
PARAMETRIZED SPECTRA, A USER’S GUIDE

CARY MALKIEWICH

Abstract. This document is intended to be a primer or “user’s guide” for parametrized

spectra, with a focus on how the subject is applied in fixed-point theory. It is an informal

companion to the longer reference [Mal19].
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1. An informal summary

1.1. The basics. Let B be a topological space. A parametrized spectrum over B is

essentially a fibration over B whose fibers are spectra, rather than spaces.

There are two basic ways to make parametrized spectra: suspension spectra and Eilenberg-

Maclane spectra.

Recall that you can make a suspension spectrum Σ∞F any time you have a space F and

a chosen basepoint ∗. In the parametrized world, you can make a parametrized suspension

spectrum Σ∞B E any time you have a fibration E → B and a chosen section B ⊆ E. Over

each point b ∈ B, this is just the suspension spectrum of the fiber Σ∞Eb, with basepoint

coming from the chosen section.

If you don’t have a convenient choice of basepoint section, you can always add a disjoint

copy of B, giving the fibration E+B = E q B over B. Its suspension spectrum is denoted

Σ∞+BE. Each fiber is Σ∞+ Eb, the suspension spectrum of (Eb)+.
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Next recall that every abelian group A has an Eilenberg-Maclane spectrum HA. In the

parametrized world, every bundle of abelian groups A → B has a parametrized Eilenberg-

Maclane spectrum HA. As above, the fiber over b ∈ B is the Eilenberg-Maclane spectrum

of the abelian group Ab.

What if we want the fiber to be something other than a suspension or Eilenberg-Maclane

spectrum? Then assume for simplicity that B ' BG for a topological group G. To make

a parametrized spectrum over B whose fiber is any spectrum we want, all we have to do is

name the fiber spectrum F and give it a G-action. This is because parametrized spectra

over B are equivalent to spectra with a G-action, just as for bundles.1

A map of parametrized spectra X → Y over B is a stable equivalence when it induces a

stable equivalence on fiber spectra Xb → Yb for every b ∈ B. Inverting these equivalences

gives the homotopy category of spectra over B.

There are many operations we can perform on parametrized spectra: suspension, looping,

cofiber sequences, fiber sequences, homotopy colimits and limits, etc. But these all commute

with passing to one fiber. So:

Meta-Theorem: Any operation you can perform to ordinary spectra, you can also perform

on parametrized spectra by doing it to each fiber.

There are a few more operations that don’t arise this way. The first is the smash product.

The above meta-theorem says we can take two parametrized spectra X and Y over B and

smash their fibers together. This is the internal smash product X ∧B Y . While this is

true, it’s actually more natural to start with a spectrum X over A, a spectrum Y over B,

and to make an external smash product X ∧Y . This is a spectrum over A × B whose

fiber over (a, b) is the smash product of the fibers Xa ∧ Yb. If A = B we can always make

this and then restrict to the diagonal of B to get X ∧B Y back.

Just like fibrations, parametrized spectra can also be pulled back. If f : A → B is a map

of topological spaces then every spectrum X over B has a pullback f∗X over A. As with

bundles, the fiber of f∗X over a ∈ A is just the fiber of X over f(a) ∈ B. The pullback

has both a left adjoint f! and a right adjoint f∗. The left adjoint takes a spectrum X over

A to the pushout of X and B along A. The right adjoint takes sections along each fiber of

A→ B.

This description of f! doesn’t actually preserve fibrations over B. We fix this by changing the

definition of parametrized spectra, dropping the requirement that their levels are fibrations

over B. (We’ll implicitly keep everything cofibrant though.) Now we have a bigger category

of parametrized spectra, and the ones we considered before are now the fibrant objects.

There is a fibrant replacement functor P that brings us back to the original category.

1This raises an obvious question: why study parametrized spectra at all if they are equivalent to spectra

with G-actions? The answer is that some applications (e.g. [KW07]) are much more natural to state and

study with parametrized language.
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With the correct assumptions, the three operations f∗, f!, and ∧ preserve equivalences, and

therefore define operations on the homotopy category. They can also be commuted past

each other: for any pair of maps the product commutes with pullback and pushforward,

(f × g)!(X ∧Y ) ∼= (f!X)∧ (g!Y )

(f × g)∗(X ∧Y ) ∼= (f∗X)∧ (g∗Y ).

To “commute pullbacks with pushforwards” we consider any homotopy pullback square

(1.1.1) A
g

}}
f

!!
B

p !!

