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The purpose of these notes is to make explicit some facts known by the cognoscenti of

homotopy theory, which lead up to and illuminate the consequences of the Segal conjecture.

To avoid confusion, we will proceed in logical order, starting with the simple foundational

results on finiteness.

1 Finiteness

1.1 Finiteness of [X, Y ]

We begin with a basic

Question. If X and Y are based CW-complexes, when is [X,Y ] finite?

Of course, by [X,Y ] we mean the set of based homotopy classes of based maps. In most

of our examples Y will be a double loop space, so that [X,Y ] is an abelian group. In this

situation we may ask the related

Question. When is [X,Y ] finitely generated?

One might naively hope that [X,Y ] is finite if X and Y are finite complexes. But a

counterexample is

[S1, S1] ∼= Z

OK, well Z is at least finitely generated, so maybe [X,Y ] is a finitely generated abelian

group if X and Y are finite. But

[S2, S1 ∨ S2] ∼=
∞⊕

Z

is not finitely generated. In this last example, one can still at least say that π2(S
1 ∨ S2)

is finitely generated as a module over Z[π1(S
1 ∨ S2)]. But the same cannot be said for

π3(S
1 ∨ S2).
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The most natural examples where [X,Y ] is finite or finitely generated seem to arise when

X is a finite complex, but Y is constructed in such a way that it receives only finitely many

maps from finite complexes. It is not difficult to formalize this:

Proposition 1.1. If X is a finite complex with cells in dimensions i1, . . . , ik, and Y is a

(possibly infinite) CW complex with πi1(Y ), . . . , πik(Y ) all finite, then [X,Y ] is finite.

Proposition 1.2. If Y is instead a double loop space and πi1(Y ), . . . , πik(Y ) are all finitely

generated, then [X,Y ] is finitely generated.

Both facts are proven by simple induction on the skeleton of X.

So finiteness or finite generation boils down the the same condition on the homotopy groups

of Y . Unfortunately, the above counterexamples show that it is not enough to assume that

Y is finite, or of finite type (finitely many cells in each dimension). In some sense the

fundamental group is the problem:

Proposition 1.3. If Y is a simply-connected CW complex of finite type then πn(Y ) is a

finitely generated abelian group for all n ≥ 2.

This follows from Serre’s Hurewicz theorem in homotopy mod C, where C is finitely generated

abelian groups.

If π1(Y ) is not 0, then we ought to think of πn(Y ) as a module over the group ring Z[π1(Y )],

and not just as an abelian group. Still, it is not true in general that πn is finitely generated

as a Z[π1]-module. One must pick a substitute, and the following classical results provide

two choices for such a substitute:

Proposition 1.4 (Wall, [Wal65]). The CW complex Y is equivalent to one of finite type

iff π1(Y ) is finitely presented, and for each finite skeleton Y (n−1) with n ≥ 2 the relative

homotopy groups πn(Y, Y (n−1)) are finitely generated Z[π1(Y )]-modules.

Proposition 1.5 (Wall, [Wal65]). If Z[π1(Y )] is Noetherian, then π1(Y ) is finitely pre-

sented. In this case, Y is equivalent a CW complex of finite type iff Hn(Ỹ ) is a finitely

generated Z[π1(Y )]-module for n ≥ 2. Here Ỹ denotes the universal cover.

1.2 Finiteness and Spanier-Whitehead Duality

Recall that we say that X is a finite spectrum if it is equivalent to a CW spectrum with

finitely many stable cells.

Proposition 1.6. A spectrum X is finite iff both of these conditions hold:

• X is bounded below, i.e. there is some integer N ∈ Z such that πnX = 0 for all

n ≤ N .
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• X has finitely generated homology groups, which are nonzero in only finitely many

degrees.

Proof. This follows from an easy generalization of the usual Hurewicz theorem to the stable

setting.

From this proposition it follows that a retract of a finite spectrum is finite. The homotopy

groups of a finite spectrum are also finitely generated in each degree, but they may be

nonzero in infinitely many degrees.

Every spectrum has a functional dual

DX := F (X,S)

which is characterized by a natural isomorphism

[Y, F (X,S)] ∼= [Y ∧X,S]

If X is finite then we will call this the Spanier-Whitehead dual of X. In this case, DX is

also finite and there is a natural equivalence

X ' D(DX)

Recall that if E is any spectrum, the E-homology of X is defined as

En(X) = [Sn, X ∧ E]

We will define the E-cohomology of X as

En(X) = [ΣnX,E]

WARNING: We have given our cohomology groups the homological grading. The more

common convention of cohomological grading puts the Σn on the E. Of course, to go from

one to the other, we negate n.

