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Abstract

This thesis encompasses at least three separate but related projects. The first project from

a chronological point of view is our treatment of twisted Poincaré duality for manifolds with

coefficients in spectra. This is not really a new result, but our treatment is conceptually

useful for the second project, and so we include it as an appendix.

The second project investigates a certain map from the stabilization of the gauge group of

the principal bundle ΩM −→ ∗ −→M to the string topology spectrum LM−TM . This map

is a linear approximation in the sense of Goodwillie and Weiss’s embedding calculus. We

describe the rest of the tower, in the process extending embedding calculus from manifolds

to CW complexes.

The third project is an ongoing and open-ended exploration of contravariant forms

of algebraic K-theory of spaces. We begin with a splitting of THH(DX) when X is a

reduced suspension. The resulting calculation gives evidence that the known equivalence

D(THH(DX)) ' Σ∞+ LX is actually an equivariant equivalence, meaning that it preserves

the Cn-fixed points. We prove this for general finite simply-connected X, making use of a

new approach to THH via the norm construction of Angeltveit, Blumberg, et al. In the

process of simplifying our work, we prove a new rigidity result for the geometric fixed points

of orthogonal G-spectra.

Next we apply our splitting result to calculate TC(DS1) explicitly. This object has

striking parallels with TC(S1), and the calculation allows us to rule out a certain kind of

“dual” Novikov conjecture for K(DS1).

Finally, in a somewhat different direction we investigate a variant of THH(DBG) when

G is a finite group. We prove that certain linear approximations into and out of this

object compose to give an equivalence after p-completion, and this suggests some interesting

behavior of the contravariant K-theory of BG. In future work we intend to study this

behavior further and connect it to equivariant forms of algebraic K-theory of spaces.
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Chapter 1

Introduction

1.1 Gauge groups, string topology, and homotopy calculus

Let M be a closed manifold, not necessarily oriented, and let LM = Map(S1,M) be its free

loop space. The evaluation map LM −→M is a fiber bundle whose fibers are monoids, so

when we add a disjoint copy of M to LM and take a fiberwise suspension spectrum, we get

a parametrized ring spectrum denoted Σ∞M,+LM . Taking sections over M gives an ordinary

ring spectrum ΓM (Σ∞M,+LM).

It is by now well-known that one may formulate Poincaré duality for a manifold M with

coefficients given by a bundle of spectra over M ( [CJ13], [MS06]). It is difficult to find an

explicit and conceptually simple treatment of this result in the literature, so we attempt to

give such a treatment in Appendix A. At any rate, the Poincaré duality isomorphism gives

an equivalence of ring spectra

LM−TM ' ΓM (Σ∞M,+LM)

where LM−TM is the Thom spectrum of the virtual bundle −TM , pulled back from M

to LM . The spectrum LM−TM has an intersection product, first given by Cohen and

Jones [CJ02]. When M is oriented, this product descends to the product on H∗(LM)

originally described by Chas and Sullivan [CS99]. The term string topology refers to the

study of this product on H∗(LM) and its many generalizations.

The benefit of the above Poincaré duality equivalence is that it makes the string topology

spectrum LM−TM look like the kind of “linear approximation” that arises in Goodwillie

1



CHAPTER 1. INTRODUCTION 2

calculus. In fact, we may define a string topology functor

S(X) = ΓX(f∗Σ∞M,+LM)

for every space X
f−→ M over M . This functor is linear in the sense that it preserves

homotopy equivalences, takes ∅ to ∗, and takes homotopy pushout squares to homotopy

pullback squares. Following the philosophy of Goodwillie calculus, is natural to ask whether

there are interesting functors G(X) for which S is the universal linear approximation of G.

In [CJ13], Cohen and Jones show that there is such a functor:

G(X) = Σ∞ΓX(X q f∗LM)

G(M) = Σ∞+ ΓM (LM)

They call this the gauge group functor, since the group ΓM (LM) ∼= Ωidhaut(M) is equivalent

to the gauge group of the principal bundle P −→M whose total space is contractible.

We can take this analysis further: if excisive functors are like affine-linear functions,

then there is a notion of n-excisive functor analogous to nth degree polynomial functions.

One may approximate a homotopy functor F by a tower

F (X) −→ . . . −→ PnF (X) −→ Pn−1F (X) −→ . . . −→ P2F (X) −→ P1F (X)

in which PnF is the universal n-excisive approximation to F . Goodwillie and Weiss have

shown in [Wei99] and [GW99] that such a tower exists when we consider our functors to be

defined on open subsets of a fixed manifold M . In fact, their calculus holds more generally

for the category of finite CW complexes over any fixed base space B. The first-order

approximation P1F has already been studied in the special case that F (∅) ' ∗, and in that

case, the natural transformation F −→ P1F is called a coassembly map. We therefore call

the more general nth order approximation F −→ PnF a higher coassembly map.

