
THE TRANSFER ON THE n-FOLD COVER OF THE CIRCLE

CARY MALKIEWICH

The purpose of this note is to give details about how to calculate the Becker-Gottlieb transfer

[BG75] for the n-fold covering S1 ·n→ S1. It was written in November of 2014 and posted to my

webpage in 2018, but there was an incorrect statement about the coordinate systems. In 2023 I

corrected this and added a discussion of how this interacts with the circle transfer.

0.1. Coordinates. First we have to talk about choices of coordinates, because the answer depends

on which coordinates we use for Σ∞
+ S1.

In the stable homotopy category, any diagram manifesting A as a retract of X gives canonical

isomorphisms in the homotopy category

A ∨ F
∼−→ X

∼−→ A× C

where F is the fiber of X −→ A and C is the cofiber of A −→ X. We stress that we get

not just an abstract isomorphism A ⊕ C ∼= X in the stable homotopy category, but a particular

isomorphism induced by the retract diagram for A and X. Any other isomorphism A ⊕ C ∼= X

may be easily compared against our canonical one, by composing them to get a self-map of A⊕C.

The two isomorphisms agree iff this self-map is the identity, and this is easily checked in practice

by calculating separately the maps

A −→ A, C −→ C, A −→ C, C −→ A,

and checking that the first two are the identity and the second two are zero.

Now consider the suspension spectrum of the circle, Σ∞
+ S1. Choosing a basepoint for the circle

gives a retract diagram

Σ∞S0 −→ Σ∞
+ S1 −→ Σ∞S0.

In the stable category, this leads to a canonical splitting of Σ∞
+ S1 into a wedge of Σ∞S0 and

another summand. The second summand may be canonically identified with the cofiber of the first

map above, or the fiber of the second map. The cofiber is simple enough, it is just the suspension

spectrum of the based circle Σ∞S1.

We want to describe a different way of getting the same isomorphism. We will map Σ∞S0 −→ Σ∞
+ S1

as before, by inclusion of the basepoint of S1. For the second summand, we truncate Σ∞S1 at

spectrum level 1, and then map in by Pontryagin-Thom collapse map

(1) S2 −→ Σ+S
1.

This uses the standard embedding of S1 into R2, and the identification of its neighborhood with

S1× (−1, 1) by spinning around the origin. If we compose this map with the projection to Σ∞S1×
Σ∞S0, we get a map

Σ∞S1 −→ Σ∞S1 × Σ∞S0
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which is (up to homotopy) the identity on the first factor and zero on the second factor. Therefore

it defines a splitting Σ∞S0 ∨ Σ∞S1 ∼−→ Σ∞
+ S1 which is, in the homotopy category, the inverse of

the above splitting. This is the splitting we’ll use for our calculation.

0.2. The answer in “retract” coordinates. Now that we’ve fixed the coordinates, we can

compute the Becker-Gottlieb transfer [BG75] for the covering

S1 ·n−→ S1, n > 0

This will be a stable map from Σ∞
+ S1 to itself. Rewriting this spectrum as S1 ∨ S0, we see that it

suffices to fill out the matrix

S0 S1

S0 ? ∈ πS
0 ? ∈ πS

1

S1 ? ∈ πS
−1 ? ∈ πS

0

The answer is (
n (n− 1)η

0 1

)
where η ∈ πS

1 is the Hopf map. Remember that 2η = 0, so the upper-right entry is 0 or η depending

on the parity of n.

0.3. How to calculate it. Let’s explain how we got these entries. The lower-left entry is easy,

since πS
−1 = 0.

To get the rest, we embed S1 ×D2 into R3 in the usual way, by taking a D2 embedded in the xz

plane and spinning it around the z-axis. We then embed another copy of S1 inside of S1 ×D2 by

winding around n times. Quotienting the complement of the big tube S1 × e2 to a point gives the

domain S2 ∧ S1
+. Quotienting the complement of a tubular neighborhood of the windier S1 gives

the target S2 ∧ S1
+. The top-degree map is the composite

S3 −→ S2 ∧ S1
+

collapse−→ S2 ∧ S1
+

collapse−→ S3

where the last map collapses onto any point inside S1 ×D2. We just have to count the degree of

this composite. But everything is a collapse map, so the degree is 1; this gives the lower-right entry

in the matrix.

