction, Hassel, Mazzeo, and Melrose [41] prove a signature
formula for manifolds with corners of codimension two. Unlike the signature formu-
las for manifolds with and without boundary, which are direct corollaries of index
formulas on such manifolds, the HMM formula is not a consequence of an index
formula on manifolds with corners of codimension two. Instead, they round off the
corner and consider X as a limit as ε → 0 of manifolds with smooth boundary Xε.
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The resulting signature formula is obtained by a careful analysis of the limit of the
APS signature formulas of each Xε. They rely on ‘analytic surgery’ techniques in
[40] to identify the limiting formula. Wall [84] considers a manifold with boundary
divided into two parts, each a manifold with corners of codimension two (e.g., a
disk divided into two half wedges). Although not an index formula per se, Wall
gives a formula for the signature of the manifold with boundary in terms of the
signatures of the two manifolds with corners of codimension two and a correction
term given by the Maslov index of certain Lagrangian subspaces, cf. Section 6.

6. Perturbations of Dirac operators on manifolds with corners

We now consider the APS index formula for manifolds with corners of codi-
mension two dropping the invertibility assumption on the corner Dirac operator.
From our experience with the Gauss-Bonnet formula in the introduction, we expect
there to be a correction term added to the right-hand side of the APS formula due
to the presence of the corners. Theorem 5.6 did not have a corner contribution,
essentially because the invertibility of the corner Dirac operator DY makes the

Dirac operator D̂ not ‘notice’ the presence of the corners. For the Gauss-Bonnet
formula, the correction term was given by the exterior angles of the corners. For
the APS formula without the invertibility assumption on the corner operator, there
is a correction term in the index formula and it represents an ‘exterior angle’ of
sorts between certain Lagrangian vector spaces. In this section, we use the same
notation as in Section 5.

6.1. Fredholm perturbation of Dirac operators. By Theorem 5.5, there
exists a δ > 0 such that for all 0 < |α| < δ, the Dirac type operator

D̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm if and only if the corner operator DY : H1(Y,E0) → L2(Y,E0) is in-
vertible (has zero kernel). This nondegeneracy condition is actually very restrictive
since in many cases the kernels of Dirac operators represent cohomology. However,

we now show that it is always possible to make D̂ Fredholm on weighted Sobolev
spaces by perturbation with b-smoothing operators.

To define these perturbations we recall some notation from Section 5.1. The
manifold with corners of codimension two M is assumed to have exactly two bound-
ary hypersurfaces M1 and M2 that intersect in exactly one codimension two face
Y . Near the corner Y the Dirac type operator D takes the form

D = Γ1∂s1
+ Γ2∂s2

+ B,

where

B : C∞(Y,E0) → C∞(Y, F0)

is a Dirac type operator on the even-dimensional manifold without boundary Y .
The induced operator D1 on the hypersurface M1 takes the form

(6.1) D1 = Γ(∂s2
+ DY ), Γ = Γ∗

1 Γ2, DY = Γ∗
2 B,
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and the operator D2 on M2 takes the form

(6.2) D2 = −Γ(∂s1
+ D̃Y ), D̃Y = ΓDY .

The minus sign in front of Γ and the fact that D̃Y = ΓDY will come into play
later. Also, see Lemma 5.1, E0 = E+

0 ⊕ E−
0 where E±

0 are the ±i eigenspaces of
Γ = Γ∗

1 Γ2, and the induced Dirac operator DY = Γ∗
2 B is odd with respect to Γ

and so decomposes as
[

0 D−
Y

D+
Y 0

]
: C∞(Y,E+

0 ⊕ E−
0 ) → C∞(Y,E+

0 ⊕ E−
0 ),

where D±
Y are the restrictions of DY to C∞(Y,E±

0 ). Moreover, see Theorem 5.2,

D+
Y : H1(Y,E+

0 ) → L2(Y,E−
0 )

has index zero; that is, dim kerD+
Y = dim ker D−

Y .
We now define the perturbations. Since the kernel of the Dirac type operator

DY is exactly the obstruction to D̂ being Fredholm on weighted Sobolev spaces,
the perturbations are chosen to be isomorphisms on the kernel. Since DY is odd
with respect to Γ, we only consider isomorphisms on ker DY having the same
property. Thus, let T : ker DY → ker DY be a self-adjoint unitary isomorphism
that is odd with respect to Γ. Hence T decomposes as an odd matrix

[
0 T−

T+ 0

]
: kerD+

Y ⊕ ker D−
Y → ker D+

Y ⊕ ker D−
Y ,

where T± : kerD±
Y → ker D∓

Y are unitary isomorphisms with respect to the
L2 inner product on kerDY ⊂ L2(Y,E0). Such an operator T exists because
dim ker D+