We are going to characterize how the homology and cohomology of DX is related to that

of X. The last fact we need is the following: there is a natural map

F (X,Z) ∧ Y −→ F (X,Z ∧ Y )

and this map is an equivalence of spectra if X is finite or if Y is finite. The proof is simple:

both sides are excisive in X and Y , meaning they preserve homotopy pushout/pullback

squares of spectra. Since the map is obviously an equivalence if X = S, a simple induction

shows it’s an equivalence for all finite X. Similarly, the map is obviously an equivalence

when Y = S and X is anything, so it’s also an equivalence when Y is finite.
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From the above facts, it quickly follows that if X is a finite spectrum, there are natural

isomorphisms

En(DX) ∼= En(X), En(DX) ∼= En(X) if X is finite

In particular, the first one follows from

[Sn, DX ∧ E] ∼= [Sn, F (X,E)] ∼= [Sn ∧X,E]

and the second follows from dualizing X twice. If X is not finite, then we cannot expect

an analogue of the above isomorphisms, because the main step DX ∧E ' F (X,E) fails for

infinite X. If on the other hand E is finite, then the main step works again, so we still get

one of the above two isomorphisms:

En(DX) ∼= En(X) if E is finite

We remark that ordinary homology/cohomology with Z/p coefficients is represented by

the Eilenberg-Maclane spectrum HZ/p, which is not finite! (One may check that the

cohomology of HZ/p is not concentrated in finitely many degrees.) The conclusion is that,

in general,

Hn(DX) 6∼= Hn(X)

Even with finite coefficients we get in general

Hn(DX;Z/p) 6∼= Hn(X;Z/p)

On the other hand, stable homotopy/cohomotopy is represented by S, and stable homo-

topy/cohomotopy with finite coefficients is represented by the Moore spectrum M(Z/p),
which is the cofiber

S p−→ S −→M(Z/p)

Both of these spectra are finite. Therefore, for all spectra X, we have natural isomorphisms

πn(DX) ∼= πn(X)

πn(DX;Z/p) ∼= πn(X;Z/p)

2 Phantom Maps

Now suppose that X is a (possibly infinite) CW complex. Then X can be expressed as

the colimit of its finite subcomplexes {Xα} under the inclusion maps. This colimit system

is both filtered and homotopically correct, so we may say that X is the filtered homotopy

colimit of its finite subcomplexes.
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If we inspect the space Map∗(X,Y ) of all continuous maps from X to Y in the usual

compactly generated compact-open topology, we get the isomorphisms

Map∗(X,Y ) ∼= Map∗(colimXα, Y ) ∼= lim Map∗(Xα, Y )

' Map∗(hocolimXα, Y ) ∼= holim Map∗(Xα, Y )

and all is right in the world.

Suppose instead we try to understand only the homotopy classes of maps

[X,Y ] = π0(Map∗(X,Y ))

Clearly we can restrict a mapX −→ Y to a finite subcomplexXα, and this respects inclusion

of subcomplexes. Therefore we get a map

[X,Y ] −→ lim
α

[Xα, Y ]

Another simple induction shows that this map is surjective; the essential point is that if I can

modify a map by a homotopy and then extend it to a new cell, then I could have extended

the original map directly to the new cell. So the above map is surjective. However, it is not

always injective. Its kernel is, by definition, the set of phantom maps up to homotopy.

Definition 2.1. A map f : X −→ Y is a phantom map if its restriction to each finite

subcomplex Xα −→ Y is nullhomotopic. Equivalently, f is a phantom map if K −→ X −→
Y is nullhomotopic whenever K is a finite CW complex and K −→ X is any map.

The virtue of the second condition is that it does not depend on the cell structure of X.

Note that the existence of phantom maps does not contradict our above statements about

mapping spaces. Rather, the phantom maps arise because π0 is a crude construction that

does not commute with inverse limits or homotopy inverse limits.

We should give an example to convince the reader that phantom maps do in fact exist.

Consider the space X = K(Q, 1). We may construct this space as a mapping telescope of

copies of S1, where the nth map S1 −→ S1 winds around n times. Applying H1(−;Z) to

the levels of this mapping telescope gives the system

Z 1−→ Z 2−→ Z 3−→ Z 4−→ . . .

