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These goal of these notes is to explain what a spectrum is. There are different definitions of

“spectrum” in common usage today, and it is not obvious to a nonspecialist how they are equivalent.

Therefore we will begin with a description of the properties that we want spectra to have, before

actually defining them. We assume familiarity with homology, cohomology, and homotopy groups,

along with categories, functors, and natural transformations.

To start, spectra should form a category, with functors coming in and going out to other

categories that we care about. We can capture this in a commuting diagram of functors:

CW
Complexes

Disjoint
Basepoint //

��

Based CW
Complexes

Suspension
Spectrum //

��

Spectra

��

Abelian
Groups

Eilenberg-Maclane
Spectrumoo

0th degree

��

Homotopy
Category
of Spaces

Disjoint
Basepoint //

Based
Homotopy
Category

Suspension
Spectrum //

Stable
Homotopy
Category

Stable
Homotopy

Groups //
Graded
Abelian
Groups

or in shorthand,

CW
X 7→X+ //

��

CW∗
Σ∞ //

��

Spectra

��

Ab
G 7→HGoo

0th degree

��
HoTop

X 7→X+ // HoTop∗
Σ∞ // HoSpectra

π∗ // Graded Ab

As we have already mentioned, there are different definitions of the category labelled Spectra,

most of which are not equivalent. Each of them in turn gives a definition of the stable homotopy

category HoSpectra, but here they are almost always equivalent. So it is sometimes easier to

write proofs using only abstract properties of the stable homotopy category HoSpectra, avoiding

the “implementation details” found in Spectra.
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1 Desired Properties of HoSpectra

1.1 Topological Spaces

We care about the category of compactly generated weak Hausdorff (CGWH) topological spaces,

which we’ll denote Top. Let CW denote the full subcategory of spaces that are homeomorphic to

CW complexes. When we say “full subcategory” we mean to allow all continuous maps between

CW complexes (as opposed to only allowing cellular maps).

The homotopy category of CW complexes HoCW has the same objects as CW, but the arrows

are homotopy classes of maps instead of actual maps. Obviously, we can pass from maps to
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homotopy classes of maps, which defines a functor

CW −→ HoCW

A map CW is a homotopy equivalence iff it becomes an isomorphism in HoCW.

Next, define the homotopy category of spaces HoTop to have the same objects as Top, but the

morphisms from X to Y are homotopy classes of maps between CW approximations [Γ(X),Γ(Y )].

By Whitehead’s theorem, a map in Top is a weak equivalence iff it becomes an isomorphism in

HoTop. In fact, HoTop satisfies a universal property: it is initial among all categories under Top

in which every weak equivalence becomes an isomorphism.

Exercises.

• Define a functor Γ : Top −→ CW that takes every space to a weakly equivalent CW complex.

• Check that the inclusion HoCW −→ HoTop is an equivalence of categories.

Similarly, we may consider the category of based spaces Top∗, or the category of based CW

complexes CW∗. We may define homotopy categories HoCW∗ and HoTop∗ as before, only now

every map and homotopy of maps has to preserve the basepoint.

Remark. If you know about model categories, our definition of HoTop is isomorphic to the

homotopy category given by the Quillen model structure on Top (and similarly for HoTop∗).

1.2 Suspension and Abelian Groups

We claim there is a category called the stable homotopy category, denoted HoSpectra, with the

following properties.

• There is a functor Σ∞ : HoTop∗ −→ HoSpectra. So every space gives an object of the

stable category, though there are many objects in HoSpectra that do not come from spaces.

• There is a suspension functor Σ : HoSpectra −→ HoSpectra. It agrees with the usual

reduced suspension of based CW complexes:

CW∗
Σ //

��

CW∗

��
HoTop∗

Σ◦Γ //

Σ∞

��

HoTop∗

Σ∞

��
HoSpectra∗

Σ // HoSpectra∗

Moreover, Σ is an equivalence of categories from HoSpectra to itself. So every object of

HoSpectra is isomorphic to the suspension of some other object. This certainly wasn’t true
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for Top∗ or HoTop∗. As a technical point, in the homotopy category HoTop∗ we must use

Σ ◦Γ, where Γ is a CW replacement functor. The reason for this is that CW complexes have

nondegenerate basepoints. If X has a degenerate basepoint, then the construction X 7→ ΣX

may not preserve weak equivalences, so it does not give a functor on the homotopy category.

• The functor Σ∞ has a right adjoint Ω∞ : HoSpectra −→ HoTop∗. This means that for a

based space K and a spectrum X,

[Σ∞K,X] ∼= [K,Ω∞X]

• There is a loopspace functor Ω : HoSpectra −→ HoSpectra that agrees with the usual

based loopspace:

Top∗

��

Top∗
Ωoo

��
HoTop∗ HoTop∗

Ωoo

HoSpectra∗

Ω∞

OO

HoSpectra∗
Ωoo

Ω∞

OO

In HoSpectra, the functors Σ and Ω are inverse equivalences, so Σ◦Ω and Ω◦Σ are naturally

isomorphic to the identity. Every object is isomorphic to the loopspace of some other object.

Again, this isn’t true in Top∗ or HoTop∗.

• Given objects X and Y in HoSpectra, the set of morphisms [X,Y ] can be turned into

an abelian group. Intuitively, we think of X as a suspension ΣX ′, and we use the usual

“pinching” and “flipping” constructions on [Sn, Z] = πn(Z) to add or negate maps ΣX ′ −→
Y . There is also an analogue of the Eckmann-Hilton argument to show that addition in

[Σ2X ′′, Y ] is commutative, and a natural bijection [ΣX ′, Y ] ∼= [X ′,ΩY ]. Composition of

morphisms [X,Y ] × [Y,Z] −→ [X,Z] is bilinear, so it induces a homomorphism of abelian

groups [X,Y ]⊗ [Y,Z] −→ [X,Z].

• The category HoSpectra has coproducts (wedge sums) X ∨ Y and products X × Y . There

is a zero object ∗, coming from the one-point based space ∗ in Top∗. This means that for

every object X, there are unique maps ∗ −→ X −→ ∗. This gives natural maps
X ∨ ∗ −→ X

X −→ X × ∗
X ∨ Y −→ X × Y

The first two rows are always isomorphisms, using the data we gave above. In HoSpectra,

the third map is also an isomorphism. This was not true for based spaces!

• The last two bullet points combine to tell us that HoSpectra is an additive category. It is

not, however, an abelian category.

4



• Suppose that A is a retract of X in HoSpectra. By this we mean that there are arrows in

HoSpectra

A −→ X −→ A

which compose to the identity. Then X contains A as a summand:

X ∼= A ∨B

• We can extend the abelian group [X,Y ] into a graded abelian group [X,Y ]∗, containing [X,Y ]

as the 0th level. We simply define

[X,Y ]n = [ΣnX,Y ]

Notice that n can be any integer, since suspension Σ has an inverse equivalence Ω. Notice

also that it was a little bit arbitrary whether to put the suspension on the left or on the right.

When we want to do both, we call the above convention homological grading. The opposite

convention [X,Y ]n = [X,ΣnY ] is called cohomological grading.

These properties are analogous to the basic properties of graded abelian groups. Suspension

is the operation that shifts the grading by one. Looping shifts the grading by one in the opposite

direction. If G and H are two graded abelian groups, the set of graded homomorphisms {Gi −→
Hi}i between them forms an abelian group. This can be extended to a graded abelian group of

“shifted homomorphisms” {Gi −→ Hi+n}i. The coproduct G ⊕ H and the product G × H are

naturally isomorphic. Finally, if G contains H as a retract, then G ∼= H ⊕G/H.

Before we continue the analogy with abelian groups, let’s list a few more topological properties

of HoSpectra:

• Define the sphere spectrum to be S = Σ∞S0. Given an object X in the stable homotopy

category, we define its stable homotopy groups

πn(X) = [S, X]n = [ΣnS, X]

Again, notice that n can be a negative integer and this still makes sense. If K is a based CW

complex, then πn(Σ∞K) is naturally isomorphic to the usual stable homotopy groups

πSn (K) := colimk→∞πk+n(ΣkK)

= colimk→∞πn(ΩkΣkK)

= πn(Ω∞Σ∞K)

Notice that πn(Σ∞K) is zero for negative n. On the other hand, the adjunction

[Σ∞K,X] ∼= [K,Ω∞X]

tells us πn(X) ∼= πn(Ω∞X) for n ≥ 0. Of course, Ω∞X is a space, so it has no negative

homotopy groups.
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• The objects X in HoSpectra whose homotopy groups πn(X) vanish for negative n are called

connective spectra. By the above, Σ∞ takes every based space to a connective spectrum.