To get the bottom-degree map we look at the composite

S2 ↪→ S2 ∧ S1
+

collapse−→ S2 ∧ S1
+

project−→ S2.

This includes one disc D2 into S1×D2, then collapses the result onto n smaller discs normal to the

n places where the windy S1 passes through this larger disc. The result is a degree n map, giving

the upper-left entry of our matrix.

The last entry is tricky. We will use the Pontryagin-Thom correspondence between the stable

1-stem and framed 1-manifolds up to framed bordism. We inspect the composite

S3 −→ S2 ∧ S1
+

collapse−→ S2 ∧ S1
+

project−→ S2
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The first map, as in (1), collapses from R3 onto S1×D2, embedded into R3 by spinning a disc about

the z-axis. The remaining collapses create a map S3 → S2 represented by a circle winding around

n times, with the “trivial” framing, where the first vector always points away from the z-axis, and

the second vector always points in the positive z-direction.

We unwind this circle in (n − 1) steps to get the trivial circle. Each step involves removing a

crossing in the knot diagram by flipping a loop; this adds 1 to the framing number. Therefore our

map is represented by a trivial circle with a framing that twists around (n − 1) times. This gives

the upper-right entry of our matrix, (n− 1) times the Hopf map η.

0.4. Relationship to the circle transfer. The circle transfer for the trivial fibration S1 → ∗ is

the map of spectra ΣΣ∞
+ (∗) → Σ∞

+ S1, or equivalently S1 → S0 ∨ S1, calculated by embedding S1

into R3 and taking a Pontryagin-Thom collapse to get a map

S3 → S2 ∧ S1
+,

as in (1). However, when we identify the neighborhood of S1 in R3 with S1 ×D2, we must add an

additional twist, in other words we must compose with the homeomorphism of S1×D2 that rotates

the disc D2 around once as we go around S1.

The reason for this modification is that the trivialization of the normal bundle of S1 has to be

compatible with the tangent bundle of S1, which has a standard trivialization because S1 is a Lie

group. The compatibility is as follows: if we add both trivializations together, we need to get

the identity of the trivial bundle S1 × R3, or at least an automorphism homotopic to the identity.

And if we take the “spin around the z-axis” trivialization of the normal bundle, and add it to the

tangent bundle, we instead get an automorphism of S1 ×R3 with a single twist. (Visualize it! Use

your hands!) So, we have to add a second twist in to cancel this out.

As a consistency check, let’s verify that the circle transfer followed by the n-fold cover transfer

agrees with the circle transfer:

(2) S1
S1 transfer

{{

S1 transfer

##
S0 ∨ S1

Cn transfer
// S0 ∨ S1

In our perferred coordinates where we just spin around the z-axis, the circle transfer is given by

the vector

(
η

1

)
, the η representing the extra twist we had to add. So the compatibility becomes

the matrix equation (
n (n− 1)η

0 1

)(
η

1

)
=

(
η

1

)
,

which holds because 2η = 0.
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0.5. The answer in “circle transfer” coordinates. If we change coordinates for S0∨S1 by the

matrix (
1 η

0 1

)
,

the answer for the transfer for the n-fold cover becomes(
1 η

0 1

)(
n (n− 1)η

0 1

)(
1 η

0 1

)
=

(
n 0

0 1

)
.

In other words, consider the equivalence

S0 ∨ S1 ∼−→ Σ∞
+ S1

given by the inclusion S0 → S1 and the circle transfer. If we use this equivalence to relate Σ∞
+ S1

to S0∨S1, and not the previous one, then the transfer for the n-fold cover has no off-diagonal term.

This is consistent with the diagram (2), and in fact can be deduced from it, without any need to

analyze Pontryagin-Thom collapse maps explicitly. (But where’s the fun in that?)

0.6. Concluding remarks. I claim no originality here. This is just an explicit description of how

to do the calculation, and a reference for people looking to get the answer right. The calculation

appears in a few places in the literature, but sometimes incorrectly. The correct answer appears in

[Hes96], proof of Lemma 1.5.1. It’s also used in Lemma 3.15 of [CDD11].
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