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These notes are concerned with the close connection between duality theory, Morita

equivalences, Morita duality, and Koszul duality. We explain the useful observation

that a duality is always an adjunction, and how the notions of Morita equivalence,

Morita adjunction, and Morita duality are related to each other. We will assume the

reader is familiar with symmetric monoidal categories, functors, natural transformations

and adjunctions. For applications to rings, some homological algebra is assumed. For

applications to ring spectra, some stable homotopy theory is assumed.

1. Adjunctions and duality

An adjunction between categories C and D is a pair of functors L : C ↔ D : R with

“unit” and “counit” natural transformations

η : idC −→ R ◦ L ε : L ◦R −→ idD

such that the composites

L ∼= L ◦ idC
L◦η // L ◦R ◦ L ε◦L // idD ◦ L ∼= L

R ∼= idC ◦R
η◦R // R ◦ L ◦R R◦ε // R ◦ idD ∼= R

are the identity transformations of L and ofR, respectively. The adjunction (C,D, L,R, η, ε)
is an adjoint equivalence of categories if η and ε are natural isomorphisms. Of course,
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equivalences may be reversed, by taking R to be the left adjoint and L the right adjoint,

and by taking the unit and counit to be ε−1 and η−1, respectively.

Now, suppose that C is a symmetric monoidal category. Recall that (X,Y ) is a dual

pair in C if there are maps

c : I −→ Y ⊗X e : X ⊗ Y −→ I

such that the composites

X ∼= X ⊗ I
idX⊗c // X ⊗ Y ⊗X

e⊗idX // I ⊗X ∼= X

Y ∼= I ⊗ Y
c⊗idY // Y ⊗X ⊗ Y

idY ⊗e // Y ⊗ I ∼= Y

are the identity maps of X and Y , respectively. We say that the duality (X,Y, c, e) is

invertible if c and e are isomorphisms.

With this presentation of the definitions, the next result is obvious.

Proposition 1.1. A duality between X and Y is an adjunction between X ⊗ − and

Y ⊗ −, as functors from C to C. The duality is invertible iff the adjunction is an

equivalence.

This observation is completely elementary but it gives the most powerful and elegant

proofs of the standard theorems about dualizable objects [LMSM86]. For instance, if C
is a closed symmetric monoidal category, then X ⊗− has two right adjoints, Y ⊗− and

F (X,−). Since these are canonically isomorphic, the assembly map

F (X,Z)⊗W −→ F (X,Z ⊗W )

is isomorphic to the associativity isomorphism

(Y ⊗ Z)⊗W ∼= Y ⊗ (Z ⊗W )

and is therefore an isomorphism.

The duality also gives an adjunction between −⊗ Y and −⊗X. Since C is symmetric,

these functors are isomorphic to Y ⊗− and X ⊗−. We conclude that X ⊗− is both a

left and a right adjoint, and its two adjoints are isomorphic. Of course, this is not quite

enough to imply that X ⊗− is an equivalence.

We recall that for a given left adjoint L, the right adjoint R is defined by a universal

property, and so it is unique up to a canonical isomorphism that preserves η and ε. This

implies that duals are unique – any two duals of X must be isomorphic, in a way that

agrees with the evaluation and coevaluation maps. We therefore say that X is dualizable

if such a dual exists, and invertible if that unique duality is an invertible duality. In

other words, we can think of dualizability or invertibility as a condition on X, rather

than a set of data.
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How do we make that condition more concrete? Suppose again that C is closed. Then

the dual of X, if it exists, must be the right adjoint of X ⊗− applied to the unit, which

gives F (X, I). Under this identification, the evaluation map is forced to be the usual

evaluation map

X ⊗ F (X, I) −→ I

which “plugs in” the X into the function object F (X, I). (Because evaluation is adjoint

to an isomorphism Y −→ F (X, I), and the usual evaluation is adjoint to the identity of

F (X, I).)

If X is invertible this map must be an equivalence. Conversely, if this is an equiva-

lence then it is trivial to verify that tensoring with X and with F (X, I) give inverse

equivalences C −→ C. Therefore:

Proposition 1.2. In a closed symmetric monoidal category C, the object X is invertible

iff the evaluation map

X ⊗ F (X, I) −→ I

is an isomorphism.