• Whitehead’s Theorem for spectra: If a map f : X −→ Y in HoSpectra induces an isomor-

phism π∗(X)
∼=−→ π∗(Y ), then f is an isomorphism. In other words, the stable homotopy

groups detect the isomorphisms in HoSpectra.

1.3 Tensor Products and Rings

Carrying the analogy with abelian groups even further, we can define a tensor product on objects of

HoSpectra. Before describing its properties, let’s recall the basic properties of the tensor product

⊗ = ⊗Z of abelian groups:

⊗ : Ab×Ab −→ Ab

Here Ab×Ab is a product category, whose objects are pairs of abelian groups and morphisms are

pairs of morphisms. So we can think of the tensor product as an operation on abelian groups that

is a functor in each slot.

Let’s follow the convention that Ab(A,B) is the set of linear maps from A to B, and Hom(A,B)

is the abelian group of linear maps. So if we forget that Hom(A,B) is a group, we get the set

Ab(A,B). The defining property of ⊗ is that linear maps A ⊗ B −→ C correspond naturally to

bilinear maps A× B −→ C. A bilinear map is the same thing as a linear map A −→ Hom(B,C).

Therefore we get a bijection of sets

Ab(A⊗B,C)←→ Ab(A,Hom(B,C))

The tensor product is unital, associative, and commutative. This means there is a unit object

I and natural isomorphisms

lA : I ⊗A
∼=−→ A

rA : A⊗ I
∼=−→ A

aA,B,C : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C)

sA,B : A⊗B
∼=−→ B ⊗A

The unit object is the group of integers Z. We can start with a tensor product of a bunch of groups

and start applying these isomorphisms willy-nilly to regroup the parentheses and rearrange terms:

(A⊗ (B ⊗ C))⊗D
∼=−→ (A⊗ (C ⊗B))⊗D

∼=−→ ((A⊗ C)⊗B)⊗D
∼=−→ . . .

If we ever come back to the expression we started with, then the composition of the maps we applied

becomes the identity map. (This means that the isomorphisms l, r, a, s are coherent. Heuristically,

this means we can drop the parentheses around the tensor products without getting into trouble.)

If we carefully rewrite the above properties of (Ab,Z,⊗,Hom, l, r, a, s) using only notation from
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category theory, we get the concept of a closed symmetric monoidal category. If we drop everything

involving Hom, then (Ab,Z,⊗, l, r, a, s) gives a symmetric monoidal category.

We’ve been building up to a statement about HoSpectra, so here it is: HoSpectra is a closed

symmetric monoidal category. Its unit object is the sphere spectrum S. Its tensor product is called

the smash product ∧, since it is based on the smash product of based spaces

X ∧ Y = (X × Y )/(X ∨ Y )

(It is more accurate to call it the left derived smash product ∧L, especially when we need to

distinguish it from the smash product ∧ in Spectra.) The internal hom of HoSpectra is denoted

F (X,Y ), the F standing for function spectrum. So if X, Y , and Z are spectra, there are natural

coherent isomorphisms in HoSpectra

S ∧X ∼= X

(X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

X ∧ Y ∼= Y ∧X
[X ∧ Y, Z] ∼= [X,F (Y,Z)]

F (S, X) ∼= X

F (X ∧ Y, Z) ∼= F (X,F (Y,Z))

(1)

Exercises.

• Show that the last two isomorphisms follow from the first four. (Use the Yoneda Lemma.)

• Define natural maps

X ∧ F (X,Y ) −→ Y

X −→ F (Y,X ∧ Y )

• Let’s define suspension and looping more explicitly:

ΣX = (Σ∞S1) ∧X
ΩX = F (Σ∞S1, X)

Using the above isomorphisms, together with the fact that Σ∞ is a functor, prove that sus-

pension and looping are adjoint:

[ΣX,Y ] ∼= [X,ΩY ]

and construct the operation on either of these two sets that turns it into an abelian group.

(Can we prove that Σ and Ω are inverses yet? Why not?)

• Prove that there are natural isomorphisms

(ΣX) ∧ Y ∼= Σ(X ∧ Y ) ∼= X ∧ (ΣY )

ΩF (X,Y ) ∼= F (ΣX,Y ) ∼= F (X,ΩY )
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There are many concepts in algebra that have an analogue in the world of spectra. Here’s an

important example. Start with a symmetric monoidal category C and an object M of C. If we can

give a “multiplication” morphism µ : M ⊗M −→M that is associative

M ⊗M ⊗M id⊗µ //

µ⊗id
��

M ⊗M
µ

��
M ⊗M µ //M

and a “unit” morphism i : I −→M of this multiplication

I ⊗M i⊗id //

lM &&

M ⊗M
µ

��

M ⊗ Iid⊗ioo

rMyy
M

then we say that (M,µ, i) is a monoid in C. Here’s a fun fact: a monoid in Ab is the same thing

as a ring! By analogy, we call a monoid in HoSpectra a ring spectrum. If you understand this

example, you should be able to define a commutative monoid in C. If you define it correctly, a

commutative monoid in Ab will be a commutative ring.

Here’s a list of some symmetric monoidal categories, and common names for monoids in those
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categories:

Category Product Unit Monoid Commutative Monoid

Set × {∗} Monoid Commutative Monoid

Ab ⊗ Z Ring Commutative Ring

Graded Ab(1) ⊗ Z Graded Ring Commutative Graded Ring

Graded Ab(2) ⊗ Z Graded Ring Skew-Commutative Ring*

Modk ⊗k k k-Algebra Commutative k-Algebra

ChModk ⊗k k Differential Graded Commutative Differential

k-Algebra (DGA) Graded Algebra (CDGA)

CW or Top × {∗} Topological Commutative

Monoid Topological Monoid

HoTop × {∗} Associative Commutative

H-Space H-Space

CW∗ or Top∗ ∧ S0 Based Topological Based Commutative

Monoid Topological Monoid

SpΣ or SpO ∧ S (Strict) Ring (Strict) Commutative

Spectrum Ring Spectrum

HoSpectra ∧(L) S Ring Spectrum Commutative Ring Spectrum

(up to homotopy) (up to homotopy)

* There are two common conventions for the symmetry isomorphism for graded abelian groups:

a⊗ b 7→ b⊗ a
a⊗ b 7→ (−1)|a|·|b|(b⊗ a)

Under the first convention, a commutative monoid is a commutative ring that happens to be

graded. Under the second convention, a commutative monoid is a skew-commutative ring. This

means that even-degree elements commute with everything, and odd-degree elements introduce a

−1 when switched past each other. Skew-commutative rings are often called graded-commutative

or even just commutative, but don’t confuse them with commutative graded rings like Z[x]. Skew-

commutative rings show up all over algebraic topology: the cohomology of a space H∗(X) and the

stable homotopy groups of spheres πS∗ (S0) are two examples. In these notes, we will always follow

the second convention and work with skew-commutative rings.

Now we have a language that relates spectra to abelian groups. But we really want much more.

Consider the diagram we gave at the beginning, with Spectra deleted because it doesn’t always
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have a good smash product:

CW
X 7→X+ //

��

CW∗
Σ∞

''��

Ab
G 7→HG

vv
0th degree

��
HoTop // HoTop∗

Σ∞ // HoSpectra
π∗ // Graded Ab

We claim that every functor in this diagram agrees with tensor products. To be more specific, if

F : C −→ D is any functor in the diagram, X and Y are objects of C, and IC and ID are the units

of C and D, respectively, then there are natural transformations

F (X)⊗ F (Y ) −→ F (X ⊗ Y )

ID −→ F (IC)

that commute with the unit, associativity, and symmetry isomorphisms of C and D.

Exercise. Prove that a functor F with these properties takes monoids to monoids.

A functor F satisfying these properties is called lax monoidal. If the above maps are isomor-

phisms, then F is called strong monoidal. In the above diagram, every functor is at least lax

monoidal. So if we start with a (commutative) monoid anywhere on the diagram, and follow any

route, we end up at another (commutative) monoid. For example, if X is a ring spectrum, then

π∗(X) is a graded ring.

Exercises.

• Prove that the forgetful functor Ab −→ Set is lax monoidal.

• Prove that its left adjoint, the “free abelian group on a set” construction, is strong monoidal.