C

q}}
D.

Then there is a (Beck-Chevalley) isomorphism g!f
∗ ' p∗q!. So in total, if we take any two

of the three operations f∗, f!, and ∧ , there is some rule for how to commute them past

each other.

When G is a topological group, the equivalence between spectra over BG and G-spectra

respects all three of these operations. The pullback f∗ corresponds to restricting a G-action

to an H-action along a homomorphism H → G, and their left and right adjoints agree, too.

The external smash product ∧ corresponds to taking a G-spectrum X and an H-spectrum

Y and making X ∧ Y into a G×H-spectrum in the obvious way.

Ordinary spectra represent cohomology theories. Parametrized spectra over B represent

cohomology theories on the category of spaces over B. Given a space X → B and a

parametrized spectrum E → B, we get two maps

∗ X
roo p // B.

We then define homology and cohomology of X with twisted E-coefficients as

Hn(X; E) = πn(r!p
∗E), Hn(X; E) = π−n(r∗p

∗E).

In other words, we pull back the coefficient system E to X, then quotient the X to a point

to get homology, or take sections over X to get cohomology. When the coefficient system is

trivial, E = B ×E, these recover the usual definitions, because the first operation becomes

the smash product X+ ∧ E and the second becomes the function spectrum F (X+, E). In

particular, twisted K-theory and Thom spectra of various kinds naturally arise as param-

etrized spectra. The Poincaré duality theorem also extends to a version that uses twisted

coefficients.

1.2. Bicategories and traces. Now for duality theory. Recall that in a symmetric mon-

oidal category, if an object X is dualizable with dual DX, we can take the trace of any

map f : X → X by

I
coevaluation // DX ⊗X

∼= // X ⊗DX
f⊗1 // X ⊗DX evaluation // I.
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In vector spaces, this is the usual trace of a matrix. If X is a finite CW complex and

f : X → X, the trace of Σ∞+ f in the stable homotopy category is the element of π0(S) = Z
given by the Lefschetz number L(f) ∈ Z.

If we fix one base space B, the homotopy category of spectra over B has a symmetric

monoidal structure coming from ∧B. A spectrum is fiberwise dualizable if it’s dualizable

in this structure. This is equivalent to asking that each fiber is dualizable, i.e. a finite

spectrum. So if we have a fibration E → B with finite CW fiber and a fiberwise map

f : E → E, we can trace Σ∞+Bf in the category of spectra over B. This gives the fiberwise

Lefschetz number. It is a map of sphere spectra over B, or equivalently a map of spaces

B // Ω∞S

that on each b ∈ B hits the component of π0(Ω∞S) = Z corresponding to the Lefschetz

number of the fiber map fb : Eb → Eb. So by taking a trace in parametrized spectra, we’ve

essentially topologized the Lefschetz number, turning it from a number into a map of spaces.

There is a stronger fixed-point invariant called the Reidemeister trace R(f), and it also arises

by a trace, but it’s a “non-commutative” or “bicategorical” trace as defined in [Pon10]. To

understand what this means, consider non-commutative rings A, B, C, . . . and bimodules

over these. We can tensor bimodules AMB and BNC over B to get an (A,C)-bimodule

M �N := M ⊗B C. This makes bimodules into something like a monoidal category, except

that the rings change. To be precise, they form a bicategory. We can still talk about

dualizability on the left or on the right. An (A,B)-bimodule AMB is dualizable on the right

(over B) iff it is finitely generated projective as a B-module. It is dualizable on the left

(over A) iff it is finitely generated projective as an A-module.

Furthermore we can take a “circular product” 〈〈M �N〉〉 of the bimodules AMB and BNA

by tensoring them and then dividing out both the A and B actions. We can do this for

any circular list of bimodules, or even just one bimodule. For a single bimodule BMB, the

circular product is called the shadow of M , or 〈〈M〉〉.

Using this circular product, we define the trace of a morphism f : M → M . So long as

AMB is dualizable over B, it has a dual BM
∗
A, and the trace is the composite

〈〈AAA〉〉
coev // 〈〈AMB � BM

∗
A〉〉

∼= // 〈〈BM∗A � AMB〉〉
1�f // 〈〈BM∗A � AMB〉〉

ev // 〈〈BBB〉〉.

If A is commutative and B is an A-algebra, this becomes an element of B/[B,B] that takes

the trace of the matrix of f and then mods out by commutators in the ring B so that the

trace is independent of the choice of basis.