Now for the weaker condition of X being dualizable. If X were dualizable, then the

assembly map

F (X, I)⊗X −→ F (X,X)

would be an isomorphism. Under this identification, coevaluation would be the map

I −→ F (X,X) adjoint to the identity of X. In other words, it “picks out the identity”

inside the object of all maps from X to X. (Because that’s the unit of the adjunction

between X ⊗− and F (X,−) on the object I.)

On the other hand, if we assume that this assembly map is an isomorphism, then we

can lift the identity I −→ F (X,X) to a map I −→ F (X, I)⊗X. That gives a candidate

coevaluation map. It always forms a duality. The identities to check become

F (I,X)
idX⊗c //

idX⊗η ++

F (I,X)⊗ F (X, I)⊗ F (I,X)
e⊗idX //

∼=��

F (I,X)

F (I,X)⊗ F (X,X)
◦

33

F (X, I)
c⊗idY //

η⊗idY ++

F (X, I)⊗ F (I,X)⊗ F (X, I)
idY ⊗e //

∼=��

F (X, I)

F (X,X)⊗ F (X, I)
◦

33

The left-hand triangles commute by definition of c, and the right-hand triangles com-

mute because both routes simply compose the three mapping objects together. It follows

that the two diagrams give the identity maps of X and of F (X, I). (As is typical, this

is easy to check in any concrete example of a closed symmetric monoidal category C,
but a bit of a pain to check in general.) In conclusion:
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Proposition 1.3. In a closed symmetric monoidal category C, the object X is dualizable

iff the assembly map

F (X, I)⊗X −→ F (X,X)

is an isomorphism.

The assembly map always exists, so this drives home the point that dualizability is just

a condition on X.

2. Morita adjunctions

Now we will sketch the essentials of Morita theory, in a very suggestive way. Recall that

Morita theory has two sides. First, given an additive category C, when can we recognize

it as a category of modules over a ring? Second, given two categories of modules, when

are they equivalent? These questions are really two sides of the same question. The

first is about the existence of a module category modeling C, while the second is about

non-trivial equivalences between module categories, which addresses how unique that

model of C can be.

We will focus on the uniqueness question, and summarize the main result as follows.

Theorem 2.1. Given rings A and R, not necessarily commutative, any equivalence of

categories A−Mod ' R −Mod is given up to isomorphism by an R − A bimodule M

and an A− R bimodule M∗. The equivalence is given by the adjoint functors M ⊗A −
and M∗ ⊗R −, and so we have isomorphisms

c : A
∼=−→M∗ ⊗RM, e : M ⊗AM∗

∼=−→ R

satisfying the triangle identities

(1) M ∼= M ⊗A A
idM⊗c // M ⊗AM∗ ⊗RM

e⊗idM // R⊗RM ∼= M

M∗ ∼= A⊗AM∗
c⊗id∗M // M∗ ⊗RM ⊗AM∗

id∗M⊗e // M∗ ⊗R R ∼= M∗

Such an equivalence is called a Morita equivalence between A and R. By definition, e

is a map of left R-modules, but since M∗ ∼= M∗ ⊗R R and we have functoriality of the

isomorphism in the R coordinate, e must be a map of right R-modules too. Similarly c

must be a map of A−A bimodules.

The easy converse to this theorem is, given A, R, M , M∗, c, and e, as above, they give

an equivalence of module categories.

A Morita equivalence looks suspiciously like an invertible duality. This is not strictly

true, because the tensor products are taken alternately over A and over R. However

the idea can be made to work, by switching from symmetric monoidal categories to

bicategories. These are like symmetric monoidal categories, except that each object is

additionally marked with two colors for its “source” and “target.” One is only allowed to
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form maps between objects with the same source and target, and in addition the tensor

products can only be formed when the target color of one object lines up with the source

color of the other object. There are several excellent references on the subject, but we

encourage the interested reader to try to first make the idea precise.

Our next question is: if a Morita equivalence is like an invertible duality of bimodules,

what concept corresponds to an ordinary duality?

Definition. AMorita adjunction consists of rings A and R, bimodules M and M∗, and

bimodule maps c and e as above, so that the composites in (3) are the identity. We

don’t require c and e to be isomorphisms.

