A Derivation of Taylor's Formula with Integral Remainder

Dimitri Kountourogiannis
69 Dover street \#2
Somerville, MA 02144
dimitrik@alum.mit.edu
Paul Loya
Binghamton University
Binghamton, NY 13902-6000
paul@math.binghamton.edu
Taylor's formula with integral remainder is usually derived using integration by parts $[\mathbf{4 , 5}$], or sometimes by differentiating with respect to a parameter [1, 2]. According to M. Spivak [7, p. 390], integration by parts is applied in a "rather tricky way" to derive Taylor's formula, using a substitution that "one might discover after sufficiently many similar but futile manipulations". In this MAGAZINE, Lampret [3] derived both Taylor's formula and the Euler-Maclaurin summation formula using a rather heroic application of integration by parts.

We derive the remainder formula in a way that avoids tricks and heroics. The key step is changing the order of integration in multiple integrals, a topic that many students in an analysis class will benefit from reviewing. This derivation has almost certainly been found many times before [6], however, most people seem to be unaware of it.

The Taylor formula Suppose that a function $f(x)$ and all its derivatives up to $n+1$ are continuous on the real line. Then Taylor's formula for $f(x)$ about 0 is

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+R(x) \tag{1}
\end{equation*}
$$

where the remainder, $R(x)$, is given by

$$
R(x)=\frac{1}{n!} \int_{0}^{x}(x-u)^{n} f^{(n+1)}(u) d u
$$

Our derivation is based on the following simple idea: Try to reconstruct f by integrating $f^{(n+1)}, n+1$ times. This approach is suggested by the case $n=0$, when (1) is merely the fundamental theorem of calculus. For notational simplicity, we prove (1) for only $n=2$; however, the general case is similar. Thus, consider

$$
\begin{equation*}
\widetilde{R}(x):=\int_{0}^{x} \int_{0}^{w} \int_{0}^{v} f^{(3)}(u) d u d v d w \tag{2}
\end{equation*}
$$

Now let's evaluate this integral in two ways. The first way is by direct integration using the fundamental theorem of calculus three times:

$$
\begin{equation*}
\widetilde{R}(x)=f(x)-f(0)-x f^{\prime}(0)-\frac{x^{2}}{2!} f^{\prime \prime}(0) \tag{3}
\end{equation*}
$$

The second way to integrate (2) is by interchanging the order of integration:

$$
\int_{0}^{w} \int_{0}^{v} f^{(3)}(u) d u d v=\int_{0}^{w} \int_{u}^{w} f^{(3)}(u) d v d u=\int_{0}^{w}(w-u) f^{(3)}(u) d u
$$

Interchanging the order of integration again gives

$$
\begin{align*}
\int_{0}^{x}\left\{\int_{0}^{w} \int_{0}^{v} f^{(3)}(u) d u d v\right\} d w & =\int_{0}^{x}\left\{\int_{0}^{w}(w-u) f^{(3)}(u) d u\right\} d w \\
& =\int_{0}^{x} \int_{u}^{x}(w-u) f^{(3)}(u) d w d u \\
& =\frac{1}{2} \int_{0}^{x}(x-u)^{2} f^{(3)}(u) d u \tag{4}
\end{align*}
$$

Equating (3) and (4) yields the Taylor formula (1) for $n=2$.

Acknowledgment The second author was supported in part by a Ford Foundation Fellowship.

REFERENCES

1. Richard Courant and Fritz John, Introduction to calculus and analysis, Vol. I, Springer-Verlag, New York, 1989.
2. Allen Devinatz, Advanced calculus, Holt, Rinehart and Winston, Inc., New York, 1968.
3. Vito Lampret, The Euler-Maclaurin and Taylor formulas: Twin, elementary derivations, thisMagazine, 74:2(2001), 109-122.
4. Serge Lang, A first course in calculus, fifth ed., Addison-Wesley Pub. Co., Reading, Mass., 1964.
5. Angus E. Taylor and W. Robert Mann, Advanced calculus, third ed., John Wiley \& Sons Inc., New York, 1983.
6. Oved Shisha, On Taylor's theorem, J.Res. Nat. Bur. Standards Sect. B, 72B (1968), 5-6.
7. Michael Spivak, Calculus, second ed., Publish or Perish, Berkeley, 1980.