In chapter 2 below, we give an explicit general construction of PnF , and identify the

homotopy type of the layers of the tower for G(X) in terms of Thom spectra of bundles

over configuration spaces.
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1.2 Algebraic K-theory of spaces and THH

AlgebraicK-theory provides a rich set of invariants for a wide range of mathematical objects.

One particularly interesting form of algebraic K-theory is Waldhausen’s functor

A(X) ' K(Σ∞+ ΩX)

This functor enjoys many striking relationships with the spaces of pseduoisotopies and

diffeomorphisms of X when X is either a PL or smooth manifold [Wal85]. It is also equipped

with a natural map to the suspension spectrum of the free loop space [Goo90]

A(X) −→ Σ∞+ LX

which has served as a fruitful starting point for applications of homotopy calculus to A(X).

Waldhausen’s functor A(X) has a natural contravariant analogue sometimes denoted

∀(X). Following [BM11b] we might call it the “geometric Swan theory” of the ring Σ∞+ ΩX.

Surprisingly little is known about ∀(X), in contrast to A(X), though Blumberg and Mandell

have shown that when X is finite and simply connected,

∀(X) ' K(DX)

where DX is simply the Spanier-Whitehead dual of X [BM11b]. In this paper we will write

DX+ instead of DX in order to differentiate from the based dual.

There are a few reasons one might wish to understand ∀(X) better. The space is a uni-

versal receptacle for any invariant of finite fibrations over X which splits cofiber sequences.

There are natural pairings between ∀(X) and A(X) which allow us to relate classes in ∀(X)

with transfer maps in A(X) [Wil00]. In a different direction, Morava has built a conjectural

theory of motives based on K(DX) [Mor09]. Finally, Barwick has recently demonstrated

the existence of a genuine G-spectrum structure on K(S) in which the genuine H-fixed

points are equivalent to ∀(BH) [Bar14].

We are therefore motivated to better understand ∀(X) in general, and so we begin

with the topological Hochschild homology THH(DX+) in the case where X is finite and

simply-connected. Even before Blumberg and Mandell’s work, this has been considered

an interesting object of study. In the course of some string-topology calculations, Cohen
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observed that its functional dual is equivalent to the free loop space

THH(Σ∞+ ΩX) ' Σ∞+ LX
∼−→ D(THH(DX+)) (1.1)

and Campbell extended this from (Σ∞+ ΩX,DX+) to other pairs of Koszul-dual ring

spectra [Cam14]. Forthcoming work of Ayala and Francis describes a general form of

Poincaré/Koszul duality for manifolds and ring spectra, which returns this result when the

manifold is the circle S1 [AF]. Finally, one may abuse notation and let LM denote the

space of smooth loops in M ; then there are analytic lines of argument which establish the

plausibility of THH(DM+) as a model for the Thom spectrum LM−T (LM) when LM is

regarded as an infinite-dimensional manifold.

The previous work on THH(DX+) leaves open the question of how the natural circle

actions and equivariant structure on THH(DX+) and Σ∞+ LX are related under the map

(1.1). In Chapter 3 we give a definitive answer:

Theorem 1.2.1. The map (1.1) can be made S1-equivariant in such a way that it induces

an equivalence of fixed point spectra

ΦCnD(THH(DX+)) ' ΦCnΣ∞+ LX

[D(THH(DX+))]Cn ' [Σ∞+ LX]Cn

for all finite subgroups Cn ≤ S1.

In fact we show that the functional dual D(THH(R)) can be given a natural pre-

cyclotomic structure, and when R = DX+ with X finite and simply-connected it has

a cyclotomic structure. This is the kind of structure that is known to exist already on

THH(R) and Σ∞+ LX, and which makes TC(R) and TC(X) so computable.

In the process, we prove a rigidity result for smash powers and geometric fixed points of

orthogonal spectra that appears to be new and of independent interest. It gives in particular

a rigidity theorem for the Hill-Hopkins-Ravenel norm diagonal map

X
∆−→ ΦGX∧G

Our work on D(THH(DX+)) builds on very recent work of Angeltveit, Blumberg, Ger-

hardt, Hill, Lawson, and Mandell [ABG+12], [ABG+14], which starts from the observation

that the Hill-Hopkins-Ravenel multiplicative norm [HHR09] has the equivariant homotopy
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type one would need, if one wanted the cyclic bar construction in orthogonal spectra to have

the same equivariant homotopy type as Bökstedt’s construction of topological Hochschild

homology [Bök85]. However in contrast to Bökstedt’s construction, the cyclic bar construc-

tion is relatively simple on the point-set level. This leads to simplifications in the theory of

THH, as well as new results, including those outlined above.