Again, because of the way we have defined things, it is obvious that a Morita adjunction

is just an adjunction between M ⊗A − and M∗ ⊗R −. Because any two right adjoints

are isomorphic, we get an isomorphism of functors

M∗ ⊗R − ∼= HomR(M,−)

and in particular

M∗ ∼= HomR(M,R)

Furthermore we know that HomR(M,−) is right exact and commutes with coproducts,

because it’s isomorphic to the tensoring functor M∗ ⊗R −. By a quick inspection of

HomR(M,−) applied to some surjective map of R-modules⊕
R −→M

we conclude that M must be perfect (i.e. finitely generated projective) as a left R-

module.

The observation M∗ ∼= HomR(M,R) has a startling consequence. If we give just a ring

R and a perfect left R-module M , there is only one possible Morita equivalence using

this data. M∗ must be HomR(M,R), and A must be

M∗ ⊗RM = HomR(M,R)⊗RM ∼= HomR(M,M)

(The last map is an isomorphism because M is perfect.) So we take A to be the ring

HomR(M,M), and M∗ to be HomR(M,R). This fits into a Morita equivalence so long

as the map

M ⊗HomR(M,M) M
∗ −→ R

is an equivalence. This happens when M is a “generator,” which means that maps out

of M detect all maps of R-modules. Equivalently, R is a direct summand of a direct

sum of copies of M ([Bas62], Lemma 1).

The Morita equivalence constructed out of R and M is unique. If we had some other

A and M∗ that worked, the above composite would send the identity element of A to

the identity of M , because it’s the unit of the adjunction. Therefore we must have an

isomorphism of rings A ∼= HomR(M,M), respecting the action on M .
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Let’s return to Morita adjunctions. We’ve seen that a Morita adjunction implies that

M is a perfect R-module. Conversely, if M is perfect, then to get an adjunction we

must take M∗ = HomR(M,R). As soon as we specify how A acts on M , we can lift the

action along the assembly map and get the coevaluation map

A −→M∗ ⊗RM

This gives a duality, by essentially the argument we gave at the end of section 1.

It’s important to notice that the ring A was totally unimportant for this to work. We

only needed it to be some ring that commuted with the R-action. So the “universal”

choice for A is HomR(M,M), but any old ring mapping into HomR(M,M) will give a

Morita adjunction. To summarize:

Proposition 2.2. • Morita equivalences into R−Mod correspond to perfect left

R-modules M that are generators.

• Morita adjunctions with left adjoint going into R −Mod correspond to choices

of R−A bimodules M which are perfect over R.

• Each Morita adjunction is an equivalence iff the induced map A −→ HomR(M,M)

is an isomorphism, and M is a generator.

• Every ring Morita equivalent to R is of the form HomR(M,M) for some perfect

generator R-module M .

Proposition 2.3. The following are equivalent for a left R-module M :

(1) M ⊗Z − is a left Morita adjoint.

(2) M ⊗A − is a left Morita adjoint for some ring A.

(3) M is perfect (finitely generated and projective).

(4) The assembly map HomR(M,R)⊗RM −→ HomR(M,M) is an isomorphism of

abelian groups.

We conclude that while Morita equivalences are not so common, Morita adjunctions are

very common. By the Eilenberg-Watts theorem, any sufficiently nice functor of module

categories (right exact, coproduct-preserving) must come about by tensoring with a

bimodule. Such a functor then gives a Morita adjoint as long as the resulting bimodule

is perfect over R.

There is also a Morita theory for derived categories, which we will not cover here. In

essence, we continue to work with rings but we let the A-R bimodules and maps between

them be objects and morphisms in the derived category D(A⊗Rop). See [Sch04].

3. Morita adjunctions for ring spectra

Schwede and Shipley have performed a beautiful generalization of classical Morita theory

to the setting of ring spectra and module spectra. Instead of searching for equivalences
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of categories, we look for Quillen equivalences between module categories. We recall the

main “uniqueness” result from [SS03].

Theorem 3.1. If A and R are ring spectra whose categories of module spectra are

equivalent as spectral model categories, then there is an R − A bimodule M such that

the derived smash product M ∧LA − gives an equivalence from the homotopy category

A-modules to the homotopy category of R-modules.