The Reidemeister trace is a trace in the bicategory Ex of parametrized spectra. The “rings”

are now topological spaces A, B, and C, and the “(A,B)-bimodules” are parametrized

spectra over the product A×B. These are multiplied the way we compose spans or corre-

spondences: if AXB is parametrized over A×B and BYC is parametrized over B ×C then

their product X �Y is the external smash product X ∧Y , pulled back and pushed forward
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along the maps

A×B ×B × C A×B × C
1×∆B×1oo 1×πB×1 // A× C.

IfX and Y happen to be suspension spectra of fibrations E and E′, this is just the suspension

spectrum of the fiber product E ×B E′. When these operations are derived, this becomes

a homotopy pullback E ×hB E′, in other words pairs of points whose images in B are joined

along some path.

Similarly, the circular product takes two suspension spectra over A × B and B × A and

returns the suspension spectrum of their fiber product E ×hA×B E′. Circular products for

longer lists are similar. The shadow takes a space E → B ×B to the space of points e ∈ E
and paths in B connecting its two images together.

If X is a finite CW complex then X → ∗×X has a suspension spectrum that is dualizable

over X. Taking the trace of a map f : X → X in the non-commutative sense then gives the

Reidemeister trace R(f). It is a map of ordinary, non-parametrized spectra S → Σ∞+ ΛfX,

where ΛfX is the shadow of the space (f, idX) : X → X ×X.

The space ΛfX consists of points x ∈ X and paths from f(x) back to x. Notice that the

“constant paths” in this loop space are exactly the fixed points of f . Informally, R(f) is

counting these fixed points with their indices, but remembering where they are located in

the space ΛfX, which has the effect of sorting the fixed points into bins that tell us which

ones could possibly be combined.

This bicategory of parametrized spectra is equivalent to a similar bicategory whose rings

are suspension ring spectra Σ∞+ G and whose modules are bimodule spectra. The space B

corresponds to the ring Σ∞+ ΩB and the homotopy fiber products E ×hB E′ correspond to

bar constructions over Σ∞+ ΩB. This gives us a conceptual way of seeing why

THH(Σ∞+ ΩB) ' Σ∞+ ΛB.

It is because THH(Σ∞+ ΩB) is the tensor of this ring Σ∞+ ΩB with itself, while the free

loop space ΛB consists of points of B joined by a path to themselves. The equivalence of

bicategories takes one to the other.

We can also use this correspondence to interpret R(f) algebraically using ring spectra, or

geometrically using free loop spaces and Pontryagin-Thom collapses.

2. A technical summary

The next part of the guide is for the user who needs a firmer technical grip. We will state

all of the relevant definitions and results as concisely as possible.

2.1. Over a single base space. A retractive space is a pair of maps B
i→ X

p→ B

composing to the identity of B. We call X the total space, i(B) the basepoint section, and
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Xb = p−1(b) the fiber over b ∈ B. Note that Xb is a based space with basepoint i(b), so a

retractive space is really a family of based spaces indexed by B.

The external smash product of retractive spaces A → X → A and B → Y → B is a

retractive space X ∧Y over A×B, defined by the pushout

(X ×B) ∪A×B (A× Y ) //

��

X × Y

��
A×B // X ∧Y.

Over each point (a, b) its fiber is just the smash product of the fibers Xa ∧ Yb. So in the

special case where the first retractive space is ∗ → X → ∗, the external smash product

X ∧Y is just Y with every fiber smashed with X. We define the fiberwise suspension of

a retractive space Y to be the external smash product

ΣBY := S1 ∧Y.

By the above discussion, this has the effect of suspending every fiber of Y . ΣB has a right

adjoint is called fiberwise based loops ΩB, which takes based loops of each fiber of Y . More

generally, the external smash product has a right adjoint in each variable.

A parametrized sequential spectrum over B is a sequence of retractive spaces Xn over B,

and bonding maps

σ : ΣBX = S1 ∧Xn → X1+n.

A parametrized orthogonal spectrum over B also has a continuous fiberwise action of

the orthogonal group O(n) on Xn, preserving the basepoint section, such that the composite

σp : Sp ∧Xq → . . .→ Xp+q

is O(p)×O(q)-equivariant. A map of spectra X → Y consists of maps of retractive spaces

Xn → Yn commuting with the above structure. The fiber spectrum Xb is the evident

spectrum formed from the based spaces (Xn)b, n ≥ 0; this is just an ordinary sequential or

orthogonal spectrum.