Here’s another example. Consider the one-point space {∗} in CW. This clearly forms a com-

mutative monoid. Its image in HoSpectra is the sphere spectrum S. Therefore S is a commutative

ring spectrum! Applying π∗, we deduce that the stable homotopy groups of spheres πS∗ (S0) ∼= π∗(S)

form a skew-commutative ring. (Of course, this “proof” relies on the above claim that every functor

in the diagram is lax monoidal.)

1.4 Exact Sequences

One of the main goals in algebraic topology is to actually calculate the invariants we define for

interesting objects, and for this purpose, the exact sequence is one of our most basic tools. It

turns out that HoSpectra has a notion of “short exact sequences” of objects, which generalize the

classical cofiber sequences

A −→ X −→ X/A −→ ΣA
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and the classical fiber sequences

ΩB −→ F −→ E −→ B

To be more precise, we can form triples of objects (X,Y, Z), and triples of maps (f, g, h) of the

form

X
f−→ Y

g−→ Z
h−→ ΣX

We call (X,Y, Z, f, g, h) a triangle. Now here is our claim. There is a collection of triangles in

HoSpectra, called the distinguished triangles, that satisfy the following properties:

• For each distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX

and each object W , there are long exact sequences of abelian groups

. . . −→ [W,X]n −→ [W,Y ]n −→ [W,Z]n −→ [W,X]n−1 −→ . . .

. . .←− [X,W ]n ←− [Y,W ]n ←− [Z,W ]n ←− [X,W ]n+1 ←− . . .

Taking W = S, we see that the stable homotopy groups form a long exact sequence

. . . −→ πn(X) −→ πn(Y ) −→ πn(Z) −→ πn−1(X) −→ . . .

• Every map X
f−→ Y has a (homotopy) cofiber C(f), unique up to non-unique equivalence,

which fits into a distinguished triangle

X
f−→ Y −→ C(f) −→ ΣX

• Every map X
f−→ Y has a (homotopy) fiber F (f), unique up to non-unique equivalence,

which fits into a distinguished triangle

F (f) −→ X
f−→ Y −→ ΣF (f)

• There is a natural isomorphism between the cofiber and the suspension of the fiber:

C(f) ∼= ΣF (f)

• Σ∞ takes cofiber sequences in Top∗ to distinguished triangles in HoSpectra.

• Ω∞ takes distinguished triangles in HoSpectra to fiber sequences in Top∗.

• If (X,Y, Z, f, g, h) is distinguished and W is another object, then

W ∧X f−→W ∧ Y g−→W ∧ Z h−→ Σ(W ∧X)

F (W,X)
f−→ F (W,Y )

g−→ F (W,Z)
h−→ ΣF (W,X)

Σ−1F (X,W )
−h−→ F (Z,W )

g−→ F (Y,W )
f−→ F (X,W )

are distinguished.
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These properties, along with some that we have missed, allow us to say that HoSpectra is a

triangulated category [9]. The formalism of triangulated categories allows us to cleanly prove many

nice statements about spectra. Here, we will simply take the above statements and apply them to

homology and cohomology.

1.5 Homology and Cohomology

The objects of HoSpectra define (reduced) homology and cohomology theories on CW∗. To see

this, take a based CW complex X and a spectrum E in HoSpectra. Then the abelian groups

Ẽn(X) = [S, (Σ∞X) ∧ E]n ∼= πn((Σ∞X) ∧ E)

Ẽn(X) = [Σ∞X,E]−n ∼= π−n(F (Σ∞X,E))

define an (extraordinary, reduced) homology theory and a cohomology theory.

Exercise. Use the statements from the last section to prove that these satisfy the axioms of a

reduced (co)homology theory. Equivalently, show that

En(X) = Ẽn(X+)

En(X) = Ẽn(X+)

form an unreduced cohomology theory.

Now we can easily generalize from the homology of spaces to the homology of spectra. If Y and

E are objects in HoSpectra, define the abelian groups

Ẽn(Y ) = [S, Y ∧ E]n ∼= πn(Y ∧ E)

Ẽn(X) = [Y,E]−n ∼= π−n(F (Y,E))

The tildes are not standard notation, but they remind us that these theories are always “reduced.”

Exercises.

• Construct the above two isomorphisms, using only the properties we have already given for

HoSpectra.

• Show that E∗(pt) ∼= Ẽ∗(S) ∼= π∗(E) ∼= Ẽ−∗(S) ∼= E−∗(pt). If E is a ring spectrum, this is the

coefficient ring of the homology and cohomology theories associated to E. It is sometimes

simply denoted E∗ or E∗.

• If E is a ring spectrum, and X is an unbased CW complex, show that E∗(X) is a graded

ring. If X is based, then of course Ẽ∗(X) will be a non-unital algebra.
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• If E is a ring spectrum and Y is a spectrum, then we might expect Ẽ∗(Y ) to be a graded

(non-unital) algebra in a meaningful way. In fact, this is false: the only natural bilinear

multiplication on Ẽ∗(Y ) is zero. Nevertheless, show that Ẽ∗(Y ) is still a bimodule over the

coefficient ring E∗. So in particular, E∗(X) is a graded E∗-algebra.

• If E is a commutative ring spectrum and X is a space, show that E∗(X) is skew-commutative.

So every object of HoSpectra gives an extraordinary cohomology theory, on CW-complexes

or even on spectra. It turns out that the converse is true: every cohomology theory on finite

CW-complexes can be extended to a cohomology theory on HoSpectra, and is represented by

an object in HoSpectra which is unique up to non-canonical isomorphism. This is called Brown

Representability. There is a similar representability theorem for homology, due to G.W. Whitehead.

This allows us to pair extraordinary homology and cohomology theories together when they are

represented by the same spectrum.

Remark. We may extend the above discussion from CW complexes to all spaces by defining the

(co)homology of a space X to be the (co)homology of its CW replacement X̃.

Let’s consider H̃∗(X;G), the theory of ordinary (singular or cellular) cohomology with coeffi-

cients in an abelian group G. By the above statement, there is an object in HoSpectra called

HG, the Eilenberg-Maclane spectrum associated to G, and a natural isomorphism

(̃HG)
n
(X) ∼= H̃n(X;G)

The associated homology theories also agree:

(̃HG)n(X) ∼= H̃n(X;G)

The assignment G 7→ HG may be turned into a lax monoidal functor H : Ab −→ HoSpectra.

Therefore if R is a commutative ring, then HR is a commutative ring spectrum. The multiplication

on (̃HR)
∗
(X) is just the cup product on H̃∗(X;R)! If X is an unbased topological monoid, then

the multiplication on (̃HR)∗(X+) is the Pontryagin product on H̃∗(X+;R) ∼= H∗(X;R).

Similarly, there is a spectrum KU for complex K-theory, KO for real K-theory, MU for complex

cobordism, and MO for real cobordism. There is a long list of interesting cohomology theories,

and we won’t try to exhaust it here. But we can still list infinitely many of them: any based space

X becomes a cohomology theory Σ∞X ∈ HoSpectra, whose groups are “shifted stable maps into

X.” Classically, we had to think of cohomology theories and the spaces we took cohomology of as

different objects. In HoSpectra, we can think of them on equal terms, and state theorems that

apply to both.
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1.6 In Summary

The stable homotopy category HoSpectra has:

• A functor Σ∞ coming in from based spaces.

• Suspension that is invertible up to natural isomorphism.

• Morphism sets [X,Y ] that are abelian groups, which extend to graded abelian groups [X,Y ]∗.

Composition of morphisms is graded and bilinear.

• Stable homotopy groups π∗(X).

• A zero object ∗, and a natural isomorphism X ∨ Y
∼=−→ X × Y from coproducts to products.

• A unit object S, a smash product X ∧ Y , and an internal hom F (X,Y ), together with some

natural isomorphisms, that make it a closed symmetric monoidal category.

• Distinguished triangles that form long exact sequences of homotopy groups, and that agree

with the smash product and internal hom.

• Objects which represent cohomology theories.

1.7 Atiyah Duality of Manifolds

Here’s a geometric application of the above properties. Two based finite CW-complexes A,B are

strongly n-dual if there is an embedding ΣkA ↪→ Sk+n+1 and a homotopy equivalence ΣlB
'−→

Σl(Sk+n+1 − ΣkA). By Alexander duality, this gives isomorphisms

H̃q(A) ∼= H̃n−q(B)

H̃q(A) ∼= H̃n−q(B)

Suppose that A and B are strongly n-dual. Then we may define a map

Σk+l(A ∧B) −→ Σk+lSn

such that if we pull back the top-dimensional cohomology class of Sn to A ∧ B, the slant product

with this class gives isomorphisms as above

H̃q(A) ∼= H̃n−q(B)

H̃q(A) ∼= H̃n−q(B)

So we may form a weaker definition: A and B are simply n-dual if there is a map Σk+l(A∧B) −→
Σk+lSn which gives these isomorphisms. We no longer require A to actually embed into a sphere.

