▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Reidemeister trace in pictures

Cary Malkiewich (UIUC)

January 6, 2017 Joint Mathematics Meetings Atlanta, GA, USA

Given a (cts) map of spaces $f : X \to Y$,

Given a (cts) map of spaces $f : X \to Y$, get a map on homology groups $f_* : H_*(X) \to H_*(Y)$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given a (cts) map of spaces $f : X \to Y$, get a map on homology groups $f_* : H_*(X) \to H_*(Y)$.

In special cases, get a "wrong-way" transfer map $f_!: H_*(Y) \to H_*(X).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Given a (cts) map of spaces $f : X \to Y$, get a map on homology groups $f_* : H_*(X) \to H_*(Y)$.

In special cases, get a "wrong-way" transfer map $f_!: H_*(Y) \to H_*(X).$

(What is this good for?

Given a (cts) map of spaces $f : X \to Y$, get a map on homology groups $f_* : H_*(X) \to H_*(Y)$.

In special cases, get a "wrong-way" transfer map $f_!: H_*(Y) \to H_*(X).$

(What is this good for? Computations of $H_*(X)$ are much easier using both f_* and $f_{!}$.)

transfer of free loop spaces 00000

applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First example: $e: M \rightarrow N$ a codimension d embedding of closed manifolds, tubular neighborhood $V \subseteq N$.

transfer of free loop spaces 00000

applications

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

First example: $e: M \rightarrow N$ a codimension d embedding of closed manifolds, tubular neighborhood $V \subseteq N$.

M

 $N \longrightarrow N/(N-V) \cong V/\partial V$

transfer of free loop spaces 00000

applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First example: $e: M \rightarrow N$ a codimension d embedding of closed manifolds, tubular neighborhood $V \subseteq N$.

M

$$N \longrightarrow N/(N-V) \cong V/\partial V$$

Gives a transfer

$$e_!: H_q(N) \longrightarrow H_q(V/\partial V) \cong H_{q-d}(M)$$

transfer of free loop spaces 00000

applications

First example: $e: M \rightarrow N$ a codimension d embedding of closed manifolds, tubular neighborhood $V \subseteq N$.

M

$$N \longrightarrow N/(N-V) \cong V/\partial V$$

Gives a transfer

$$e_!: H_q(N) \longrightarrow H_q(V/\partial V) \cong H_{q-d}(M)$$

(If M, N are both oriented. Otherwise last term has twisted coefficients.)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Second example: $p: E \rightarrow B$ a smooth fiber bundle, fibers are closed manifolds of dimension d.

transfer of free loop spaces 00000

applications 00

Embed *E* fiberwise into $B \times \mathbb{R}^n \cong B \times \mathring{D}^n$, with tubular neighborhood *V*:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

transfer of free loop spaces

applications 00

Embed *E* fiberwise into $B \times \mathbb{R}^n \cong B \times \check{D}^n$, with tubular neighborhood *V*:

That gives a different transfer

$$p_!: H_q(B) \longrightarrow H_{q+n}(V/\partial V) \cong H_{q+d}(E)$$

That gives a different transfer

$$p_!: H_q(B) \longrightarrow H_{q+n}(V/\partial V) \cong H_{q+d}(E)$$

(Again, last term has twisted coefficients if bundle isn't orientable.)

Special case: $p: E \rightarrow B$ an *n*-sheeted covering space (d = 0):

$p_!: H_q(B) \to H_q(E)$

Special case: $p: E \rightarrow B$ an *n*-sheeted covering space (d = 0):

$p_!: H_q(B) \to H_q(E)$

$$p_* \circ p_! = n \cdot \mathrm{id}_{H_*(B)}.$$

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

 $Lp_!: H_*(LB) \rightarrow H_*(LE).$

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

$$Lp_!: H_*(LB) \rightarrow H_*(LE).$$

Surprising that this exists. Lp is a fiber bundle, but its fiber is not compact.

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

$$Lp_!: H_*(LB) \rightarrow H_*(LE).$$

Surprising that this exists. Lp is a fiber bundle, but its fiber is not compact.

Question: Is there a geometric description? Can we compute this in any examples?

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

$$Lp_{!}: H_{*}(LB) \rightarrow H_{*}(LE).$$

Surprising that this exists. Lp is a fiber bundle, but its fiber is not compact.

Question: Is there a geometric description? Can we compute this in any examples?

Answer: (Lind-M, 2016)

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

$$Lp_{!}: H_{*}(LB) \rightarrow H_{*}(LE).$$

Surprising that this exists. Lp is a fiber bundle, but its fiber is not compact.

Question: Is there a geometric description? Can we compute this in any examples?

Answer: (Lind-M, 2016) Yes!

Each smooth fiber bundle $p: E \rightarrow B$, gives a map of the spaces of free loops, $Lp: LE \rightarrow LB$.

Fancy machinery from algebraic K-theory gives an (abstractly defined) transfer map for Lp,

$$Lp_!: H_*(LB) \rightarrow H_*(LE).$$

Surprising that this exists. Lp is a fiber bundle, but its fiber is not compact.

Question: Is there a geometric description? Can we compute this in any examples?