As in the classical case [MMSS01], these are equivalent to diagrams of retractive spaces

indexed by categories N and J , respectively. A free spectrum FnX is a free diagram

on one of the objects of this category:

(Fn(X))m = J (n,m)∧A or (Fn(X))m = Sn−m ∧A.

A level equivalence of parametrized spectra is a map X → Y such that each Xn → Yn
is a weak equivalence of topological spaces. A level fibration is similarly a map in which

each Xn → Yn is a fibration. This can mean either a Serre fibration (shorthand q-fibration),

or a Hurewicz fibration (shorthand h-fibration). Every spectrum is level equivalent to one

that is level fibrant.

A stable equivalence of spectra is a map that, after making source and target level fibrant,

induces an isomorphism on the stable homotopy groups of each fiber spectrum Xn.
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Let OS(B) denote the category of orthogonal spectra over B, and HoOS(B) the homotopy

category we get by inverting the stable equivalences. The rest of this document is only

concerned with orthogonal spectra, but any statement that does not involve smash products

also holds for sequential spectra.

To work effectively up to stable equivalence, we also need cofibrations, and it turns out that

we need a few different kinds. A map of retractive spaces X → Y over B is a q-cofibration

if it is a retract of a relative cell complex, an h-cofibration if it just has the homotopy

extension property, and an f-cofibration if it has the version of the homotopy extension

property where everything is done fiberwise over B. We have the implications

f -cofibration +3 h-cofibration ks q-cofibration

For spectra, the class of free f-cofibrations is generated by applying the free spectrum

functor to the class of all f -cofibrations of f -cofibrant spaces, then closing under pushouts,

transfinite compositions, and retracts. The free q- and h-cofibrations are defined similarly.

There is a level model structure on spectra over B with the free q-cofibrations, level

equivalences, and level q-fibrations. There is also a stable model structure with the free

q-cofibrations, and stable equivalences. The fibrations in the stable model structure are

maps that are level q-fibrations, and in addition each of the squares

(2.1.1) Xi
//

��

Ωj
BXi+j

��

Yi // Ωj
BYi+j

is a homotopy pullback square. (We can either apply ΩB strictly or right-derive it, the

condition turns out to be the same). Therefore a parametrized spectrum X is stably

fibrant when each Xn → B is a Serre fibration and each of the maps Xn → ΩBXn+1 is a

weak equivalence.

If G is a topological group whose underlying space is q-cofibrant, and BG is its classifying

space, then the stable model structure on spectra over BG is Quillen equivalent to the

usual Quillen model category of S[G]-modules, or spectra with a G-action. The left adjoint

takes each spectrum X with a G-action to the spectrum that is EG×G Xn → BG at each

spectrum level, and the right adjoint takes each parametrized spectrum to something that

is equivalent to the fiber spectrum over one point.

The external smash product is a left Quillen bifunctor with respect to the level and stable

model structures – this means that it preserves cofibrant objects and equivalences between

them. However, taking smash products tend to destroy fibrancy. The external smash

product of fibrant objects is not even level fibrant. This is one reason why we also want to

use h-cofibrations and h-fibrations.

Since q-cofibrant implies h-cofibrant, the above model structures allow us to replace any

spectrum X by a freely h-cofibrant spectrum QX
∼−→ X. After this, any freely h-cofibrant
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spectrum Y can be replaced by a spectrum Y
∼−→ PY , where PY is freely f -cofibrant and

level h-fibrant. In total, X can therefore be replaced by PQX, which is freely f -cofibrant

and level h-fibrant. In many examples this is not even necessary – for instance suspension

spectra or free spectra on f -cofibrant, h-fibrant spaces are already freely f -cofibrant and

level h-fibrant.

These are convenient conditions to have because they interact well with the smash product:

• ∧ preserves freely h- or f -cofibrant spectra.

• ∧ preserves level and stable equivalences of freely h-cofibrant spectra.

• ∧ preserves the condition of being both freely f -cofibrant and level h-fibrant.

Therefore, if we stick with spectra that are cofibrant and fibrant in this sense, ∧ always

preserves equivalences and does not destroy fibrancy!

The last bullet point above is one of the most important technical results in [Mal19]. It

turns out to be a key property for making parametrized spectra into a bicategory and a

symmetric monoidal bifibration.