After establishing this equivariant equivalence, we demonstrate a splitting on

THH(DX+) when X is a reduced suspension:

Theorem 1.2.2. There is a natural equivalence of genuine S1-spectra

THH(D+ΣX) ' S ∨ Σ−1

( ∞∨
n=1

D(X∧n) ∧Cn S1
+

)

This splitting does not preserve the E∞ ring structure, but it implies a collapsing re-

sult which makes that structure trivial to compute on the level of homology. Dualizing

and applying Thm 1.2.1, we recover a classical stable splitting of the free loop space of a

suspension:

Σ∞LΣX '
∞∨
n=1

Σ∞S1
+ ∧Cn X∧n

This splitting was observed by Goodwillie and proven in [Coh87]; it follows from the combi-

natorial model for L(ΣX) described in [CC87] and generalized in [BM88]. Our work easily

implies that this splitting is equivariant, in the sense that it preserves genuine fixed points

for all finite subgroups Cn ≤ S1.

Future work will explore the relationship between the TC of DX+ and Σ∞+ ΩX. To lay

the groundwork for this, we focus on THH(DS1
+), and calculate TC:

Theorem 1.2.3. There is a splitting of TC of the dual of the circle

TC(D+S
1)∧p ' S ∨ ΣCP∞−1 ∨

∨
n∈N

X

in which X is defined to be the homotopy fiber of

∞∨
k=1

Σ∞+ BCpk −→ Σ−1Σ∞+ S
1

This is surprisingly close to the TC of the ring Σ∞+ ΩS1 ' Σ∞+ Z. Using the same
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spectrum X as above, we have

TC(Σ∞+ ΩS1)∧p ' S1
+ ∧ (S ∨ ΣCP∞−1) ∨

∨
n∈Z\{0}

ΣX

In a different direction, we also use this calculation to get explicit dimension counts on the

rational homotopy groups and conclude that the coassembly map

K(DS1) −→ Map(S1,K(S))

is not rationally split surjective. However K(DS1) 6' ∀(S1), and so this does not completely

count out the possibility of a “dual” A-theory Novikov conjecture.

In the general case where X is not simply-connected, we can still recognize ∀(X) as the

K-theory of the Waldhausen category P ′(Σ∞+ ΩX) consisting of left Σ∞+ ΩX-modules whose

underlying spectrum is finite or dualizable. The Waldhausen category P ′(Σ∞+ ΩX) may be

enriched in orthogonal spectra in a natural way, and so it has a topological Hochschild

homology, which by [BM11c] and [ABG+12] receives a trace map from ∀(X). We therefore

investigate the THH of this category when X = BG, G a finite group:

Theorem 1.2.4. The composite of the assembly and coassembly maps

BG+ ∧ THH(∗) α−→ THH(Σ∞+ G) −→ THH(P ′(Σ∞+ G))
cα−→ F (BG+, THH(∗))

is up to homotopy the transfer BG+ −→ F (BG+,S) along the bundle over BG×BG with

fiber G and monodromy given by left and right multiplication of G on itself. There is a

similar composite

BWH+ ∧ THH(∗) α−→ THH(Σ∞+ WH) −→ THH(P ′(Σ∞+ G))
cα−→ F (BG+, THH(∗))

which is up to homotopy the transfer BWH+ −→ F (BG+, S) along the bundle over BG×
BWH with fiber G/H and monodromy given by the left action of G and the right action of

WH ∼= AutG(G/H)op.

Corollary 1.2.5. If G is a finite p-group the coassembly map

THH(P ′(Σ∞+ G))
cα−→ F (BG+, THH(∗))
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is split surjective after p-completion, as a map of coarse S1-spectra.

Unfortunately this coassembly map does not appear to be surjective on the fixed points

under the circle action. In some sense this is because the spectrum on the right is not

really cyclotomic but only pre-cyclotomic. One may approximate it in a universal way

by a cyclotomic spectrum, and we conjecture that the resulting map is then indeed split

surjective on all fixed points and on TC.

The author has felt that this result is an indication of interesting behavior for some form

of equivariant algebraic K-theory lying above these THH functors. A promising possibility

is given in recent work of Barwick [Bar14], which provides a genuinely G-equivariant form

of K(S) whose G-fixed points are ∀(BG). It appears that the coassembly map we have

studied lies below the map from this spectrum’s fixed points to the homotopy fixed points

K(S)G −→ K(S)hG

In 1991 Waldhausen conjectured the existence of an equivariant form of K(S) = A(∗) for

which the above map is an equivalence up to completion. This is a version of the Atiyah-

Segal completion theorem, but for algebraic K-theory instead of topological K-theory. The

work done so far on the THH level has consequences related to this conjecture, and the

author intends to pursue this direction further.

1.3 Background on K-theory and the cyclotomic trace

Though the bulk of our work is done on the level of THH, it is useful to know how such

constructions relate back to interesting forms of K-theory, and we outline that here.