These two (different) notions are often both called Spanier-Whitehead duality.
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It turns out that Spanier-Whitehead duality is much easier to state and work with in the stable

homotopy category. We say that two objects A, B of HoSpectra are dual if there are maps

A ∧B −→ S
S −→ B ∧A

such that the following two composites are the identity map:

A ∼= A ∧ S −→ A ∧B ∧A −→ S ∧A ∼= A

B ∼= S ∧B −→ B ∧A ∧B −→ B ∧ S ∼= B

This also implies

A ∼= F (B, S)

B ∼= F (A, S)

Notice the parallel with vector spaces, where Hom(V, k) is defined to be the dual of V , and the

double dual of V is naturally isomorphic to V itself. (Exercise: Can you describe the corresponding

map k −→ V ⊗Hom(V, k)?)

Two spectra A and B are n-dual if A and Σ−nB are dual, or equivalently Σ−nA and B are

dual. In this case we get a map

A ∧B −→ Sn = ΣnS

inducing isomorphisms

A ∼= F (B,ΣnS) ⇔ Σ−nA ∼= F (B, S)

B ∼= F (A,ΣnS) ⇔ Σ−nB ∼= F (A,S)

If A and B are n-dual spaces, then Σ∞A and Σ∞B are n-dual spectra. So we can import the entire

theory of Spanier-Whitehead duality to the stable homotopy category, and the statements become

cleaner and more categorical.

If M is an m-manifold, then there is a smooth embedding e : M ↪→ Rn for sufficiently large n.

It follows that M+ and Rn−M are (strongly) (n−1)-dual. But then the Thom space of the normal

bundle Mν is homotopy equivalent to the suspension of Rn −M , so M+ and Mν are n-dual. This

was classically called “Atiyah duality”. The n-duality map can be described explicitly as

Mν ∧M+ −→ Sn

Rn/(Rn − νε(M)) ∧M+ −→ Rn/(Rn −Bε(0))

(x, y) 7→ x− e(y)

As an immediate corollary, we get isomorphisms in HoSpectra

Σ∞Mν ' F (M+,Σ
nS) ⇒ M−TM := Σ−nΣ∞Mν ' F (M+, S)
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coming from the Alexander map above. This is Atiyah duality in the stable homotopy category.

From this, and the properties discussed in previous sections, we can take any cohomology theory

E in HoSpectra and get isomorphisms

Ẽq(M
ν) ∼= En−q(M)

Ẽq(Mν) ∼= En−q(M)

(Recall that the tilde means the theory is reduced, and Eq(M) := Ẽq(M+).)

Notice that we have not assumed any kind of orientability for M . If M is orientable in the

cohomology theory E, then applying the Thom isomorphism to these gives Poincaré duality in E:

Em−q(M) ∼= Eq(M)

We can put a product on M−TM that gives the intersection product on homology; then the Atiyah

duality isomorphism is an isomorphism of ring spectra [2]. As an easy consequence, Poincaré duality

takes the intersection product on Em−q(M) to the cup product on Eq(M).
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2 Constructions of HoSpectra

Now that we’ve made a wish list of all the properties we desire in the category HoSpectra, we’ll

give some actual constructions of this category. These constructions all require a category called

Spectra, which could be the category of prespectra, CW-prespectra, symmetric spectra, orthogonal

spectra, coordinate-free spectra of various kinds, or S-modules. We give them here with forgetful

functors:

CW-prespectra

��

prespectra symmetric/orthogonal spectraoo

S-modules // coordinate-free
(Ω-)spectra

// coordinate-free
prespectra

��

OO

coordinate-free
symmetric/orthogonal spectra

oo

��

OO

The blue-colored categories have good smash products in Spectra before descending to the stable

homotopy category HoSpectra.

2.1 The Adams Category

A prespectrum E is a sequence of based spaces E0, E1, E2, . . . along with structure maps ΣEn −→
En+1. We call En the nth level of E. A map of prespectra f : X −→ Y is a sequence of maps

fn : Xn −→ Yn that commute with the structure maps:

ΣXn
//

Σfn
��

Xn+1

fn+1

��
ΣYn // Yn+1

A CW-prespectrum is a prespectrum E with the following properties: Each level En is a CW-

complex. One of the 0-cells is chosen to be the basepoint. Therefore, the reduced suspension of

each cell Dm is Dm+1, glued to the suspensions of the lower-dimensional cells. Therefore we can

view ΣEn as a CW-complex with one (m+ 1)-cell for every m-cell of En other than the basepoint.

Using this cell structure on ΣEn, we require that the structure map ΣEn ↪→ En+1 be the inclusion

of a subcomplex.

Now every k-cell of En becomes a (k + 1)-cell of En+1, a (k + 2)-cell in En+2, etc. We call

this a stable (k − n)-cell. It’s clear that we can have stable m-cells for all integer values of m, so

a CW-prespectrum is like a CW-complex in which we have somehow allowed negative-dimensional

cells. One may use these cells to define a cellular chain complex graded by Z instead of N.
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Our first definition of HoSpectra is a category Ad whose objects are CW-prespectra, and

whose morphisms are “eventually-defined maps up to eventually-defined homotopy”. More pre-

cisely, each map f : X −→ Y is a map on each stable m-cell of X that is defined on the (m−n)-cell

in En for all sufficiently large values of n. Of course, the maps on different cells have to agree

with the attaching maps of those cells. So if X has finitely many stable cells, then the map is

eventually defined on all of Xn. In general, though, a map need not ever be defined on all of Xn for

sufficiently large n. To define a homotopy between such maps, we give the reduced cylinder Xn∧I+

a CW-complex structure coming from the usual one on I, and we require that our homotopy be a

map of spectra {Xn ∧ I+} −→ {Yn} that is also eventually defined.

Define a functor Σ∞ : HoTop∗ −→ Ad by taking each based CW-complex X to the prespec-

trum whose nth level is ΣnX, and whose structure maps are the identity.

In a previous version of these notes, we called this the Boardman category, but this construc-

tion was actually given by Adams in his classic notes [1]. Historically, this was one of the first

constructions of the stable homotopy category, and it is perhaps the easiest one to understand.

Exercises.

• Describe the zero object ∗ := Σ∞({pt}) and the sphere spectrum S := Σ∞S0.

• Define the suspension functor Σ : Ad −→ Ad so that it agrees with suspension in HoTop∗.

• Define the shift functor sh : Ad −→ Ad by (shE)n = En+1, with the obvious structure maps.

Show that sh is a functor, and has an inverse up to natural isomorphism.

• Give a natural isomorphism between Σ and sh. (Harder than it looks. Be careful with the

structure maps.)

• Describe the abelian group structure of [X,Y ] and [X,Y ]n. In particular, this gives us the

stable homotopy groups πn(X) := [S, X]n. Prove that πn(X) = colim
k−→∞

πn+k(Xk).

• Ad has all of the properties that we claimed for HoSpectra in section 1.2. Prove as many

of these as you can. Don’t try to prove them all, since our next construction of HoSpectra

will be much easier to work with.

• Let Ad′ be defined as above, but we require that the attaching map of every cell in En to

be a based map Sm−1 −→ X, instead of an unbased map. (This is the definition given in a

book by Switzer.) Give an equivalence of categories between Ad and Ad′.

2.2 All Prespectra

Let Prespectra denote the category of all prespectra (not just the CW ones) with maps that are

defined on every level (not just eventually defined). So an object in Prespectra is a sequence of

spaces {En}∞n=1, together with maps ΣEn −→ En+1. Notice that these maps always have adjoints
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En −→ ΩEn+1. We say that E is a (weak) Ω-spectrum if these adjoints are all weak homotopy

equivalences. We still define the stable homotopy groups of X to be πk(X) = colimkπn+k(Xk). It

is easy to see that if X is a weak Ω-spectrum, then

πk(X) ∼=

{
πk(X0) k ≥ 0

π0(Xk) k ≤ 0

Exercises.

• Let X be any prespectrum. Construct a CW-prespectrum X̃ and a map of prespectra X̃ −→
X that is a weak homotopy equivalence on each level.

• Construct a (weak) Ω-spectrum X̂, and a map X −→ X̂ that induces isomorphisms on the

stable homotopy groups π∗(X)
∼=−→ π∗(X̂).