2.2. Over all base spaces. Instead of defining a category R(B) of retractive spaces over

B, we could define a larger category R of all retractive spaces. An object is a pair (A,X)

of a base space A and a retractive space X over A. A map is a commuting diagram of the

form

A
f //

��

B

��
X

��

g // Y

��
A

f // B.

The external smash product ∧ defines a functor on this larger category R, sending (A,X)

and (B, Y ) to (A×B,X ∧Y ).

We similarly define a larger category OS of orthogonal spectra over all base spaces. An

object is a pair (A,X) where A is a space and X is a spectrum over A. A map consists of a

map of base spaces A→ B, and maps of retractive spaces as above for each spectrum level,

commuting with suspension and the O(n)-action. This category could also be interpreted

as a category of enriched diagrams in R indexed by J , that are constant on the base

space.2 There is a projection functor OS → Top, and each fiber is the category OS(B) of

parametrized spectra over one base space.

The external smash product of spectra extends to this larger category as well, sending (A,X)

and (B, Y ) to (A×B,X ∧Y ). The cofibrant and fibrant replacements Q and P from above

2See [HSS19] for a generalization that allows you to vary the base space as well.
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also extend to functors on the category of all parametrized spectra, that always preserve

the base space. This allows us to make all spectra cofibrant and fibrant in a uniform way.

For each map of base spaces f : A → B, there are two operations we can perform on

retractive spaces, summarized by the diagram below.

A
f //

��

B

��

A
f //

��

B

��
f∗Y

��

// Y

��

X

��

// f!X

��
A

f // B A
f // B.

Here f∗Y is the pullback A×B Y , and f!X is the pushout X ∪A B. These define functors

f∗ : R(B)→ R(A) and f! : R(A)→ R(B), respectively, and these functors are adjoints. The

same operations can be performed on parametrized spectra by doing the above constructions

at each spectrum level. They form a Quillen adjunction for the level and stable model

structures, and they are a Quillen equivalence if f is a weak homotopy equivalence.

The arrows of the form f∗Y → Y are called cartesian arrows. They satisfy a universal

property in the larger category of all parametrized spaces or spectra, so any two cartesian

arrows over the same f with the same endpoint Y are canonically isomorphic. This is

convenient because if we want to prove that ∧ commutes with pullback, we don’t have to

pick isomorphisms and then keep track of them. We can just say that ∧ preserves cartesian

arrows. Similarly, an arrow of the form X → f!X is called a co-cartesian arrow, and ∧
preserves co-cartesian arrows.

All together, OS is a symmetric monoidal bifibration over Top. This means that

cartesian and cocartesian arrows always exist, and that ∧ is a functor of spectra lying over

the functor × of spaces that preserves the cartesian and co-cartesian arrows. In addition,

we get Beck-Chevalley isomorphisms g!f
∗ ' p∗q! for each pullback square of base spaces.

This gives us a convenient calculus in which to swap these operations with each other.

Another convenient fact is rigidity. Under mild assumptions, any functor isomorphic to a

composite of smash products, pullbacks, and pushforwards is in fact uniquely isomorphic,

and has no automorphisms. As a result, when we write down a natural isomorphism that

commutes these functors past each other, not only is the natural isomorphism canonical, it

is actually unique.

2.3. Inverting stable equivalences. Now we turn back to the stable equivalences. The

pushforward f! preserves all notions of cofibration, and weak equivalences between freely h-

cofibrant spectra. The pullback f∗ preserves all notions of fibration, and weak equivalences

between level q-fibrant spectra. In total, this means that if we use freely f -cofibrant and

level h-fibrant spectra, both f∗ and ∧ preserve these spectra and all equivalences between

them. f! destroys fibrancy (unless f itself is a fibration of spaces), but this can be corrected
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by applying P again. This gives a convenient framework to compose and re-arrange these

operations in different orders, without losing their homotopy meaning.

If we want to invert the stable equivalences, but retain the fact that spectra form a bifi-

bration over spaces, we should invert the maps (A,X)→ (B, Y ) that are homeomorphisms

A ∼= B followed by stable equivalences X
∼−→ Y . This gives a new category HoOS that still

projects to Top, and each fiber category is the homotopy category HoOS(B) of spectra

over a single base space. The larger category HoOS still has cartesian and cocartesian

arrows, but now they are of the form f∗Y → Y where f∗Y is the pullback and Y is fibrant,

equivalently f∗Y is the right-derived pullback Rf∗Y . Similarly, the co-cartesian arrows are

now X → f!X where X is cofibrant, or f!X is the left-derived pushforward Lf!X. The

Beck-Chevalley maps are now maps of composites of derived functors, Lg!Rf∗ → Rp∗Lq!,

and they are isomorphisms if (f, g, p, q) form a homotopy pullback square.