The colimit of this system is H1(X;Z) ∼= Q, and all other homology is trivial. By the

universal coefficient theorem, the cohomology is therefore trivial except for H2(X;Z) ∼=
Ext(Q,Z). Note that when we take H2 of the levels of our mapping telescope we get zero,

and the inverse limit of that is zero. But Ext(Q,Z) 6= 0, so we have found a nontrivial

cohomology group

H2(K(Q, 1);Z) ∼= [K(Q, 1),K(Z, 2)]
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which consists entirely of phantom maps. So, even in the very familiar case of ordinary

cohomology with Z coefficients, phantom maps exist.

Adams showed us in [Ada92] that we may “define away” phantom maps by changing our

definition of homotopy.

Definition 2.2. Two maps f, g : X −→ Y are finite-homotopic if f ◦ h is homotopic to

g ◦ h for any map h : K −→ X from a finite complex K into X. Let [X,Y ]f denote maps

up to finite-homotopy.

Clearly there is a natural surjective map [X,Y ] −→ [X,Y ]f , and if X is a finite complex

this map is an isomorphism.

Proposition 2.3 (Adams). For a fixed CW complex Y , [−, Y ]f defines an extraordinary

cohomology theory on connected CW complexes. Moreover if X is any CW complex then

the map discussed above

[X,Y ]f
∼=−→ lim

α
[Xα, Y ]

is an isomorphism.

It’s worth discussing what this result tells us about cohomology. Brown’s classical repre-

sentability theorem starts with a cohomology theory that is defined on all pointed connected

complexes, and proves that it is representable. However, intuitively, we would like coho-

mology theories to be determined by their behavior on finite connected complexes. Adams’

theorem tells us that when a cohomology theory is only defined on finite connected com-

plexes, we really have two ways of extending it to infinite connected complexes. To start,

any cohomology theory h0, h1, h2, . . . (with a suspension isomorphism) defined on finite

connected complexes is represented by an Ω-spectrum Y0, Y1, . . .. So if X is a finite complex,

then hn(X) naturally isomorphic to [X,Yn]. But when X is infinite, we may extend this

theory by defining hn(X) to be either [X,Yn] or [X,Yn]f . The first construction is much

better in general, because it is a true cohomology theory, and always satisfies excision. The

second construction has the appealing property that it sends filtered homotopy colimits

of finite complexes to inverse limits, but the price we pay for this is that it only satisfies

excision for X = A ∪B if A ∩B is a finite complex.

In [X,Y ]f the phantom maps do not appear, pretty much by definition. In fact, there is a

short exact sequence of sets

{phantom maps up to homotopy} −→ [X,Y ] −→ [X,Y ]f

by which we mean that the first map is injective, the second map is surjective, and kernel

of the second map is the image of the first. If Y is a double loop space then this is a short

exact sequence of abelian groups, and it is naturally isomorphic to the lim1-short exact

sequence

0 −→ lim
α

1[Xα, Y ] −→ [X,Y ] −→ lim
α

[Xα, Y ] −→ 0
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This gives us an algebraic way to handle phantom maps and characterize the difference

between our two methods for extending cohomology theories from finite complexes to infinite

ones.

We will not stop to define lim1 here, but we will remark that it vanishes if our inverse

system of groups F : C −→ Ab satisfies the Mittag-Leffler condition: for each i ∈ C, there

is some j −→ i such that every k −→ j −→ i has

image F (k) = image F (j) ⊂ F (i)

One can verify Mittag-Leffler in particular examples, but we would also like a general

statement. It would be enough if every decreasing nested (transfinite) sequence of subgroups

of F (i) stabilizes. This happens rather trivially if F (i) is a finite abelian group. Therefore,

if each [Xα, Y ] is finite, we get an isomorphism

[X,Y ]
∼=−→ lim

α
[Xα, Y ]

and our two notions of cohomology for infinite X actually agree. From the last section, we

know this will happen if Y has finite homotopy groups.

The above analysis applies to cohomology with Z/p coefficients, in other words, Y =

Ω∞(HZ/p). So the ordinary cohomology of an infinite complex X is calculated as the

inverse limit over the finite subcomplexes of X, provided we take Z/p coefficients. This

is yet another reason why working mod p makes computations easier. As a warning, this

does NOT imply that any other filtration of X gives an inverse limit system that calculates

H∗(X;Z/p). If a filtration contains some infinite subcomplexes, then Mittag-Leffler is not

automatically satisfied, so there may be a lim1-term. A similar warning applies to spectra:

the Z/p-cohomology of a spectrum is often not the inverse limit of the Z/p-cohomology of

the levels of the spectrum.