A homotopy of maps f and g of prespectra is a choice of homotopy at level n between fn and

gn which commutes with the structure maps in the obvious way. We can define HoPrespectra

to have the same objects as Prespectra, but morphisms from X to Y are [X̃, Ŷ ]. Note that each

map or homotopy is defined on every level, not just eventually defined.

Intuitively, this will agree with Adams’ category because an eventually-defined map X̃n −→ Ŷn
can always be looped to give X̃0 −→ ΩnX̃n −→ ΩnŶn ' Ŷ0. Now we have a good concrete

description of the maps in the homotopy category, but unfortunately, in this description it is

difficult to describe how we compose the maps.

One way to circumvent this is to redefine the maps as zig-zags X ←− A −→ B ←− . . . −→ Y ,

where the backwards maps are required to be π∗-isomorphisms. This description is very useful in

practice, though it must be supplemented by a theory that guarantees that the set of all zig-zags

(up to an appropriate equivalence relation) forms a set and not a proper class. For this purpose,

the theory of model categories does quite nicely.

There is a model structure on Prespectra with the following description, found in [7]. A

cofibration is a retract of a relative stable cell complex. Here the “stable cells” are defined exactly

as in the previous section. However, we allow ourselves to attach lower-dimensional cells to higher-

dimensional ones. A weak equivalence is a map inducing isomorphisms on the stable homotopy

groups. A fibration is a map E −→ B such that every level En −→ Bn is a Serre fibration, and in

the square

En //

��

ΩEn+1

��
Bn // ΩBn+1

the natural map En −→ Bn ×ΩBn+1 ΩEn+1 is a weak homotopy equivalence. Now we can pass to

HoPrespectra by taking the set of maps from X to Y to be

[QRX,QRY ] ∼= [QX,RY ]
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where Q denotes replacement by a weakly equivalent cofibrant prespectrum, and R denotes re-

placement by a weakly equivalent fibrant spectrum. This category is isomorphic to the one defined

above.

HoPrespectra is slightly less concrete than Ad, but in practice it is very easy to work with. For

example, if X is a prespectrum and A is a based space, one may construct a “mapping spectrum”

of A into X by taking at level n the space

Map∗(A,Xn)

Taking A = S1 gives the loopspace operation Ω on prespectra. The reader may verify that it is

much easier to work out the properties we gave in section 1.2 using this construction.

Exercises.

• Define an equivalence of categories HoPrespectra −→ Ad.

• Define

HoTop∗
Σ∞−→ HoPrespectra

by taking a space X to the prespectrum whose nth level is ΣnQX. Here QX is any cofibrant

approximation of X (a CW complex will do). Define

HoTop∗
Ω∞←− HoPrespectra

by taking a spectrum Y to the 0th level of RY , where RY is any fibrant approximation of Y .

Verify that these commute with Σ and Ω for spaces, as outlined in section 1.2.

• Define the wedge sum X ∨ Y and product X × Y of prespectra. They must satisfy the usual

universal properties.

• If X
f−→ Y is a map of prespectra, the fiber of f is a prespectrum F (f) which at level n is

the homotopy fiber

Xn ×Yn Map∗(I, Yn)

Here the unit interval I has 0 as its basepoint. Prove that there is a long exact sequence of

stable homotopy groups

. . . −→ πn+1(Y ) −→ πn(F (f)) −→ πn(X) −→ πn(Y ) −→ . . .

• If X
f−→ Y is a map of prespectra, the cofiber of f is a prespectrum C(f) which at level n is

the reduced mapping cone

(Xn ∧ I) ∪Xn Yn

Prove that there is a long exact sequence of stable homotopy groups

. . . −→ πn(X) −→ πn(Y ) −→ πn(C(f)) −→ πn−1(X) −→ . . .
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• Suppose we have a triple of spectra X
f−→ Y

g−→ Z equipped with a homotopy h from g ◦ f
to the identity. Construct two natural maps

C(f) −→ Z, X −→ F (g)

and show that one is a π∗-isomorphism iff the other is as well.

• Prove that the natural inclusion X ∨ Y −→ X × Y is an equivalence of prespectra (π∗-

isomorphism).

• If X and Y are prespectra and X is a retract of Y , prove that the cofiber of X −→ Y is

equivalent to the fiber of Y −→ X. Denoting this prespectrum by Z, prove that

Y ' X ∨ Z

where ' denotes isomorphism in the stable homotopy category.

• If X is a based CW complex, prove that there is an isomorphism in HoPrespectra

Σ∞(X ∨ S0) ' Σ∞(X+)

Use this to prove

Σ∞(X ×X) ' Σ∞(X ∧X) ∨ Σ∞X ∨ Σ∞X

• (Binomial Theorem.)

Σ∞(Xn) '
n∨
i=1

(
n

i

)
Σ∞(X∧i)

Moving on, we want to get a definition of the smash product that satisfies all the properties we

gave in section 1.3. We can accomplish this in either Ad or HoPrespectra. The smash product

of X and Y is defined by taking an arbitrary sequence p(n) −→∞ such that (n−p(n)) −→∞, and

setting (X ∧ Y )n = Xp(n) ∧ Yn−p(n). If we fix one such sequence, this defines a smash product that

has all of the properties that we claimed in section 1. Unfortunately, this relies on a non-canonical

choice of sequence, and we hate choices because they make things hard in practice. Fortunately,

there exist some tricks for making it canonical. Here is one such trick:

2.3 Symmetric and Orthogonal Spectra

A symmetric spectrum E is a sequence of based spaces E0, E1, E2, . . ., structure maps ΣEn −→
En+1, and a Σn-action on En for all n ≥ 0, such that the composite

Sp ∧ Eq −→ Sp−1 ∧ E1+q −→ · · · −→ S1 ∧ E(p−1)+q −→ Ep+q

is (Σp × Σq)-equivariant. A map f : X −→ Y between symmetric spectra is a sequence of maps

fn : Xn −→ Yn that agree with suspension, such that fn is Σn-equivariant. This defines a category
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called SpΣ. To define an orthogonal spectrum, we take the above definition and replace Σn with

O(n) everywhere; this gives a category SpO. (The O(n) actions must be continuous.)

Using the inclusion of groups Σn ↪→ O(n), we see that an orthogonal spectrum defines a sym-

metric spectrum. We could forget the actions entirely and get a prespectrum; this operation has a

left adjoint that takes prespectra to symmetric (or orthogonal) spectra. The derived forms of these

two functors give an equivalence between HoPrespectra (defined in the last section) and HoSpΣ

or HoSpO (defined later in this section).

Unlike prespectra, symmetric (or orthogonal) spectra form a closed symmetric monoidal cate-

gory. If we let Spectra denote either symmetric or orthogonal spectra, then we have the diagram

CW
X 7→X+ //

��

CW∗
Σ∞ //

��

Spectra

��

Ab
G 7→HGoo

0th degree

��
HoTop

X 7→X+ // HoTop∗
Σ∞ // HoSpectra

π∗ // Graded Ab

and every functor is at least lax monoidal. So we can define monoids in Spectra, which then

become monoids in HoSpectra. These two notions are not the same. A monoid in Spectra is a

symmetric/orthogonal ring spectrum, whereas a monoid in HoSpectra is just a ring spectrum “up

to homotopy.” We’ve neglected to actually define HoSpectra, and we’ll continue to neglect this

while we discuss the closed symmetric monoidal structure.

Let’s describe this structure more explicitly. The unit object is the sphere spectrum Sn = Sn.

The mapping space is

F (X,Y )n ⊂
∏
i

F (Xi, Yi+n)

the subspace of all collections of Σi-equivariant maps {Xi −→ Yi+n}i that commute with suspension.

Notice that F (X,Y )0 is just the based space of all maps of symmetric spectra. The smash product

is

(X ∧ Y )n =
∨

p+q=n

Σp+q+ ∧Σp×Σq (Xp ∧ Yq)/ ∼

The quotient relation identifies the images of the two maps

Σ(p+q+r)+
∧Σq×Σp+r (Xq ∧ Yp+r) ←− Σ(p+q+r)+

∧ (Sp ∧Xq ∧ Yr) −→ Σ(p+q+r)+
∧Σp+q×Σr (Xp+q ∧ Yr)

(σ ◦ τq,p, x, sy) ←− (σ, s, x, y) −→ (σ, sx, y)

Here (s, x) 7→ sx is shorthand for the structure map

Sp ∧Xq
∼= ΣpXq −→ Xp+q

and τq,p is a permutation in Σp+q+r moves the first block of q elements past the second block of p

elements and leaves the last block of r elements alone.
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Let’s describe this more heuristically. Sp has p sphere coordinates, Xq has q sphere coordinates,

and Yr has r sphere coordinates. They are naturally arranged with the p coordinates first, then

the q coordinates, then the r coordinates. The permutation σ takes this natural arrangement and

gives us the arrangement we desire. Now if we smash Sp into Xq, we get a space Xp+q with (p+ q)

sphere coordinates, still lined in order with the p coordinates first and the q coordinates second. So

in Xp+q∧Yr, the p coordinates come first, then the q coordinates, then the r coordinates. Applying

σ, we again get the desired arrangement of sphere coordinates.