Answer: (Lind-M, 2016) Yes! (extends Schlichtkrull, 1998)

transfer of free loop spaces $0 \bullet 000$

applications 00

Solution: First, factor Lp as

$LE \longrightarrow P \longrightarrow LB$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Solution: First, factor *Lp* as

$$LE \longrightarrow P \longrightarrow LB$$

P has two descriptions:

- **(**) Space of paths in E whose endpoints lie in the same fiber E_b
- **2** Space of choices of point $e \in E$, and loop in B based at p(e).

These describe homotopy-equivalent spaces.

transfer of free loop spaces 00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Second description makes $P \longrightarrow LB$ is a fiber bundle, same fibers E_b ,

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Second description makes $P \longrightarrow LB$ is a fiber bundle, same fibers E_b , so we get a shifting-up transfer

$$H_q(LB) \longrightarrow H_{q+d}(P)$$

First description makes $LE \longrightarrow P$ like an inclusion with tubular neighborhood(*),

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

First description makes $LE \longrightarrow P$ like an inclusion with tubular neighborhood(*), so we get a shifting-down transfer

$$H_{q+d}(P) \longrightarrow H_q(LE)$$

First description makes $LE \longrightarrow P$ like an inclusion with tubular neighborhood(*), so we get a shifting-down transfer

$$H_{q+d}(P) \longrightarrow H_q(LE)$$

Putting these together recovers our mystery map $p_{?}$.

transfer of free loop spaces 00000

 \mapsto

 \leftarrow

applications

Further explanation of (*).

path with close endpoints

loop with tangent vector

transfer of free loop spaces 00000

 \mapsto

 \leftarrow

applications

Further explanation of (*).

path with close endpoints

loop with tangent vector

transfer of free loop spaces 00000

 \mapsto

 \leftarrow

applications 00

Further explanation of (*).

path with close endpoints

loop with tangent vector

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

transfer of free loop spaces 00000

loop with tangent vector

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

applications 00

Further explanation of (*).

path with close endpoints

(Gives homotopy equivalence between neighborhood of LE in P and vertical tangent bundle over LE.)

 \leftarrow

prologue: transfers (wrong-way maps) 000000	transfer of free loop spaces 00000	applications ●0

• Original motivation was to compute algebraic *K*-theory transfers, this is just the first step.

prologue: transfers (wrong-way maps) 000000	transfer of free loop spaces 00000	applications ●0

- Original motivation was to compute algebraic *K*-theory transfers, this is just the first step.
- (Ponto-Shulman) Gives a parametrized enrichment of Reidemeister trace from Nielsen theory (removing fixed points of maps $M \rightarrow M$ by a homotopy).

- Original motivation was to compute algebraic *K*-theory transfers, this is just the first step.
- (Ponto-Shulman) Gives a parametrized enrichment of Reidemeister trace from Nielsen theory (removing fixed points of maps $M \rightarrow M$ by a homotopy).
- Might help improve earlier estimates of the order of growth of rank H_n(LM; ℚ), for closed Riemannian manifolds M.

- Original motivation was to compute algebraic *K*-theory transfers, this is just the first step.
- (Ponto-Shulman) Gives a parametrized enrichment of Reidemeister trace from Nielsen theory (removing fixed points of maps $M \rightarrow M$ by a homotopy).
- Might help improve earlier estimates of the order of growth of rank H_n(LM; Q), for closed Riemannian manifolds M.
 (Related to counting closed geodesics with respect to length.)

- Original motivation was to compute algebraic *K*-theory transfers, this is just the first step.
- (Ponto-Shulman) Gives a parametrized enrichment of Reidemeister trace from Nielsen theory (removing fixed points of maps $M \rightarrow M$ by a homotopy).
- Might help improve earlier estimates of the order of growth of rank H_n(LM; Q), for closed Riemannian manifolds M.
 (Related to counting closed geodesics with respect to length.)
- (do this first) Just compute *p*? in some examples. Relatively unexplored.

transfer of free loop spaces 00000

applications ○●

For $p: LBS^1 \rightarrow LBS^3$, we have

$$\begin{array}{cccc} H_q(LBS^1) \xrightarrow{p_*} H_q(LBS^3) & H_q(LBS^3) \xrightarrow{p_?} H_q(LBS^1) \\ \mathbb{Z} \xrightarrow{1} & \mathbb{Z} & q = 0 & \mathbb{Z} \xrightarrow{2} & \mathbb{Z} \\ \mathbb{Z} & 0 & q = 1 & 0 & \mathbb{Z} \\ \mathbb{Z} & 0 & q = 2 & 0 & \mathbb{Z} \\ \mathbb{Z} \xrightarrow{2} & \mathbb{Z} & q = 3 & \mathbb{Z} \xrightarrow{1} & \mathbb{Z} \\ \mathbb{Z} \xrightarrow{1} & \mathbb{Z} & q = 4 & \mathbb{Z} \xrightarrow{2} & \mathbb{Z} \\ \mathbb{Z} & 0 & q = 5 & 0 & \mathbb{Z} \\ \mathbb{Z} & 0 & q = 6 & 0 & \mathbb{Z} \\ \mathbb{Z} \xrightarrow{2} & \mathbb{Z} & q = 7 & \mathbb{Z} \xrightarrow{1} & \mathbb{Z} \\ \mathbb{Z} \xrightarrow{1} & \mathbb{Z} & q = 8 & \mathbb{Z} \xrightarrow{2} & \mathbb{Z} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで