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vol(P) = vol(Q) enough?

More recent question. Don’t just count polytopes up to scissors
congruence, count the scissors congruences themselves!
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A cover of P is {Pi
gi→ P}i∈I , I finite,

P =
⋃

i∈I giPi , interiors disjoint.
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Def. (Zakharevich) The category of covers W(X ):

Objects: finite tuples {Pi}i∈I
Morphisms: covers as from the previous slide.
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multicategory given by covers in X ),
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These are the morphisms of a category G(X ) =W(X )[W(X )−1].
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Example. Three-dimensional Euclidean geometry, X = E 3.

Volume gives K0(E3)→ R, not an ∼=! (Hilbert’s Third Problem,
1900)

(Dehn 1901): another map K0(E3)→ R⊗Z (R/πZ), the Dehn
invariant.

[P] 7→
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length⊗ dihedral angle

(Sydler 1965) K0(E3)→ R⊕ (R⊗Z (R/πZ)) is injective!
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Again get a Dehn invariant K0(H3)→ R⊗Z (R/πZ).

(Dupont 1982) Kernel is (up to torsion) H3(SL2(C);Z)−.

Is volume and Dehn invariant everything? Open, but reduced to
understanding homology of SL2(C).

Example. Three-dimensional spherical geometry X = S3.

Similar, but with SU(2).
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Example. Four-dimensional Euclidean geometry, X = E 4.

Again get a Dehn invariant K0(E4)→ R⊗Z (R/πZ).

(Jessen 1968) K0(E4)→ R⊕ (R⊗Z (R/πZ)) is injective!

Example. Five-dimensional Euclidean geometry, X = E 5.

Get the volume and two Dehn invariants, one for 3-dimensional
faces, one for 1-dimensional faces.

Open question: Are these jointly injective?
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π1(BG(X ), [P]) = Aut(P), group of “scissors automorphisms.”

BG(X ) =
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s.c. classes

BAut(P),

so it’s about understanding this symmetry group.
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Aut(P) = group of scissors automorphisms

Example. One-dimensional Euclidean geometry, X = E 1.

Restrict from all isometries to translations.

Aut(P) = group of interval exchange transformations.

(Sah 1980) H1(Aut(P)) = Λ2R = R ∧Z R.

Example. Two-dimensional Euclidean geometry, X = E 2.

Aut(P) is huge!!!

Is there some relationship between Aut(P) for different P ⊆ X?
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Theorem. (Kupers, Lemann, M, Miller, Sroka 2024)
For any nonempty polytopes P,Q ⊆ X ,

H∗(Aut(P)) ∼= H∗(Aut(Q)).

If P ⊆ Q, isomorphism is induced by extending by the identity,
Aut(P)→ Aut(Q).

If P ̸⊆ Q, embed them both into a third polytope R, get

H∗(Aut(P)) ∼= H∗(Aut(R)) ∼= H∗(Aut(Q)).

(Canonical! Always get the same isomorphism no matter how
P → R ← Q.)
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Theorem. H∗(Aut(P)) ∼= H∗(Aut(Q)).

Corollary.
H∗(Aut(P)) ∼= H∗(Ω

∞
0 K (X )).

K (X ) ≃ K0(X )× BAut(P)+

+ means Quillen’s plus-construction. Only need one polytope P!

Compare:
K (R) ≃ K0(R)× BGL∞(R)+

Corollary.
Aut(P)ab = H1(Aut(P)) ∼= K1(X ).

H∗(Aut(P);Q) ∼= Λ∗ (K>0(X ))⊗Q.

Λ∗(−) = free graded-commutative algebra (polynomial ⊗ exterior)

Higher additive invariants of scissors congruence!
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Should be hard! K0 is unknown for E 5!

We get a surprising simplification though.



Now we want to compute K∗(X ).

Should be hard! K0 is unknown for E 5!

We get a surprising simplification though.



Now we want to compute K∗(X ).

Should be hard! K0 is unknown for E 5!

We get a surprising simplification though.



Definition. The Tits complex of X is

T (X ) = |∅ ⊊ U ⊊ X |

= hocolim
∅⊊U⊊X

∗ .

The suspended Tits complex is

ST (X ) =
|∅ ⊊ U ⊆ X |
|∅ ⊊ U ⊊ X |

=

hocolim
∅⊊U⊆X

∗

hocolim
∅⊊U⊊X

∗
.

The polytopal Tits complex is

PT (X ) =

hocolim
∅⊊U⊆X

U

hocolim
∅⊊U⊊X

U
.

Note PT (X ) ≃ ST (X ) if X is Euclidean or hyperbolic.
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Can de-suspend by the tangent bundle of X :

Σ−TXPT (X ) =

Σ−TX
+

(
hocolim
∅⊊U⊆X

U

)
Σ−TX
+

(
hocolim
∅⊊U⊊X

U

) .

Thm. (Solomon-Tits)

PT (X ) ≃
∨

Sn, Σ−TXPT (X ) ≃
∨

S.

Pt(X ) = Hn(PT (X )) = a free abelian group, the polytope group.
For En or Hn, also called St(X ), the Steinberg module.
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Theorem. (Bohmann, Gerhart, M, Merling, Zakharevich 2023),

(M, Zakharevich 2022), (M 2022)
Scissors congruence K -theory is a Thom spectrum,

K (X ) ≃
(
Σ−TXPT (X )

)
hG
≃ Σ−TXhG (PT (X )hG ),

where G = Isom(X ).

Upshot:

H∗(K (X )) ∼= H∗(G ;H∗−n(PT (X ))) = H∗(G ;Pt(X )),

homology of G with coefficients in the polytope group (or
Steinberg module)!

(Note G is discrete here!)
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Corollary. (Everyone)

H∗(Aut(P)) ∼= H∗(Ω
∞
0 K (X )),

H∗(K (X )) ∼= H∗(G ;Pt(X )).

Can go from homology of the (big) group G to homology of the
(gigantic!) group Aut(P).



Example. One-dimensional Euclidean geometry with translations,
X = E 1, G = R.

T (E 1) = R (discrete!)

PT (E 1) = S(R)
Pt(E 1) =

⊕
R−{0} Z

Hn(R;Pt(E 1)) = Hn+1(R) = Λn+1R exterior power (over Z)

In fact K (E1R) ≃ Σ−1BR. (!) (Implies K0 = R.)

Corollary. (Tanner 2023) Homology of interval exchange
transformation group!

H∗(Aut(P)) = Λ∗(A), An = Λn+1R for n ≥ 1.

H1(Aut(P)) = Λ2R = R ∧ R (Sah 1980)

H2(Aut(P)) = Λ3R
H3(Aut(P)) = (Λ4R)⊕ (Λ3R⊗ Λ2R)
...
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Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

PT (E 2) is the total homotopy cofiber of∨
U0⊆U1⊆E2 S0 //

��

∨
U0⊆E2 S0

��∨
U1⊆E2 S0 // S0

⇒ PT (E 2)hIsom(E2) is the total homotopy cofiber of

B(O(1)× O(1))+ //

��

BO(2)+

��
B(O(1)× Isom(E 1))+ // BIsom(E 2)+

Turns out to be rational, get

Hn(Isom(E 2);Pt(E 2)) =
Hn+2(Isom(E 2);Qt)

Hn+2(O(2);Qt)
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Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0, O(2) acts on R2 the usual way, t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0,

O(2) acts on R2 the usual way, t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0, O(2) acts on R2 the usual way,

t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0, O(2) acts on R2 the usual way, t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0, O(2) acts on R2 the usual way, t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

We calculate

Kn(E2) ∼= Hn(K (E2);Q) ∼=
⊕

p+2q=n

Hp(O(2); Λ2q+2(R2)t),

p, q ∈ Z≥0, O(2) acts on R2 the usual way, t means reflections
also add a sign (determinant action).

(Implies K0 = R, Wallace–Bolyai–Gerwien Thm.)

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), An =
⊕

p+2q=n

Hp(O(2); Λ2q+2
Q (R2)t), n ≥ 1.



Example. Two-dimensional Euclidean geometry, X = E 2,
G = Isom(E 2).

Is H1(O(2); Λ2(R2)t) = 0? Or ̸= 0?

Open conjecture. (Zakharevich) K1(E2) vanishes.
⇔ H1(Aut(P)) = 0

⇔ H1(O(2); Λ2(R2)t) = 0

⇔ Aut(P) generated by “transpositions” (Brin)
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Example. Two-dimensional Euclidean geometry, only rational
vertices.

K2n(E2(Q)) = Λ2n
Q

 ⊕
p≡1 mod 4

Q

 , 2n ≥ 0.

Odd groups vanish. K0 = Q.

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), A2n = Λ2n

 ⊕
p≡1 mod 4

Q

 , n ≥ 1.

In particular, Aut(P)ab = 0.



Example. Two-dimensional Euclidean geometry, only rational
vertices.

K2n(E2(Q)) = Λ2n
Q

 ⊕
p≡1 mod 4

Q

 , 2n ≥ 0.

Odd groups vanish. K0 = Q.

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), A2n = Λ2n

 ⊕
p≡1 mod 4

Q

 , n ≥ 1.

In particular, Aut(P)ab = 0.



Example. Two-dimensional Euclidean geometry, only rational
vertices.

K2n(E2(Q)) = Λ2n
Q

 ⊕
p≡1 mod 4

Q

 , 2n ≥ 0.

Odd groups vanish. K0 = Q.

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), A2n = Λ2n

 ⊕
p≡1 mod 4

Q

 , n ≥ 1.

In particular, Aut(P)ab = 0.



Example. Two-dimensional Euclidean geometry, only rational
vertices.

K2n(E2(Q)) = Λ2n
Q

 ⊕
p≡1 mod 4

Q

 , 2n ≥ 0.

Odd groups vanish. K0 = Q.

Corollary.

H∗(Aut(P)) ∼= Λ∗(A), A2n = Λ2n

 ⊕
p≡1 mod 4

Q

 , n ≥ 1.

In particular, Aut(P)ab = 0.



Example. “Rectangle exchange transformations” in n-dimensional
Euclidean space. Only allow boxes aligned with coordinate axes,
and you can only translate them. (Cornulier, Lacourte 2022)

Proposition. (Kupers, Lemann, M, Miller, Sroka 2024)

K (Rn) ≃ (K (R1))∧n ≃ (Σ−1BR)∧n ≃ Σ−n(BR)∧n.

Corollary.

H∗(Aut(P)) ∼= Λ∗((A⊗n)>0), Am = Λm+1
Q (R), m ≥ 0.

In particular, K0 = R⊗n, K1 = H1 = (Λ2R⊗ R⊗(n−1))⊕n.
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Example. Thompson’s group V : cut [0, 1] at points of the form
a
2k
, allow translations and scalings by powers of 2.

Also fits into our framework. The K -theory spectrum is
contractible!

Corollary. (Szymik-Wahl 2019) V is integrally acyclic, H̃∗(V ) = 0.

Can also do variants where the homology is not known yet, e.g.
the “irrational slope Thompson’s group” (Burillo, Nucinkis, Reeves
2022).
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