The left-derived external smash product ∧ L turns this into a symmetric monoidal category,

and still preserves the cartesian and co-cartesian arrows. (The proof relies critically on freely

f -cofibrant, level h-fibrant replacement.) This allows us to swap smash products, pullbacks,

and pushforwards in the homotopy category just as easily as we did on the point-set level. In

fact, the isomorphisms we get on the homotopy category using universal properties, agree

with the unique isomorphisms we had on the point-set level when the inputs are freely

f -cofibrant and level h-fibrant.

We can now define the internal smash product ∧B by taking spectra X and Y over

B, taking the external smash product over B × B, then pulling back along the diagonal

B → B×B. Using the above commutations of ∧ with pullback, this is associative and com-

mutative up to canonical isomorphism, making the category OS(B) of spectra over B into

a symmetric monoidal category. Doing the same construction with derived smash product

and pullback gives the derived internal smash product ∧M = R∆∗B ∧ L on HoOS(B). It is a

composite of a left-derived and a right-derived functor, but it still agrees with the point-set

internal smash product when X and Y are freely f -cofibrant and level h-fibrant.

We can then explicitly prove that a bundle of compact ENRs E over a compact ENR base

B is dualizable in HoOS(B) with respect to the internal smash product ∧B. Writing out

the coevaluation and evaluation maps, we get an explicit formula for the trace of a fiberwise

map f : E → E. This is the fiberwise Lefschetz number of f .

2.4. The bicategory Ex. We make a bicategory Ex of parametrized spectra by taking

the “rings” to be base spaces and the “(A,B) bimodules” to be parametrized spectra over

A×B. The “maps of bimodules” are then maps in the homotopy category HoOS(A×B).

We define composition products as follows, where all the functors are derived.

� : HoOS(A×B)×HoOS(B × C)→ HoOS(A× C)

X � Y := (rB)!(∆B)∗(X ∧Y ),
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X � Y

��

∆∗B(X ∧Y )oo

��

// X ∧Y

��
A× C A×B × C

rBoo ∆B // A×B ×B × C
This plays the role of tensoring two bimodules over a ring. On suspension spectra

Σ∞+(A×B)X � Σ∞+(B×C)Y,

this operation just becomes the fiber product Σ∞+(A×C)X×BY . The unit is UB = Σ∞+(B×B)B

and the shadow or self-product of a spectrum X over B ×B is

〈〈X〉〉 := (rB)!(∆B)∗X,

〈〈X〉〉

��

∆∗BX
oo

��

// X

��
∗ B

rBoo ∆B // B ×B.
This entire procedure is very general, any symmetric monoidal bifibration can be turned

into a shadowed bicategory in this way. So although we applied it to the homotopy category

of parametrized spectra and used derived smash products, pullbacks, and pushforwards, we

could just as well have done this with the point-set category of parametrized spectra and

used strict smash products, pullbacks, and pushforwards.

In fact, the two are related – if we make a point-set bicategory first, then invert equivalences

and derive the operations in a canonical way, we get the same bicategory as if we had made

the bicategory from the homotopy category of parametrized spectra. Therefore Ex can refer

to either one of these constructions.

This is good because it gives us the ability to stay at the point-set level longer, where we can

use rigidity to more easily check that things commute. To avoid getting lost, all you have

to remember is that on freely f -cofibrant, level h-fibrant spectra, the derived bicategory

operations are canonically equivalent to the strict bicategory operations. You can even

drop the fibrancy condition and just apply P whenever you need it.

For each map of base spaces f : A→ B, we form the base-change spectrum of f by taking

the space A over A×B, with projection map (idA, f), adding a disjoint copy of A×B, and

taking the suspension spectrum:

[A −→ B] := Σ∞+(A×B)A(id,f).

The composition product − � [A −→ B] is just the pushforward f!, and the composition

product [A −→ B]�− is just the pullback f∗. The base change functor can also be defined

so it points the other way, [B ←− A].

These base-change spectra are freely f -cofibrant, and applying P makes them level h-fibrant.