Let’s give another example, relevant to p-completion of Spanier-Whitehead duals. Define

the Moore spectrum M(Z/p) to be the cofiber

S p−→ S −→M(Z/p)

and take Y = Ω∞(M(Z/p)) to be its infinite loop space. Then the homotopy groups of

Y are all finite. (We could show this with the Atiyah-Hirzebruch SS, which calculates

πS∗ (M(Z/p, n)) from its homology). The maps [X,Y ] may be called the cohomotopy of X

mod p:

π0(X;Z/p) := [X,Ω∞(M(Z/p))]

The above analysis shows that this may be calculated as an inverse limit over finite sub-

complexes of X, with no lim1 terms. This explains the cryptic phrase “lim1s vanish when

working mod p.” (One should be careful: not every inverse limit system ever built involves

maps out of finite complexes, so the above slogan is not true if interpreted too literally.)
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3 p-Completion and Spanier-Whitehead Duals

We will not construct explicit p-completions of spaces and spectra here, but we will recall

their defining properties. The authoritative references are [BK72], [Bou75], and [Bou79]; a

nice modern treatment is given in [MP11].

Definition 3.1. The Moore spectrum with Z/p coefficients is the cofiber

S p−→ S −→M(Z/p)

If X is a spectrum, its homotopy with Z/p coefficients is defined to be

π∗(X;Z/p) := π∗(X ∧M(Z/p))

Definition 3.2. A map of spaces X −→ Y is a p-adic equivalence if it induces an isomor-

phism

H∗(X;Z/p)
∼=−→ H∗(Y ;Z/p)

A map of spectra X −→ Y is a p-adic equivalence if it induces an isomorphism

π∗(X;Z/p)
∼=−→ π∗(Y ;Z/p)

Using the fact that HZ/p is a field spectrum (smashing with it gives a wedge of shifted

copies of HZ/p), we can easily calculate

M(Z/p) ∧HZ/p ' HZ/p ∨ ΣHZ/p

Therefore every map of spectra which gives an isomorphism on π∗(−;Z/p) also gives an

isomorphism on H∗(−;Z/p). The converse is true if our spectra are connective, using the

Adams spectral sequence. From the first section, we already know that homotopy with

finite coefficients is much better behaved on non-connective spectra then homology with

finite coefficients, so there is good reason to use the above definition of p-adic equivalence

of spectra. On the other hand, one cannot define unstable homotopy with finite coefficients

without running into serious technical problems. This explains why p-adic equivalence

means something very different for spectra than it did for spaces.

Now we may define p-completions of spaces and spectra.

Definition 3.3. A space Z is p-complete if every p-adic equivalence X −→ Y of CW

complexes gives an equivalence

[Y,Z]
∼=−→ [X,Z]

A spectrum Z is p-complete if every p-adic equivalence X −→ Y of spectra gives an equiv-

alence

[Y,Z]
∼=−→ [X,Z]

where [−,−] denotes maps in the stable homotopy category.
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Theorem 3.4 (Bousfield). Every space X has a p-completion X∧p , which is initial among

p-complete spaces receiving maps from X, and final among spaces receiving a p-adic equiv-

alence from X. In particular X∧p is p-complete and there is a p-adic equivalence

X −→ X∧p

The same is true for spectra.

Proposition 3.5. If X and Y are p-complete spaces or spectra and X −→ Y is a p-adic

equivalence, then it is a weak equivalence as well. Therefore X −→ X∧p is a weak equivalence

when X is p-complete, and X∧p −→ (X∧p )∧p is always a weak equivalence.

Proposition 3.6. If X and Y are spectra then

F (X,Y ) −→ F (X,Y ∧p )

is a p-completion.

The last proposition is an excellent exercise that can be proven quite formally from the

others, using the definition of completion and the adjunction between smash and mapping

spectrum. At one point it uses the fact that M(Z/p) is finite. Be warned that proof does

not adapt to more general kinds of localization unless X is finite. In particular, the Segal

conjecture will help us see that

F (Σ∞+BCp,S) −→ F (Σ∞+BCp, SQ)

is not a rationalization. (The right-hand side is rational but on πQ0 the map is Q⊕Q∧p −→ Q.)

Let’s put this all together for spectra. Every spectrum X has a p-completion X∧p , and a

natural map

X −→ X∧p

which is an equivalence on π∗(−;Z/p) and therefore an equivalence on H∗(−;Z/p). The

functional dual DX has a p-completion as well, and the completion map is equivalent to

F (X,S) −→ F (X,S∧p )

which is also an equivalence on π∗(−;Z/p), and therefore an equivalence on H∗(−;Z/p).
The results in the next section will be less confusing if we remember this: π∗(DX;Z/p) ∼=
π∗(X;Z/p) is understandable in terms of finite subcomplexes of X, but H∗(DX;Z/p) 6∼=
H∗(X;Z/p) is not.