Most forms of algebraic K-theory seem to be special cases of Waldhausen K-theory,

which is defined for any category C equipped with a notion of cofibrations and weak equiv-

alences satisfying the axioms found in [Wal85]. If M is a model category, then the sub-

category of cofibrant objects always forms such a “Waldhausen category.” We typically

restrict to a subcategory obeying some finiteness condition, since otherwise the K-theory

of C would be trivial.

Given a Waldhausen category C, one defines its 0th K-theory by taking the free abelian

group on the weak equivalence classes of objects of C and imposing the relation that b = a+c
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for every cofiber sequence a→ b→ c:

K0(C) = Z〈obC〉/([b] = [a] + [c] : a→ b→ c)

This generalizes via Waldhausen’s S·-construction to a sequence of groups K0,K1, . . ., which

are the homotopy groups of a connective spectrum K(C). The well-known Eilenberg Swin-

dle guarantees that when the category C contains arbitrary coproducts, this spectrum is

contractible. However if C consists only of “finite” objects then this spectrum often contains

deep and interesting invariants of the category C.

To give a specific example, let Rfin(X) denote the category of retractive spaces Y over X

for which the inclusion X −→ Y is a classical cofibration, and up to homotopy equivalence

it is obtained by attaching finitely many cells to X. The cofibrations and weak equivalences

are defined as the maps which on the total space Y are classical cofibrations or homotopy

equivalences, respectively. The K-theory of Rfin(X) is then by definition Waldhausen’s

functor A(X), which has proven useful in the study of high-dimensional manifolds [Wal85].

Calculations in K-theory are often quite difficult, but calculus of functors has proven to

be a surprisingly effective technique for understanding and calculating K-theory. Goodwillie

constructed in [Goo90] a natural map from A(X) into the suspension spectrum of the free

loop space

A(X) −→ Σ∞+ LX

Bökstedt, Hsiang, and Madsen showed in [BHM93] that this map lifts to genuine fixed

points of the S1-spectrum Σ∞+ LX under any finite cyclic subgroup Cn ≤ S1, and that these

lifts can be made in a compatible way, resulting in a map

A(X) −→ TC(X) := holim
F,R

(Σ∞+ LX)Cn

This natural transformation of functors is an equivalence on first derivatives in the sense

of Goodwillie calculus [Goo91], allowing one to use the very computable TC(X) to deduce

a great deal about A(X) in the case where X is simply-connected. This analysis was

successfully carried out in [BCC+96].

Now in the construction of Waldhausen’s A-theory of spaces, one may subtly change the

definition by insisting that we study retractive spaces over X with finite homotopy fiber,

instead of finite homotopy cofiber. To be specific, let Rfin(X) be the category of retractive
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spaces over X for which the projection Y −→ X is a fibration, and for every x ∈ X the fiber

Yx is in Rfin(∗). Define the cofibrations and weak equivalences by requiring that the map is

a cofibration resp. weak equivalence in Rfin(∗) when restricted to the fiber over x, for every

x ∈ X. The K-theory of Rfin(X) is then (somewhat unceremoniously) called “upside-down

A-theory” ∀(X). Surprisingly, though the definition is “dual” to A(X), relatively little is

known about ∀(X).

To apply modern methods it will be easiest to think of Waldhausen K-theory as coming

from highly-structured ring spectra, as opposed to spaces. To be specific, let R be an

orthogonal ring spectrum. Then the category of left R-modules has a model structure

described in ( [MMSS01], Thm 12.1(i)) where the weak equivalences and fibrations are

given by forgetting the R-action. Restrict to the subcategory P(R) consisting of cofibrant

modules which are perfect, meaning that they lie in the smallest thick subcategory containing

the ring R itself. These are equivalently the modules which are dualizable in a certain bi-

categorical sense, or the modules which are equivalent to retracts of finite cell complexes

built out of the cells R ∧ FnDk
+. Then P(R) is easily checked to be closed under homotopy

pushouts, so it defines a Waldhausen category. We denote its Waldhausen K-theory by

K(R), and call it the K-theory of the ring spectrum R itself.

Furthermore, if R is an orthogonal ring spectrum then one may define its topological

Hochschild homology by a cyclic bar construction in the category of orthogonal spectra

THH(R) := |N cyc
• R|, N cyc

k R = R∧(k+1)

If the unit S −→ R is a cofibration then this construction is appropriately derived. In the

stable homotopy category this receives a map from K(R), which lifts to the genuine fixed

points in a compatible way, yielding

K(R) −→ TC(R) := holim
F,R

THH(R)Cn

This map is often referred to as the cyclotomic trace.

It is well-kwown that when X is connected, the classical definition of A(X) above may

be re-expressed as the K-theory of the ring spectrum Σ∞+ ΩX

K(Σ∞+ ΩX) ' A(X)
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when ΩX is any topological monoid whose classifying space is equivalent to X. Furthermore

the topological Hochschild homology of this ring is

THH(Σ∞+ ΩX) ' Σ∞+ LX

and the trace analysis described above for A(X) coincides with the cyclotomic trace

K(Σ∞+ ΩX) −→ TC(Σ∞+ ΩX)

In the general case where X is not simply-connected, ∀(X) does not appear to be the

K-theory of a ring. However one may take the Waldhausen category P ′(R) of all cofibrant

left R-modules whose underlying spectrum is finite or dualizable. Then when R = Σ∞+ ΩX,

K-theory K(P ′(Σ∞+ ΩX)) is equivalent to ∀(X). Moreover, the derived mapping spectra

between objects of P ′(R) give an enrichment in orthogonal spectra, and one may use a

many-object form of the cyclic bar construction to define THH(P ′(R)). By [BM11c], which

builds on earlier work in [DM96], the Dennis trace generalizes to a map

∀(X) ' K(P ′(R)) −→ TC(P ′(R)) −→ THH(P ′(R))

There is no known analogue of the Dundas-McCarthy theorems telling us how close ∀ −→
TC is to being an equivalence, but the simple existence of these maps has already turned

out to be useful. In particular, they allow us to draw conclusions about ∀(BG) and its

linear approximation from similar statements on the level of THH.



Chapter 2

A tower from gauge groups to

string topology

This chapter represents work done in 2012 on an application of calculus of functors to string

topology. In it we develop a variant of calculus of functors, and use it to relate the gauge

group G(P) of a principal bundle P over M to the Thom ring spectrum (PAd)−TM . If P
has contractible total space, the resulting Thom ring spectrum is LM−TM , which plays a

central role in string topology. Cohen and Jones have recently observed that, in a certain

sense, (PAd)−TM is the linear approximation of G(P). We prove an extension of that

relationship by demonstrating the existence of higher-order approximations and calculating

them explicitly. This also generalizes calculations done by Arone in [Aro99].

11
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2.1 Introduction

If M is a closed oriented manifold and LM = Map(S1,M) is its free loop space, then

the homology H∗(LM) has a loop product first described by Chas and Sullivan [CS99].

This loop product is homotopy invariant [CKS08] and has been calculated in a number of

examples [CJY04]. In [FT04], Félix and Thomas studied the loop product by defining a

multiplication-preserving map

H∗(Ωidhaut(M);Q) −→ H∗+dimM (LM ;Q) (2.1)

where haut(M) is the space of self-homotopy equivalences of M , and the loops are based

at the identity map of M .

In [CJ02], Cohen and Jones described a ring spectrum LM−TM whose homology is

H∗(LM) but with a grading shift. The multiplication on LM−TM gives the loop product

on H∗(LM), and the map of Félix and Thomas (2.1) comes from a map of ring spectra

Σ∞+ ΩidhautM −→ LM−TM (2.2)

by taking rational homology groups [CJ13]. In the forthcoming paper [CJ13], Cohen and

Jones extend this map of ring spectra to a natural transformation of functors

F −→ L (2.3)

F,L : Rop
M −→ Sp

F (M qM) = Σ∞+ ΩidhautM

L(M qM) ' LM−TM

Here RM is the category of retractive spaces over M and Sp is the category of spectra. We

will give these functors explicitly in section 2.3. Both F and L are required to be homotopy

functors, meaning that they send equivalences of spaces to equivalences of spectra. Cohen

and Jones show that L is the universal approximation of F by an excisive homotopy functor,
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i.e. one that takes each homotopy pushout square

A //

��

B

��
C // D

to a homotopy pullback square

L(A) L(B)oo

L(C)

OO

L(D)

OO

oo

Such an L takes finite sums of spaces to finite products of spectra. This type of analysis is

similar in spirit to Goodwillie’s homotopy calculus of functors ( [Goo90], [Goo03]), though

it is different in substance because the functors F and L are contravariant. Instead, it is

more similar to Weiss’s embedding calculus ( [Wei99], [GW99]), though again it is different

because F is defined on all spaces and not just manifolds and embeddings.

Of course, in homotopy calculus one approximates a functor F by an n-excisive functor

PnF for each integer n ≥ 0. These fit into a tower

F −→ . . . −→ PnF −→ . . . −→ P2F −→ P1F −→ P0F

and one extracts information about F from the layers

DnF := hofib (PnF −→ Pn−1F )

The map of functors (2.3) described by Cohen and Jones is only the first level of this tower:

F −→ P1F

The main goal of this paper is to extend their construction by building the rest of the tower.

In order to do this we must also develop a variant of homotopy calculus for contravariant

functors from spaces to spectra.

In Definition 2.2.2 we define n-excisive contravariant functors. Our main results on

n-excisive functors are Theorems 2.7.1 and 2.8.8, which imply

Theorem 2.1.1. Let F be a contravariant homotopy functor from C to D, where one of
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the following holds:

• C is the category of unbased finite CW complexes over M , and D is the category of

based spaces or spectra.

• C is the category of based finite CW complexes, and D is the category of based spaces

or spectra.