Explicitly, applying P replaces the space A→ A×B with the path space AI×ABI → A×B,

which is now fibrant. As a result, the shadow of a unit 〈〈UB〉〉 in the homotopy category is

the suspension spectrum of the free loop space Σ∞+ ΛB, while the shadow of
[
B

f−→ B
]

is the
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suspension spectrum of the twisted free loop space Σ∞+ ΛfB, where ΛfB consists of paths

in B from any point x to its image f(x).

When we have composable morphisms A → B → C we get canonical isomorphisms of

base-change objects

[A −→ B]� [B −→ C] ∼= [A −→ C] .

This is true both on the point-set level and on the homotopy category, where we apply P

before taking the product on the left.

Now we can do duality theory in Ex. A spectrum over A × B turns out to be dualizable

over A when, if we pull it back to A× ∗, we get a retract of a finite cell spectrum. So if X

is a finite CW complex, the suspension spectrum [X −→ ∗] = Σ∞+(X×∗)X is dualizable over

X.

Given a map f : X → X, the trivial observation that X → X → ∗ equals X → ∗ gives an

isomorphism of base-change objects

f : [X −→ ∗]
∼= // [X −→ X]� [X −→ ∗]

This is not quite a self-map of [X −→ ∗], but it’s a self-map with coefficients [X −→ X], so

when X is a finite CW complex, we can still take its trace as follows.

〈〈U∗〉〉
c // 〈〈[∗ ←− X]� [X −→ ∗]〉〉

f

∼=
// 〈〈[∗ ←− X]� [X −→ X]� [X −→ ∗]〉〉

OO
∼=
��

〈〈[X −→ X]〉〉 〈〈UX � [X −→ X]〉〉//
∼=oo 〈〈[X −→ ∗]� [∗ ←− X]� [X −→ X]〉〉eoo

This gives a map of spectra from 〈〈U∗〉〉= S to 〈〈[X −→ X]〉〉= Σ∞+ ΛfX, the Reidemeister

trace of X.

The Costenoble-Waner duality theorem gives explicit descriptions of each map in this trace.

In particular, the coevaluation map c is a Pontryagin-Thom collapse to a neighborhood of

X in Rn, and the evaluation map e is a scanning map that creates a short vector and a

short path in X. More explicitly, if p : N → X is the projection of a mapping cylinder

neighborhood of X back to X and Bε is a ball in Rn of radius ε, then the maps above have

the formula

v ∈ Rn

7→ (v, p(v)) ∈ N ×X X

7→ (v, p(v), f(p(v)) ∈ N ×X X(id,f) ×X X

7→ (f(p(v)), v, p(v)) ∈ (X ×N)×X×X X(f,id)

7→ (v − f(p(v)), γf(p(v)),v, p(v)) ∈ Bε ×XI ×X×X X(f,id)

7→ (v − f(p(v)), γf(p(v)),v) ∈ Bε × ΛfX

when ‖v−f(p(v))‖ < ε, and everything else is sent to the basepoint. The path γf(p(v)),v is a

very short path in X from f(p(v)) to p(v), which comes about because v− f(p(v)) is small
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and therefore X has a contractible neighborhood near p(v). The simplest way to make this

precise is to take a straight line in Rn from f(p(v)) to v and then use p to project it to

make a path in X. See the illustration below.

The above formulas define maps of spaces, in particular their composite is a map Sn →
Bε/∂Bε∧(ΛfX)+. The corresponding maps of spectra are the n-fold desuspensions of these.

The equivalence between G-spectra and spectra over BG extends to their bicategories and

shadows. There is an equivalence between Ex and a bicategory whose “rings” are topological

groups G and “bimodules” from G to H are spectra with G ×Hop-actions. Equivalently,

the rings are the ring spectra Σ∞+ G and the bimodules are bimodule spectra over these.

The composition product is left-derived smash product over G, in other words the bar

construction B(−,Σ∞+ G,−). The shadow divides out the diagonal G-action on a G×Gop-

spectrum X in a homotopically correct way. In other words, the shadow is topological

Hochschild homology with coefficients inX, THH(Σ∞+ G;X). The equivalence of bicategories

gives a conceptual proof that

THH(Σ∞+ G) ' Σ∞+ ΛBG, or THH(Σ∞+ ΩB) ' Σ∞+ ΛB,

and also proves that the “geometric” Reidemeister trace performed in Ex agrees with the

“algebraic” Reidemeister trace performed with ring spectra.
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