Exercises.

• Prove BZ/pn is a p-complete space for every n ≥ 1.
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• If G is a finite p-group, prove BG = K(G, 1) is p-complete. If G is also abelian,

prove that K(G,n) is p-complete, and that the Eilenberg-Maclane spectrum HG is

p-complete.

• It turns out that if a spectrum X has all homotopy groups finite p-groups, then X is

p-complete. Use this to prove that Σ∞BZ/pn is p-complete.

• Prove that S∧p ' M(Ẑp), the Moore spectrum whose 0th homology is the p-adic

integers Ẑp and whose other homology vanishes.

• It also turns out that finite hocolims and arbitrary holims of p-complete spectra are

p-complete. Use this to prove that D(Σ∞BZ/pn) is p-complete.

These and other useful basic properties are found in [Bou79].

4 The Segal Conjecture

Now we come to our main goal of understanding the statement of the Segal conjecture.

Let Cp denote the cyclic group of order p, and let BCp = K(Cp, 1) denote its classifying

space. The Segal conjecture (which is not a conjecture because it was proven in the 1980s)

establishes among other things an equivalence of spectra

D(Σ∞BCp) ' (Σ∞+BCp)
∧
p ' S∧p ∨ Σ∞BCp

Adding a disjoint basepoint gives the equivalence

D(Σ∞+BCp) ' S ∨ (Σ∞+BCp)
∧
p ' S ∨ S∧p ∨ Σ∞BCp

Now the first equivalence above seems very wrong, since it implies that the Z/p-homology

of these two spectra agree:

D(Σ∞BCp), Σ∞+BCp

We know the Z-homology of the right-hand side vanishes below degree 0, and starting in

degree 0 it is

Z Z/p 0 Z/p 0 Z/p 0 . . .

therefore the Z/p-homology also vanishes below 0, and the rest is

Z/p Z/p Z/p Z/p Z/p Z/p Z/p . . .

We are forced to conclude that the Z/p-homology of the left side is the same as this. So the

dual of BCp has homology concentrated in nonnegative degrees, even though the dual of any

finite skeleton of BCp has homology concentrated in negative degrees! We know now why

this isn’t a contradiction: the homology of D(Σ∞BCp) is not necessarily the cohomology

of Σ∞BCp. In fact, this example establishes that there is no direct relationship between
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the homology of D(Σ∞BCp) and the inverse limit of the homology of D(Σ∞(BCp)
(k)) as

k →∞.

Let’s stop dwelling on how this could be false and start thinking about why it might be

true. Recall from our earlier discussion that an inverse limit of finite groups never has a

lim1, and therefore a filtered colimit of finite complexes has stable cohomotopy πn(−;Z/p)
given as an inverse limit. In this example, the skeleta (BCp)

(k) are all finite, so we conclude

that the cohomotopy of BCp with Z/p coefficients is nothing more than an inverse limit of

the cohomotopy of the skeleta:

πn(Σ∞BCp;Z/p) ∼= lim
k
πn(Σ∞(BCp)

(k);Z/p)

Using the fact that stable homotopy of the dual is stable cohomotopy, we also get

πn(D(Σ∞BCp);Z/p) ∼= lim
k
πn(D(Σ∞(BCp)

(k));Z/p)

So despite our utter failure to connect the homology ofD(Σ∞BCp) to that ofD(Σ∞(BCp)
(k)),

there is actually a direct relationship between their homotopy groups with finite coefficients.

And we could even use the Atiyah-Hirzebruch spectral sequence to go from cohomology to

cohomotopy:

E2 = H∗(Σ∞BCp;π
∗(S;Z/p))⇒ π∗(Σ∞BCp;Z/p)

This is a second-quadrant spectral sequence when we use the homological grading for ev-

erything (or a fourth-quadrant spectral sequence with the cohomological grading). That

makes it possible to have homotopy classes in any degree, so there is no contradiction.

It turns out to be easier to use the Adams spectral sequence to actually calculate this

homotopy with finite coefficients and to get the above equivalence of spectra. This is still

quite hard, but it is enough to compare the E2-pages for the Adams spectral sequences of

the two sides. This was successfully done by Lin for p = 2 [Lin80] and and Gunawardena

for odd p [Gun80].

There is much more than can be said, but we have given everything one needs to get a basic

grasp of the Segal conjecture, so we will stop here. The interested reader may find much

more information in the references in [Car92], section 4(C).
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