• C is the category of finite retractive CW complexes over M , and D is the category of

spectra.

Then there exists a universal n-excisive approximation to F , called PnF , and the natural

transformation F (X) −→ PnF (X) is an equivalence when X is a disjoint union of the

initial object and i discrete points, 0 ≤ i ≤ n.

Remark. It has been pointed out to the author that the procedure found in [dBW12] can

be adapted to generalize embedding calculus from the category of manifolds to a broader

category of topological spaces. This should give a result similar to Thm. 2.1.1.

In section 2.3 we explicitly define the functors of Cohen and Jones that extend the map

of ring spectra (2.2), and in section 2.4.2 we explicitly calculate the tower that extends the

map of Cohen and Jones. We explain in Proposition 2.2.5 why the above universal theorem

is needed to conclude that our tower is correct. Along the way to proving Theorems 2.7.1 and

2.8.8, we prove a splitting result on homotopy limits in Proposition 2.6.7 that is reminiscient

of a result of Dwyer and Kan ( [DK80]) on mapping spaces of diagrams. This all implies

the main result of the paper:

Theorem 2.1.2. There is a tower of homotopy functors

F −→ . . . −→ PnF −→ . . . −→ P2F −→ P1F −→ P0F

from finite retractive CW complexes over M into spectra such that

1. PnF is the universal n-excisive approximation of F .

2. The map F −→ P1F is the map (2.3) of Cohen and Jones.

3. F (M qM) ∼= Σ∞+ ΩidhautM .

4. P1F (M qM) ' LM−TM .



CHAPTER 2. A TOWER FROM GAUGE GROUPS TO STRING TOPOLOGY 15

5. P0F (M qM) = ∗.

6. If X is any finite retractive CW complex over M , the maps

F (X) −→ PnF (X) −→ Pn−1F (X)

are maps of ring spectra.

7. For all n ≥ 1, DnF (M qM) is equivalent to the Thom spectrum

C(LM ;n)−TC(M ;n)

Here C(M ;n) is the space of unordered configurations of n points in M , and C(LM ;n)

is the space of unordered collections of n free loops in M with distinct basepoints.

Cohen and Jones have also observed that this linearization phenomenon is more general.

Consider any principal bundle

G −→ P −→M

The gauge group G(P) is defined to be the space of automorphisms of P as a principal

bundle. It is a classical fact that there is an associated adjoint bundle PAd, and that the

gauge group G(P) may be identified with the the space of sections ΓM (PAd).

Gruher and Salvatore show in [GS08] that one may construct a Thom ring spectrum

(PAd)−TM out of the total space PAd of the adjoint bundle. The multiplication on this ring

spectrum gives a product on the homology H∗(PAd). When the total space of P is con-

tractible, the adjoint bundle PAd is equivalent to the free loop space LM , and the Gruher-

Salvatore product on H∗(PAd) agrees with the Chas-Sullivan loop product on H∗(LM).

In [CJ13], Cohen and Jones show that the map (2.2) of ring spectra generalizes to a

map of ring spectra

Σ∞+ G(P) −→ (PAd)−TM (2.4)

Taking homology groups, they get a multiplication-preserving map

H∗(G(P)) −→ H∗+dimM (PAd) (2.5)

which generalizes the map (2.1) studied by Félix and Thomas. Cohen and Jones extend

this generalized map of ring spectra to a map of functors F −→ L and show that L is the
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universal approximation of F by an excisive functor. We extend their generalized result

here as well:

Theorem 2.1.3. There is a tower of homotopy functors

F −→ . . . −→ PnF −→ . . . −→ P2F −→ P1F −→ P0F

from finite retractive CW complexes over M into spectra such that

1. PnF is the universal n-excisive approximation of F .

2. The map F −→ P1F is the generalized map of Cohen and Jones.

3. F (M qM) ∼= Σ∞+ G(P).

4. P1F (M qM) ' (PAd)−TM .

5. P0F (M qM) = ∗.

6. If X is any finite retractive CW complex over M , the maps

F (X) −→ PnF (X) −→ Pn−1F (X)

are maps of ring spectra.

7. For all n ≥ 1, DnF (M qM) is equivalent to the Thom spectrum

C(PAd;n)−TC(M ;n)

where C(PAd;n) is the space of unordered configurations of n points in the total space

PAd which have distinct images in M .

The outline of the chapter is as follows. In Section 2, we define n-excisive functors and

give criteria for recognizing the universal n-excisive approximation PnF of a given functor

F . In Section 3, we give a detailed construction of a tower which generalizes the above two

examples. In Section 4, we specialize to the above two examples and do some computations.

Sections 5-8 supply a missing ingredient from the previous sections: a functorial construction

of PnF for general F . This material may be of independent interest in the general study of

calculus of functors.
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2.2 Excisive Functors

Fix an unbased space B. Like every space that follows, we assume it is compactly generated

and weak Hausdorff.