Y = dim kerD−
Y . We can define T explicitly as follows. Let {uj}N

j=1

and {vj}N
j=1 be orthonormal bases of kerD+

Y and ker D−
Y , respectively. By elliptic

regularity, uj , vj ∈ C∞(Y,E0) for every j. Then,

T =

N∑

j=1

uj ⊗ vj +

N∑

j=1

vj ⊗ uj

defines a self-adjoint unitary isomorphism on kerDY that is odd with respect to
Γ and any such T can be written in this way for some choice of bases. Moreover,
this formula shows that T is a smoothing operator on Y . Obviously,

DY − T : H1(Y,E0) → L2(Y,E0)

is invertible. This suggests that if we can extend T to an operator T̂ on X, then

D̂ − T̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm for all 0 < |α| < δ for some δ > 0. To extend T , we first define T̂

on the manifold with multi-cylindrical ends M̂ . Let χ ∈ C∞
c ([0, 1)2) be such that
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χ(x) = 1 for x near zero. Then χ(es) = χ(es1 , es2) can be regarded as a smooth

function on M̂ supported on the cylindrical end (cf. Figure 7)

(−∞, 0]s1
× (−∞, 0]s2

× Y.

Let ϕ(ξ1, ξ2) = e−ξ2
1−ξ2

2 . Then, given any u ∈ C∞
c (M̂,E), we define

(6.3) T̂ u(s, y) = χ(es) Γ2
1

(2π)2

∫

R2

eis·ξ ϕ(ξ)T χ̂u(ξ, y) dξ,

where χ̂u is the Fourier transform of χ(es)u(s, y) with respect to s:

χ̂u(ξ, y) =
1

(2π)2

∫

R2

e−is·ξ χ(es)u(s, y) ds.

The reason for the factor of Γ2 on the right-hand side of T̂ u is that T̂ is required to
map sections of E to sections of F and the Γ2 factor provides this property. Note

that the operator T in the definition of T̂ only acts on the y variable of χ̂u(ξ, y).
Regarded as an operator on the compactified manifold X under the change of

variables xi = esi , the operator T̂ is an example of a b-smoothing operator; that
is, a b-pseudodifferential operator of order −∞. The mapping properties of such
operators (cf. [59, Ch. 5]) imply that

T̂ : xαHk
b (X,E) → xαH`

b(X,F ) for all α, k, `.

The next result follows from the properties of b-pseudodifferential operators and
the fact that DY − T : H1(Y,E0) → L2(Y,E0) is invertible, cf. [52, 53].

Lemma 6.1. There exists a δ > 0 such that for all 0 < |α| < δ,

D̂ − T̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm.

6.2. An index formula for perturbed Dirac operators. We now give a

formula for the index of D̂− T̂ . Before doing so, we need to review the ‘scattering

Lagrangian’ of each operator D̂i. Consider the operator D̂1 on M̂1. Recall that M̂1

is formed by attaching an infinite cylinder (−∞, 0]s2
× Y to the odd-dimensional

compact manifold with boundary M1. The set

ΛC1
=

{
lim

s2→−∞
u(s2, y) ; u ∈ C∞(M̂1, E) is bounded, and D̂1u = 0

}

is called the scattering Lagrangian of D̂1. It turns out that ΛC1
⊂ ker DY and the

dimension of ΛC1
is exactly one-half the dimension of kerDY , cf. [59, Sec. 6.5]. The

scattering matrix of D̂1 is the operator C1 : kerDY → ker DY defined by C1 = +1
on ΛC1

and C1 = −1 on Λ⊥
C1

, where ‘⊥’ means the orthogonal complement with

respect to the L2 inner product. Then C1 is odd with respect to Γ, cf. [65, Sec. 4].

The scattering Lagrangian ΛC2
and the matrix C2 of D̂2 are defined in the same

way. In [53] we give the following formula for the index of D̂ − T̂ :
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Theorem 6.2 (Loya-Melrose, 2002). Let D be a Dirac type operator on an
even-dimensional, compact, oriented, Riemannian manifold with corners of codi-
mension two with exactly two boundary hypersurfaces intersecting in exactly one
corner and with product type structures specified. Let T : ker DY → ker DY be a

self-adjoint unitary isomorphism that is odd with respect to Γ and let T̂ be the per-
turbation defined by (6.3). Then there exists a δ > 0 such that for all 0 < |α| < δ,
the perturbed Dirac operator

D̂ − T̂ : xαH1
b (X,E) → xαL2

b(X,F )

is Fredholm. Moreover, if its index is denoted by indα(D̂ − T̂ ), then

indα(D̂ − T̂ ) =

∫

M

KAS − 1

2

∑

i=1,2

{
bη(D̂i) + sign α · dim ker D̂i

}

− 1

2
cα(ΛT ,ΛC1

,ΛC2
).