Now let us take their framework and flesh out the structure a bit more. Let’s work in

orthogonal spectra. Recall the following standard result.1

Proposition 3.2. The following are equivalent for a cofibrant left R-module M :

(1) M is perfect (a homotopy retract of a finite cell spectrum).

(2) FR(M,−) commutes with all wedge sums up to equivalence.

(3) The derived assembly map FR(M,R)∧RN −→ FR(M,N) is a weak equivalence

for all R-modules N .

(4) The derived assembly map FR(M,R)∧RM −→ FR(M,M) is a weak equivalence.

Now let’s add more structure to these Morita equivalences. Assume that the underlying

spectra of A and R are cofibrant. (In particular, we could take them to be a cofibrant

rings.) Then if M is a cofibrant bimodule, the functor M ∧A − is a Quillen left adjoint

from A-modules to R-modules, with right adjoint FR(M,−).

(We observe that M ∧A − sends cofibrations to cofibrations iff M ∧A (A ∧ Fk(i)) is a

cofibration when i is the inclusion of a sphere into a disc. Since M is built up from cells

of the form A∧R∧Fk(Sn), which send the above to Fk(S
n)∧R∧A∧Fk(i), we need the

assumption that A is cofibrant. On the other hand, to preserve weak equivalences, we

do the same argument with i the inclusion of a disc into disc cross interval, and we also

check it with i as before but box product with a certain mapping cylinder of orthogonal

spectra which is already a weak equivalence. Essentially we then need that smashing

with R ∧ A preserves weak equivalences of cofibrant orthogonal spectra. This is true

without any additional assumptions on R. Of course, we need to assume R is cofibrant

to get M∗ ∧R − to be left Quillen too.)

If we let M∗ −→ FR(M,R) be a cofibrant replacement of A−R bimodules, then M∗∧R−
admits a natural transformation into FR(M,−) by

M∗ ∧R N −→ FR(M,R) ∧R FR(R,N) −→ FR(M,N)

By the above proposition, on fibrant R-modules N this is an equivalence. (Cofibrancy of

M∗ makes the ∧R derived.) If f denotes a monoidal fibrant replacement in orthogonal

spectra, cA denotes a cofibrant replacement of A as an A−A bimodule, we can lift the

A-action map A −→ FR(M,M) up to homotopy to a map

c : cA −→ f(M∗ ∧RM)

1I’ve given an exposition of the proof in the notes “Finite modules.”



8 CARY MALKIEWICH

Together with e : M ∧AM∗ −→ R, we get triangle identities

(2) M ∧A cA
idM∧c // M ∧A f(M∗ ∧RM)

e∧idM // fM

cA ∧AM∗
c∧id∗M // f(M∗ ∧RM) ∧AM∗

id∗M∧e // f(M∗)

whose composites agree up to homotopy with the identifications

(3) M ∧A cA
∼ // M

∼ // fM

cA ∧AM∗
∼ // M∗

∼ // f(M∗)

Definition. Aspectral Morita adjunction consists of orthogonal ring spectra A and R

whose underlying spectra are cofibrant, cofibrant bimodules M and M∗, and bimodule

maps c and e as above, satisfying the two triangle identities in the sense outlined above.

These statements are only messy because we are choosing not to work in the homotopy

category. In the homotopy category, the definition becomes exactly the same as the

earlier one for rings.

As for ordinary rings, being a Morita adjoint means that FR(M,−) is a left adjoint on

the homotopy category, so it commutes with arbitrary sums. From this we can deduce

that M must be perfect over R.

Given cofibrant R and cofibrant perfect M , to get a Morita equivalence or adjunction,

M∗ must be some cofibrant replacement of FR(M,R). To get a spectral Morita equiv-

alence we must have A a cofibrant replacement of FR(M,M), and then M∗ must be

made cofibrant as an A−R bimodule. This will successfully give an equivalence so long

as M generates the homotopy category of R-modules.

To get an adjunction we may again take A to be any old ring acting on R, and then we

may lift the map A −→ FR(M,M) to cA −→ f(M∗∧RM) and get a Morita adjunction

as above. In summary, the propositions from the last section remains true with little

modification:

Proposition 3.3. • Morita equivalences into R−Mod correspond to perfect left

R-modules M that are generators.