Definition 2.2.1. • Let UB be the category of spaces over B. The objects are spaces

X equipped with maps X −→ B. Define two subcategories

UB,n ⊂ UB,fin ⊂ UB

as follows. The subcategory UB,fin consists of all finite CW complexes over B. The

subcategory UB,n consists of discrete spaces with at most n points over B. For sim-

plicity, we may as well assume that the finite CW complexes are embedded in B×R∞,

and that UB,n has only one space with i points for each 0 ≤ i ≤ n.

• Let RB be the category of spaces containing B as a retract. As before, define two

subcategories

RB,n ⊂ RB,fin ⊂ RB

where RB,fin consists of spaces X for which (X,B) is a finite relative CW complex,

and RB,n consists of spaces of the form iqB, i = {1, . . . , i}, for 0 ≤ i ≤ n.

Of course, if B = ∗ then UB and RB are the familiar categories of unbased spaces U
and based spaces T , respectively. The following definition should be seen as an analogue of

Goodwillie’s notion of n-excisive for covariant functors [Goo91]:

Definition 2.2.2. A contravariant functor Rop
B

F−→ T is n-excisive if

• F is a homotopy functor, meaning weak equivalences X
∼−→ Y of spaces containing B

as a retract are sent to weak equivalences F (Y )
∼−→ F (X) of based spaces.

• F takes strongly co-Cartesian cubes (equivalently, pushout cubes) of dimension at

least n + 1 to Cartesian cubes (see [Goo91]). When n = 1, this means that F takes

homotopy pushout squares to homotopy pullback squares.
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• F takes filtered homotopy colimits to homotopy limits. In particular, F is determined

up to equivalence by its behavior on relative finite CW complexes B ↪→ X.

This definition is easily modified to suit many cases. When restricting to finite CW

complexes (RB,fin), we drop the last condition. If Sp denotes a suitable model category of

spectra, for example the category of prespectra described in [MMSS01], then a contravariant

functor Rop
B

F−→ Sp is n-excisive if it satisfies the above properties, with “equivalence of

based spaces” replaced by “stable equivalence of spectra.” For most models of spectra, we

are allowed to post-compose F with a fibrant replacement functor, and conclude that F is

an n-excisive functor to spectra iff each level Fj is an n-excisive functor to based spaces. It

is also straightforward to define n-excisive for functors from unbased spaces UB or unbased

finite spaces UB,fin to either spaces T or spectra Sp.
If F is a contravariant n-excisive functor, then F is completely determined by its values

on the discrete spaces with at most n points:

Proposition 2.2.3. • Let F and G be n-excisive functors Rop
B −→ T , and F

η−→ G

a natural transformation. If η is an equivalence when restricted to the subcategory

Rop
B,n, then η is also an equivalence on the rest of Rop

B .

• If F and G are n-excisive functors Uop
B −→ T , and F

η−→ G is an equivalence on

Uop
B,n, then η is also an equivalence on Uop

B .

• The obvious analogues hold when the source of F and G is instead the category of finite

CW complexes UB,fin or RB,fin, or when the target is spectra Sp instead of spaces T .

Proof. We will only prove the first statement, by induction on the dimension of the relative

CW complex B −→ X. The key fact is that a map of Cartesian cubes is an equivalence on

the initial vertex if it is an equivalence on all the others.

We may construct a pushout (n+ 1)-cube whose final vertex is

n+ 1qB

but all other vertices are k qB with k ≤ n. Applying F and G to this pushout cube gives

two Cartesian cubes, and η gives a map between the two Cartesian cubes. This map is an

equivalence on every vertex but the initial one, so it is an equivalence on the initial vertex

as well:

η : F (n+ 1qB)
∼−→ G(n+ 1qB)
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Similarly we may show that η is an equivalence on all spaces of the form kqB. Therefore η

is an equivalence on all finite 0-dimensional complexes. For higher dimensional complexes,

we need an additional definition.

For each subset T ⊂ {1, 2, . . . , n}, define the layer cake space LdT to be the subspace of

the closed d-dimensional unit cube [0, 1]d consisting of those points whose final coordinate

is in the set

{0, 1

n
,

2

n
, . . . , 1} ∪ {t : dnte ∈ T}

So Ld{1,...,n} is the entire cube, while Ld∅ is homotopy equivalent to n + 1 copies of Dp−1

glued along their boundaries. Intuitively, LdT consists of all the frosting in a layer cake,

together with a selection of layers given by T . If T is a proper subset, then LdT is homotopy

equivalent rel ∂Id to ∂Id with some (d− 1)-cells attached.

Now assume that η is an equivalence on all finite (d−1)-dimensional complexes. LetX be

a d-dimensional finite complex, with top-dimensional attaching maps {∂Id ϕα−→ X(d−1)}α∈A.