However, if we smash Sp into Yr, we get Xq ∧ Yp+r. The q coordinates come first, then the p

coordinates, then the r coordinates. Applying σ, we get the wrong arrangement. We fix the problem

by applying σ ◦ τq,p instead. The τq,p pulls the p coordinates back to the beginning where they

belong. Therefore σ ◦ τq,p gives us the correct arrangement of sphere coordinates. We remember to

include τq,p by feeling a pang of guilt whenever we try to move Sp past Xq. The permutation τq,p
alleviates that guilt.

To recap, symmetric (or orthogonal) spectra form a closed symmetric monoidal category. We

can define a symmetric ring spectrum to be a monoid object in this category; this always descends to

a monoid object in the homotopy category. Unfortunately, symmetric spectra sometimes have the

“wrong” homotopy groups. If we try to define πn of a symmetric spectrumX as colimk→∞πk+n(Xk),

then we get a diagram

Symmetric
Spectra

��

colimkπk+n(Xk)

))Stable
Homotopy
Category [S, X]∗

// Graded Ab

This diagram does NOT commute, so the näıve homotopy groups πn(X) = colimk→∞πk+n(Xk)

are not equal to our original definition πn(X) = [S, X]n. Moreover, the näıve homotopy groups do

not define a monoidal functor into Graded Ab. Therefore, the “correct” definition of homotopy

groups is π∗(X) = [S, X]∗. Fortunately, our two definitions coincide for the class of semistable

symmetric spectra, as defined in [10].

Every orthogonal spectrum gives a semistable symmetric spectrum, so the näıve definition of

π∗ gives the right answer when X is an orthogonal spectrum. So orthogonal spectra enjoy the

convenience of having a good smash product and internal hom, and the näıve definition of their

homotopy groups is the correct one. The smash product of orthogonal spectra is defined as above,

but with O(n) everywhere instead of Σn. (Then why use symmetric spectra at all? Well, symmetric

spectra are a much more reasonable choice when one wants to use simplicial sets instead of spaces.)

It’s sometimes necessary to write an explicit model for the homotopy groups of the smash prod-

uct of orthogonal spectra X ∧ Y . Using the above definition directly, this looks like a nightmare.
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Fortunately, (using [7]) these homotopy groups are equal to the ones we obtain from the “handi-

crafted smash product” of X and Y as prespectra. So they are given by the colimit of the following

commuting grid of abelian groups:

...
...

...
... colim = πk(X ∧ Y )

π2+k(X0 ∧ Y2)

+

OO

+ // π3+k(X1 ∧ Y2)

−

OO

+ // π4+k(X2 ∧ Y2)

+

OO

+ // π5+k(X3 ∧ Y2)

−

OO

+ // . . .

π1+k(X0 ∧ Y1)

+

OO

+ // π2+k(X1 ∧ Y1)

−

OO

+ // π3+k(X2 ∧ Y1)

+

OO

+ // π4+k(X3 ∧ Y1)

−

OO

+ // . . .

πk(X0 ∧ Y0)

+

OO

+ // π1+k(X1 ∧ Y0)

−

OO

+ // π2+k(X2 ∧ Y0)

+

OO

+ // π3+k(X3 ∧ Y0)

−

OO

+ // . . .

Here (+) means that we use the usual suspension homomorphism, and (−) means that we negate

it. The signs are explained by the fact that a new sphere coordinate must be switched past Xp

before it can be smashed into Yq. Note that the colimit can be computed in at least three different

ways: we can compute the colimit of each column and then take the colimit of the results, or we

could do the same thing with rows, or we could take a path from the bottom-left corner out to

infinity that eventually reaches each row and column, and take the colimit along that path.

How do we go to HoSpectra? We need a notion of an unbased cell; we get it by creating a

“free” symmetric/orthogonal spectrum out of the map of based spaces Sn−1
+ ↪→ Dn

+. To be more

precise, there is a forgetful functor from symmetric/orthogonal spectra to spaces by taking the

space level k; we take the left adjoint Fk of this functor to the basic cell Sn−1
+ ↪→ Dn

+ to get our

unbased cell of spectra. Here Sn−1
+ is a sphere with a disjoint basepoint, NOT the upper hemisphere

of Sn−1. This is precisely analogous to what we did for prespectra, only that our free cell spectra

now come with extra Σns or O(n)s built in because they need that extra structure.

There is a model structure in which the cofibrations are the retracts of the relative cell complexes,

the fibrations are the levelwise fibrations E −→ B giving homotopy pullbacks

En //

��

ΩEn+1

��
Bn // ΩBn+1

and the weak equivalences X −→ Y are the maps that induce isomorphisms [Y,E]
∼=−→ [X,E] for

every (weak) Ω-spectrum E. (These will coincide with the idea that X −→ Y gives isomorphisms

on the “correct” homotopy groups, but to define the “correct” groups we need to actually construct

HoSpectra first.) This is the model structure given in [7]; another one is given in [10].

The derived smash product ∧L on HoSpectra is obtained from the smash product ∧ on

Spectra in the following way:

X ∧L Y := QX ∧QY
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where Q denotes cofibrant replacement. This process of “deriving” the smash product is critically

important if we want to end up with a construction that preserves equivalences of spectra. Of

course, the sphere spectrum S is cofibrant, so it is the unit object of the derived smash product as

well. The natural map X ∧L Y −→ X ∧ Y is an equivalence when X and Y are cofibrant spectra.

It is also an equivalence if either X or Y is “flat,” as defined in [10]. Adjoint to this derived smash

product is a derived internal hom:

RF (X,Y ) := F (QX,RY )

This is equivalent to F (X,Y ) when X is cofibrant and Y is fibrant. The derived smash product

and derived internal hom give the closed symmetric monoidal structure on HoSpΣ and HoSpO.

This is true for quite general reasons: see chapter 4 of [4] for an explanation.

2.4 Coordinate-Free Spectra

We may also present symmetric and orthogonal spectra in a “coordinate-free” way. Throughout

this section, one should keep in mind that these coordinate-free constructions are equivalent to the

simpler definitions we gave above. The reason for introducing them at all is that they make some

constructions more natural, and they lead to a strong theory in the equivariant setting.

If A is a finite set, let RA denote the space of all functions A −→ R, and SA its the one-point

compactification. A coordinate-free symmetric spectrum is an assignment of a space X(A) to each

finite set A (in some appropriate universe), and a map SB−i(A) ∧X(A)
ξi−→ X(B) to each inclusion

i : A ↪→ B. The identity map A ↪→ A must induce the identity S0 ∧X(A) −→ X(A), and for each

composition A
i
↪→ B

j
↪→ C the evident diagram commutes:

SC−j(B) ∧ SB−i(A) ∧X(A)
ξi //

∼=
��

SC−j(B) ∧X(B)

ξj

��
SC−j(i(A)) ∧X(A)

ξj◦i // X(C)

Exercise. Let n be the finite set {1, . . . , n}. If X is a coordinate-free symmetric spectrum, con-

struct an ordinary symmetric spectrum whose levels are {X(n)}∞n=0.

Since every finite set is isomorphic to some n, it’s also possible to go backwards and turn any

symmetric spectrum into a coordinate-free one. So the theory of coordinate-free symmetric spectra

is essentially the same as the the theory of symmetric spectra.

If V is an inner product space, let SV denote its one-point compactification. A coordinate-

free orthogonal spectrum is an assignment of a space X(V ) to each finite-dimensional inner product

space V , and a map SW−i(V )∧X(V )
ξi−→ X(W ) to each linear isometric inclusion i : V ↪→W . Here

W − i(V ) is the orthogonal complement of i(V ) ⊂ W . The maps must depend continuously on i.