(6.4)

The first line on the right-hand side is the same as in Theorem 5.7; the third
‘corner correction term’ is described as follows. First, ΛT ⊂ ker DY is the +1
eigenspace of the matrix T (since T is a self-adjoint unitary isomorphism, T 2 = Id,
so T has eigenvalues ±1). Then,

(6.5) cα(ΛT ,ΛC1
,ΛC2

) = sign α ·
{

dim(ΛT ∩ ΛC1
) + dim(ΛΓT ∩ ΛC2

)
}

+ η(DG),

where ΛΓT ⊂ ker DY is the +1 eigenspace of the self-adjoint unitary isomorphism
ΓT and η(DG) is the eta invariant of a Dirac operator on a directed graph G
defined as follows, cf. [41], [55], [20], [47]. This graph has two vertices v1 and v2

representing the hypersurfaces M1 and M2, respectively, and two edges e12 and
e21 connecting the vertices representing the single corner Y . To put a manifold
structure on this graph, we identify ejk with the interval [−1, 1]t, where the vertex
vj corresponds to t = −1 and the vertex vk to t = +1. We consider V = kerDY ⊕
ker DY as a ‘vector bundle’ over G where the first and second factors of kerDY

are ‘fibers’ over the edges e12 and e21, respectively. Thus a section of this vector
bundle is a sum s12 ⊕ s21, where sjk : ejk = [−1, 1] → ker DY . We define a Dirac
operator DG acting on sections of G by

DG = Γ
d

dt
⊕

(
− Γ

d

dt

)
.

The minus sign in the second term stems from the minus sign in (6.2). The domain
of DG consists of those sections s12 ⊕ s21 such that s12(v1) ∈ ΛT , s12(v2) ∈ ΛC1

,
and s21(v2) ∈ ΛΓT , s21(v1) ∈ ΛC2

. The Lagrangian ΛΓT paired with the scattering

Lagrangian ΛC2
stems from the fact that D̃Y = ΓDY in (6.2). The term η(DG)

appearing in (6.5) is then the eta invariant of DG .
Lesch and Wojciechowski [47] give the following linear-algebraic form for the

eta term:

η(DG) = m(ΛT ,ΛC1
) − m(ΛΓT ,ΛC2

),
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where

m(ΛL1
,ΛL2

) = − 1

iπ

∑

eiθ∈spec(−L−

1
L+

2
)

θ∈(−π,π)

iθ

for any given self-adjoint unitary isomorphisms L1, L2 on ker DY that are odd
with respect to Γ, and with ΛLi

⊂ ker DY denoting the +1 eigenspace of Li. The
number m(ΛL1

,ΛL2
) can be interpreted as an ‘exterior angle’ of sorts between ΛL1

and ΛL2
, cf. [48], [20], [18]. Hassel, Mazzeo, and Melrose [40, 41] give a somewhat

more sophisticated linear-algebraic description of the eta term.
Theorem 6.2 is proved as follows: First, following the proof of Theorem 5.7,

which uses similar arguments found in Section 4, produces the formula

indα(D̂ − T̂ ) =

∫

M

KAS − 1

2

∑

i=1,2

{
bη(D̂i − T̂i) + sign α · dim ker(D̂i − T̂i)

}
,

where T̂i is an operator naturally induced by T̂ on M̂i. The second and most

difficult part of the proof is to show that the terms involving D̂i − T̂i in this
formula decompose as in (6.4). To do this, we show that

dim ker(D̂i − T̂i) = dim ker D̂i + dim(ΛTi
∩ ΛCi

),

where T1 = T and T2 = ΓT , and that

bη(D̂i − T̂i) = bη(D̂i) ± m(ΛTi
,ΛCi

),

where the sign is positive or negative if i = 1 or i = 2, respectively. The de-
composition of the b-eta invariants uses techniques that have been developed by
many authors concerning gluing/splitting formulas for eta invariants, e.g. Brüning
and Lesch [17] (cf. Vishik [83]), Douglas and Wojciechowski [28], Lesch and Wo-
jciechowski [47], and Müller [65]. For related works on the eta invariant, see
Singer [80], Bunke [18], Dai and Freed [26], and Hassel, Mazzeo, and Melrose [40].

6.3. Some concluding remarks. If M has more than one corner, the result
from Theorem 6.2 still holds (with minor changes in the index formula accounting
for the various faces and corners) as long as we assume that each corner Dirac
operator has index zero [53]. This assumption allows us to construct separate per-
turbations for each corner, then sum these perturbations producing a b-smoothing
operator giving a Fredholm perturbation of the Dirac operator. Melrose and Nistor
show that it is in fact necessary that each corner operator have index zero for the
existence of a b-smoothing Fredholm perturbation. However, using a slightly larger
class of perturbations called ‘overblown’ b-smoothing operators, it is possible to
make Fredholm perturbations without any assumptions at the corners [54].

Current plans include relating the index of the perturbed Dirac operator to
an index of the Dirac operator on a domain depending on the choice of perturba-
tion. The index should be a type of Carron index [21]. In future work, we expect
to generalize the program of ‘overblown’ b-smoothing Fredholm perturbations of
Dirac operators to manifolds with corners of arbitrary codimension. Finally, one
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of the ultimate goals of this project is to derive via an index computation an an-
alytic formula for the topological signature of any compact manifold with corners
of arbitrary codimension in terms of geometric and other types of invariants of the
manifold and its boundary faces.
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