• Morita adjunctions with left adjoint going into R −Mod correspond to choices

of R−A bimodules M which are perfect over R.

• Each Morita adjunction is an equivalence iff the induced map A −→ HomR(M,M)

is an isomorphism, and M is a generator.

• Every ring Morita equivalent to R is of the form HomR(M,M) for some perfect

generator R-module M .

Proposition 3.4. The following are equivalent for a cofibrant left R-module M :

(1) M ∧S − is a left Morita adjoint.

(2) M ∧A − is a left Morita adjoint for some ring spectrum A.
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(3) M is perfect (a homotopy retract of a finite cell spectrum).

(4) The derived assembly map FR(M,R)∧RM −→ FR(M,M) is a weak equivalence

of spectra.

4. Morita duality

Now we will start to say things that are not so well-known, and should be known better.

There is a notion of “Morita duality” between two rings, and surprisingly, it is more

general than a Morita equivalence. And it is neither more nor less general than a

Morita adjunction. We will resolve the resulting confusion by giving four conditions

on an A-B bimodule P , and showing that various subsets of these conditions imply

Morita equivalence, Morita adjunction, and Morita duality. All of our statements can

be interpreted as applying to rings and bimodules on the nose, or ring spectra and the

homotopy category of bimodules.

Definition. Let A and B be rings (or ring spectra) and let P be an A-B bimodule

(spectrum). Consider the following four conditions on P

(DA) P is dualizable over A, in other words the natural map

HomA(P,A)⊗A P → HomA(P, P )

is an isomorphism.

(DB) P is dualizable over B, in other words the natural map

P ⊗B HomB(P,B)→ HomB(P, P )

is an isomorphism.

(CA) P satisfies the centralizer condition over A, in other words the natural map

A→ HomB(P, P )

is an isomorphism.

(CB) P satisfies the centralizer condition over B, in other words the natural map

B → HomA(P, P )

is an isomorphism.

Definition. A Morita duality between A and B is an A-B bimodule P satisfying the

two centralizer conditions CA and CB.

This implies that HomA(−, P ) and HomB(−, P ) give contravariant equivalences between

certain subcategories of left A-modules and right B-modules. In fact, there are two such

subcategories we can pick. We can either go between the thick subcategory of A-modules

on A and the thick subcategory of B-modules on P , or between the thick subcategory

of A-modules on P and the thick subcategory of B-modules on B. In general, neither

of these cases is contained in the other. This is summarized in the diagram below. It
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is fairly elementary to prove that the dotted maps are inclusions of subcategories under

the stated conditions.

B-mod
TB(B)

P∧B−
--⊥, CB⇒∼

HB(−,B)



∼

op

A-mod
TA(P )

HA(P,−)

mm

HA(−,P )

ww

� b

DA



mod-B
TB(B)

HB(−,B)

MM

HB(−,P )

77

CB⇒∼

� b

CB&DA



A-mod
TA(A)

HA(−,A)



∼

op
HA(−,P )

ww

B"

CA&DB

MM

mod-B
TB(P )

HB(P,−)

11⊥, CA⇒∼

HB(−,P )

77

CA⇒∼

B"

DB

MM

mod-A
TA(A)

HA(−,A)

MM

−∧AP
qq

As the diagram indicates, however, when we assume in addition the conditions DA and

DB, we end up with an equivalence between A-modules finitely generated over A and

B-modules finitely generated over B, which then extends to all modules. In other words,

P gives a Morita equivalence if it satisfies all four of the above conditions.

We can also summarize this in the table below. Each term on the left is listed with

the minimal set of conditions on the right that it must satisfy, and conversely if these

conditions are satisfied then we get the term on the left.



MORITA ADJUNCTIONS AND MORITA DUALITY 11

Morita equivalence DA DB CA CB

Morita adjunction DA

Morita duality CA CB

Morita duality is also closely related to Koszul duality. In derived bimodules, or bi-

module spectra, Koszul duality is just Morita duality in which P is the ground ring k

and the A-module structure on P arises from a ring map A → k, in other words an

augmentation.
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