To state this precisely, let O(V,W ) be the space of linear isometries V ↪→W , and let O(V,W )W−V
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be the Thom space of the canonical bundle over the Grassmannian O(V,W ), whose fiber over i is

W − i(V ). Then we require that the following map be continuous:

O(V,W )W−V ∧X(V ) −→ X(W )

The identity map V ↪→ V must induce the identity S0∧X(V ) −→ X(V ), and for each composition

V ↪→ V ′ ↪→ V ′′ the evident diagram commutes. As above, if X is a coordinate-free orthogonal

spectrum, then the sequence of spaces X(Rn) forms an orthogonal spectrum that captures all the

information in X up to isomorphism. We can also avoid set-theoretic difficulties by declaring that

our “universe” is just some infinite-dimensional real inner product space U ∼= R∞, and that we

only consider the finite-dimensional subspaces V ⊂ U . Note however that we work with all linear

isometric injective maps V ↪→W , not just the inclusions of subspaces V ⊂W ⊂ U .

For completeness, we will briefly discuss coordinate-free (Ω-)spectra. It is very important not

to confuse this theory with coordinate-free symmetric/orthogonal spectra, even though they share

some similar notation. As above, we fix a universe U ∼= R∞ with an inner product, and for each

finite-dimensional V ⊂ U we let SV be its one-point compactification. If K is any based space, let

ΩVK = F (SV ,K) be space of based maps in the (CGWH) compact-open topology. A coordinate-

free prespectrum X associates to every finite-dimensional subspace V ⊂ U a based space X(V ), and

to every inclusion V ⊂W of subspaces a continuous map SW−V ∧X(V ) −→ X(W ). Equivalently,

there is a continuous map X(V ) −→ ΩW−VX(W ). We have identity and composition axioms:

the inclusion V ⊂ V must induce the identity map X(V ) −→ X(V ), and a triple of inclusions

V ⊂ V ′ ⊂ V ′′ yield three maps that must agree. A coordinate-free spectrum X is a prespectrum

for which the maps X(V ) −→ ΩW−VX(W ) are homeomorphisms. These are discussed in classic

notes by Lewis, May and Steinberger [5].

Remark. Note that coordinate-free (Ω-)spectra only have maps for inclusions of spaces V ⊂ W ,

whereas coordinate-free orthogonal spectra have maps for every injective map V ↪→ W that pre-

serves the inner product. It is not difficult to see that the only spectrum satisfying both definitions

is the zero object, X(V ) = ∗ for all V . (To do this, consider the O(V )-equivariant map

X(V )
∼=−→ ΩW−VX(W )

when dim(W − V ) = 2.)

Coordinate-free Ω-spectra do not form a closed symmetric monoidal category. One may con-

struct a richer category of L-spectra and then pass to a subcategory of S-modules, which does form

a closed symmetric monoidal category. This is done in work of Elmendorf, Kriz, Mandell, and May

[3]. The homotopy category of S-modules is then equivalent to Ad, HoPrespectra, HoSpΣ, and

HoSpO as defined in previous sections. S-modules in the sense of EKMM are not as elementary

to construct as orthogonal spectra, though all the objects are already fibrant, which makes some

applications cleaner.
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3 Equivariant and Parametrized Spectra

3.1 Equivariant Spectra

Equivariant spectra seem to be one of the most intimidating objects in homotopy theory; here we’ll

try our best to bring them down to earth. Let G be a compact Lie group. For simplicity, let’s

assume that it is 0-dimensional, i.e. a finite discrete group. Then an orthogonal G-spectrum is

an orthogonal spectrum X together with a continuous G-action on every level Xn. The G-action

must commute with the O(n) action and the structure maps. The most obvious model structure

to put on these objects is the projective model structure: the weak equivalences and fibrations are

obtained by forgetting the G-action. The cofibrations are retracts of cell complexes built from the

“free G-cells”

Fk(G× Sn−1) −→ Fk(G×Dn)

where Fk is the left adjoint to the forgetful functor X  Xk from orthogonal spectra to unbased

spaces.

To distinguish from later notions, let us call these weak equivalences näıve G-equivalences. To

reiterate, a näıve G-equivalence of orthogonal G-spectra is a map of orthogonal spectra X −→ Y

which preserves the G action, and which is a stable equivalence when we forget the G action.

You’ll sometimes hear that this is the “wrong” model of G-spectra but it’s perfectly fine for

some applications. Let’s give some examples. First, suspension spectrum and 0th space

Σ∞ : Spaces∗ ↔ GSpO : (−)0

define a Quillen adjunction with Σ∞ the left adjoint. Second, for a G-spectrum X we can define

an orbit spectrum XG by taking orbits of each level:

(XG)n := (Xn)G

This gives a well-defined functor to ordinary orthogonal spectra, which is left adjoint to the functor

which endows an orthogonal spectrum Y the constant G-action:

(−)G : GSpO ↔ SpO : constant G-action

This is also a Quillen adjunction! The left derived functor of orbits is homotopy orbits XhG, and is

related by a zig-zag of weak equivalences to the functor X ∧G EG+. Here EG is any contractible

CW-complex on which G acts freely by permuting cells.

As left adjoints, Σ∞+− and (−)hG commute with each other; therefore we get things like

(Σ∞+ ∗)hG ∼= Σ∞+ (∗hG) ∼= Σ∞+ BG

Finally we will define the homotopy fixed points of X. We could of course take fixed points by

taking fixed points on each level of the spectrum. This defines the right adjoint to the “constant

G-action” functor. Unfortunately, it is not a right Quillen functor with the chosen model structure.
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It might be possible to rectify this by changing the model structure, but there is a quicker fix.

Recall that we can think of G-fixed points of a space as equivariant maps in from the one-point

space:

XG ∼= FG(∗, X)

We derive this construction by replacing ∗ with EG, and replacing X with a fibrant G-spectrum

RX in the above model structure. Since the fibrations are obtained by forgetting the G-action,

all we need is that RX is nonequivariantly a weak Ω-spectrum, and X −→ RX is any näıve

G-equivalence. Then we define homotopy fixed points of X by

XhG := FG(EG,RX)

that is, a spectrum which at level n is the space of G-equivariant maps from EG to (RX)n.

To recap, we can define homotopy orbits and homotopy fixed points, and these constructions

both turn näıve G-equivalences into ordinary stable equivalences. This is all you need for lots of

applications.

That’s it for the projective model structure. What more could we want? Well for starters,

since every spectrum is equivalent to one with a free G-action (by cofibrant replacement), there

isn’t really any theory of fixed points. This is exactly the same issue that comes up when you look

at G-spaces: you can make your equivalences näıve, but then everything is equivalent to a free

G-CW complex so there’s no theory of fixed points. To correct this, you refine your notion of weak

equivalence:

Definition 3.1. A map X −→ Y of G-spaces is a G-equivalence if for each subgroup H ≤ G the

induced map of H-fixed points XH −→ Y H is a weak equivalence.

To obtain a model structure on G-spaces with these weak equivalences, we use a variant of the

projective model structure. Instead of considering just the space X with the G action, we consider

the spaces XH for varying H as levels of a diagram. The indexing category for this diagram has one

object labelled G/H for each subgroup H ≤ G. The labelling is suggestive, since we define the maps

from G/H to G/K to be maps G/H −→ G/K commuting with the left G-action on both spaces.

If X is a based space with a G-action, then create a diagram over this bigger indexing category

by assigning XH to the object G/H. Each map G/H −→ G/K induces a map XK −→ XH , by

seeing where the identity coset goes, taking any element in the resulting coset, and having that

element act on XK ⊂ X, landing inside XH ⊂ X. More to the point, we may think of XH as

FG(G/H,X) and pre-compose with the given map G/H −→ G/K. Now, as above, we get a new

projective model structure in which the weak equivalences are the maps X −→ Y which give weak

equivalences XH −→ Y H (i.e. the G-equivalences defined above), and similarly for the fibrations.

The cofibrations are then generated by

(G/H × Sn−1)+ −→ (G/H ×Dn)+

for all subgroups H, not just the trivial subgroup.
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This is great - a model structure that keeps track of fixed point data! We can apply this method

almost verbatim to orthogonal spectra: we define a trivial universe G-equivalence to be a map of

orthogonal spectra X −→ Y which gives a stable equivalence of fixed point spectra XH −→ Y H

for each subgroup H. As for spaces, there is then a model structure with these weak equivalences,

where the fibrations are also determined on XH −→ Y H , and where the cofibrations are generated

by

Fk(G/H × Sn−1) −→ Fk(G/H ×Dn)

for all n, k ≥ 0 and H ≤ G.

Unfortunately, as soon as we do this our equivariant stable category becomes much less useful.

In order to support Poincare duality and Atiyah duality, it is necessary to make the operation

∧SV invertible in the homotopy category. (Here SV is the one-point compactification of a finite-

dimensional G-representation V .) This was actually true for näıve orthogonal spectra, but it is

not true for trivial-universe G-spectra; we lost this useful property in the process of trying to track

fixed-point data in our homotopy category. We have to somehow make the representations more

involved in the notion of “equivalence of spectra” - this leads to the following more sophisticated

definition.

Let U ∼= R∞ be an infinite-dimensional real inner product space, equipped with a G-action. We

require that it contains infinitely many copies of each irreducible G-representation. Call such a U

a complete G-universe. Then a coordinate-free orthogonal G-spectrum is an assignment of a space

X(V ) to each finite-dimensional inner product space V , and a map SW−i(V ) ∧X(V )
ξi−→ X(W ) to

each linear isometric inclusion i : V ↪→W , satisfying the same conditions as in the previous section.

In addition, there is an equivariance condition, though perhaps not the one you might expect.

As before, let O(V,W ) denote the space of all linear isometric inclusions V ↪→W , which are not

necessarily equivariant. Since V and W have left G actions, the Grassmannian O(V,W ) inherits a

left G-action by conjugation. In particular, the space of equivariant maps is obtained by restricting

to the fixed points O(V,W )G. Next, the canonical bundle over O(V,W ) inherits a G action by

restricting from O(V,W )×W . This gives the Thom space O(V,W )W−V a basepoint-preserving G

action. Finally, we give the smash product

O(V,W )W−V ∧X(V )

the diagonal G-action and we require that the map

O(V,W )W−V ∧X(V ) −→ X(W )

be G-equivariant.

This takes a little time to unwind, but the result is a definition that is completely equivalent

to the one above. Namely, the spaces X(Rn) indexed by trivial representations give an orthogonal

G-spectrum as above, and up to isomorphism the rest of the coordinate-free spectrum may be

reconstructed from this.
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However, the coordinate-free perspective leads to a different, stronger notion of G-equivalence

of spectra. We say that a coordinate-free orthogonal G-spectrum X is fibrant if for each inclusion

V ⊂W of subspaces of U , the structure map

X(V ) −→ ΩW−VX(W )

induces for every closed subgroup H ≤ G a weak equivalence of fixed point spaces

X(V )H −→ (ΩW−VX(W ))H

(Notice that the structure map is equivariant because the inclusion V ↪→ W is equivariant by

definition.) If X is fibrant and H ≤ G is a closed subgroup, define the (genuine) fixed point

spectrum XH to be the orthogonal spectrum which at level n is simply the fixed points

X(Rn)H

Now we say that a map X −→ Y of coordinate-free orthogonal G-spectra is a (genuine) G-

equivalence if it induces equivalences or orthogonal spectra

XH ∼−→ Y H

for each closed subgroup H.

This definition is in line with the kind of homotopy theory of G-spaces where we want to keep

track of fixed point spaces XH , but suspending by a representation is now invertible, so we can do

Atiyah duality and Poincaré duality for G-manifolds. The homology/cohomology theories classified

by these spectra have not just an integer grading but an RO(G)-grading, where RO(G) is the usual

ring on the group completion of the set of isomorphism classes of finite-dimensional orthogonal

G-representations. For an elegant but detailed treatment of this theory see [6].

3.2 Parametrized Spectra

Loosely, a parametrized spectrum or fibered spectrum is an object over some (CGWH) topological

space B such that the “fiber” over each point b ∈ B is a spectrum, using one of the definitions

we gave in the previous section. If B is a point, a fibered spectrum over B should just be a

spectrum. These objects are very useful tools for collecting together unstable information (in the

base B) with stable information (in the fibers). As a basic application, one can prove a version of

twisted Poincaré duality that is much more powerful and general than the usual one using ordinary

(co)homology with twisted coefficients.

There are at least three approaches to parametrized spectra: the May-Sigurdsson approach

uses coordinate-free orthogonal spectra, but there is another approach using S-modules, and other

approaches using ∞-categories and/or homotopy sheaves. We will follow May and Sigurdsson and

describe the model category of parametrized spectra found in [8].
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Let B be an unbased (CGWH) topological space. An ex-space over B is a topological space

X (which for technical reasons must be a k-space but need not be weak Hausdorff) together with

maps B −→ X −→ B that compose to the identity. The category of such spaces is denoted KB.

This category has products X ×B Y , quotients X/BY , wedge sums X ∨B Y , and smash products

X ∧B Y , and each of these constructions does the obvious thing on each fiber. It also has mapping

spaces FB(X,Y ), which on each fiber is the mapping space of fibers F (Xb, Yb), but its construction

is a bit subtle.

Let’s define the qf -model structure on KB, which is nicely behaved and yields a parametrized

version of HoTop∗. This structure is compactly generated, which means that there is a collection

of cells I and trivial cells J that are compact in some sense, such that the cofibrations are the

retracts of relative I-cell complexes, the acyclic fibrations have the RLP with respect to maps in

I, the acyclic cofibrations are the retracts of the relative J-cell complexes, and the fibrations have

the RLP with respect to maps in J . It’s also well grounded, which means that there is a forgetful

functor to spaces (total space), and the model structure on spaces interacts in the correct way with

the qf -model structure on KB. As a consequence, arguments like the Puppe cofibration sequence

go through. (Other model structures run into problems with this.)

To define the qf -model structure, we first define an “f -model structure” as in ([8],p.80-84). The

classes of f -cofibrations, fibrations, and weak equivalences are defined using the fiberwise versions

of the homotopy extension property (HEP), the homotopy lifting property (HLP), and homotopy

equivalence. There are f̄ -cofibrations, but these end up being f -cofibrations that are also closed

inclusions. These give an f -model structure on spaces over B and ex-spaces over B.

Now we can give the qf -model structure on ex-spaces over B. An f -disc is a disc Dn −→ B such

that Sn−1 ↪→ Dn is an f -cofibration; this is morally the same as saying that the map Dn −→ B

is constant on some collar neighborhood of the boundary of Dn. A relative f -disc is a diagram of

f -cofibrations over B

upper hemisphere −→ Sn −→ Dn+1

Equivalently, Dn+1 and its lower hemisphere are both f -discs. Then I is the collection of f -

discs Sn−1 −→ Dn (with a disjoint section attached) and J is the collection of relative f -discs

upper hemisphere −→ Dn+1 (with a disjoint section attached). These collections generate the

cofibrations and acyclic cofibrations of the qf -model structure. The qf -equivalences are the weak

homotopy equivalences on total spaces. This is enough to determine the qf model structure: the

cofibrations are the retracts of the f -disc complexes, whereas the qf -fibrations have the usual lifting

property with respect to every relative f -disc. Every qf -cofibrant object is f -cofibrant, f̄ -cofibrant,

and q-cofibrant. Every f -fibrant object is qf -fibrant. Every qf -fibrant object is a quasifibration,

i.e. for every point b ∈ B there is a long exact sequence of homotopy groups. So for the fibrant

objects, the homotopy groups of each fiber capture the homotopy type.

Now we’ll move from spaces KB to spectra SB. Fix a universe U . For each finite-dimensional

subspace V , let SVB be the fiberwise one-point compactification of the trivial bundle B × V −→ B.

Now a parametrized coordinate-free orthogonal spectrum is an assignment of an ex-space X(V ) to
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each finite-dimensional inner product space V , and a map of ex-spaces S
W−i(V )
B ∧BX(V )

ξi−→ X(W )

to each linear isometric inclusion i : V ↪→W . As before, the maps must depend continuously on i:

(O(V,W )W−V ×B) ∧B X(V ) −→ X(W )

As before, these maps also respect the identity and composition.

To construct the homotopy category HoSB, we restrict attention to orthogonal spectra whose

levels X(V ) are well-grounded (f̄ -cofibrant and CGWH). Construct shift desuspensions FV :

KB −→ SB just as in the nonparametrized case:

FV (A)(W ) = (O(V,W )W−V ×B) ∧B A

Then the level model structure has as its weak equivalences the levelwise weak homotopy equiv-

alences of total spaces over B. The cofibrations and acyclic cofibrations generated by the shift

desuspensions of the f -discs and the relative f -discs, respectively. The stable model structure has

weak equivalences the maps that induce isomorphisms on the stable homotopy groups of each fiber.

The cofibrations are the same as in the level case; this is enough to determine the fibrations. The

fibrant objects are levelwise qf -fibrant and are Ω-spectra in the sense that the maps from one space

to fiberwise loops of the next is a weak homotopy equivalence on the total space.

Notice that if B = ∗ then we get the category of coordinate-free orthogonal spectra from a

previous section, with the same stable model structure, yielding the same homotopy category.
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