Form an (n+1)-dimensional pushout cube with the following description. The initial vertex

is
∐
A L

d
∅, a disjoint union of one empty layer cake for each d-cell of X. Next, let n of the

n+ 1 adjacent vertices be
∐
A L

d
{i} as i ranges over {1, . . . , n}. Finally, let the last adjacent

vertex be the pushout of X(d−1) and
∐
A L

d
∅ along

∐
A ∂I

d. Then the final vertex of our

pushout cube is homeomorphic to X, while every vertex other than the final one is homotopy

equivalent to a (d− 1)-dimenional cell complex. After applying F and G, η gives us a map

between two Cartesian cubes, and the map is an equivalence on every vertex but the initial

one. So F (X)
η−→ G(X) is an equivalence as well, completing the induction.

If the source category of F and G has infinite CW complexes, we express each CW

complex as a filtered homotopy colimit of its finite subcomplexes and invoke the colimit

axiom. To move to all spaces, we recall that F and G preserve weak equivalences, and that

every space over B has a functorial CW approximation.

Now suppose F is a contravariant homotopy functor. We want to define a “best possible”

approximation of F by an n-excisive functor. By this we mean an n-excisive functor PnF

with the same source and target as F , and a natural transformation F −→ PnF that is
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universal among all maps F −→ P from F into an n-excisive functor P :

F

��

// P

PnF

!

==

We will relax this condition to take place in the homotopy category of functors. Following

[Goo03], we get this homotopy category by formally inverting the equivalences of functors.

Definition 2.2.4. An equivalence of functors is a natural transformation F −→ G that

yields equivalences F (X)
∼−→ G(X) for all spaces X.

Unfortunately, this homotopy category of functors has significant set-theory issues. First

of all, the category of all functors from spaces to spaces is not really a category in the usual

sense. This is because when we choose two functors F and G, the collection of all natural

transformations F −→ G forms a proper class. In other words, the category of functors has

large hom-sets. The homotopy category of functors has even larger hom-sets [Goo03].

One way of resolving this issue is to restrict to small functors as defined in [CD06]. The

small functors form a model category, so their homotopy category has small hom-sets.

We will use a different fix, since we are ultimately interested in a result about compact

manifolds. We will restrict our attention to functors defined on finite CW complexes (UB,fin

or RB,fin) instead of all spaces (UB or RB). Finite CW complexes over B can always be

embedded into B×R∞, so we can easily make UB,fin and RB,fin into small categories. Then

the category of functors from UB,fin or RB,fin into spaces or spectra has the projective model

structure, as discussed below in section 2.3.1. Therefore our homotopy category of functors

has small hom-sets.

Now that we are on solid footing, we can return to the problem of finding a universal n-

excisive approximation PnF to the homotopy functor F . It turns out that PnF will actually

agree with F on the spaces with at most n points. This is similar to embedding calculus

( [Wei99], [GW99]) but quite different from the case for covariant functors ( [Goo03]).

Extending the calculus analogy, we are calculating not a Taylor series but a polynomial

interpolation: we sample our functor F at (n + 1) particular homotopy types 0, . . . , n and

then we build the unique degree n polynomial PnF that has the same values on those (n+1)

homotopy types.

So let F be any contravariant homotopy functor from finite CW complexes (RB,fin or
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UB,fin) to either based spaces or spectra. (There is one exception to this setup, as explained

in section 2.7.) In sections 2.5, 2.7, and 2.8.2 below we will define a functor PnF with

the same source and target as F , and a natural transformation pnF : F −→ PnF , both

functorial in F . Then we will show two things:

• PnF is n-excisive.

• F −→ PnF is an equivalence on Rop
B,n (based case) or Uop

B,n (unbased case).

Proposition 2.2.5. If F −→ PnF is a functorial construction satisfying the above proper-

ties, then PnF is universal among all n-excisive P with natural transformations F −→ P

in the homotopy category of functors.

Proof. Easy adaptation of ( [Goo03], 1.8).

Corollary 2.2.6 (Recognition Principle for PnF ). Given that such a construction Pn exists,

if P is any n-excisive functor with a map F −→ P that is an equivalence on Rop
B,n or Uop

B,n,

then P is canonically equivalent to PnF .

Proof. By the universal property of PnF there exists a unique map PnF −→ P , but this is

a map of n-excisive functors and an equivalence on Rop
B,n or Uop

B,n, so it’s an equivalence of

functors.

Remark. The above recognition argument applies equally well to the case of covariant

functors, which is alarming, because in that case F −→ PnF is usually not an equivalence

on the spaces with at most n points. The only possible conclusion is that, for covariant

functors, there is no construction Pn satisfying the above properties.

We will delay the construction of PnF to section 2.5. In the next section, we will apply

this recognition theorem in a particular example.

2.3 The Tower of Approximations of a Mapping Space

Now we will compute the tower of universal n-excisive approximations of the functor

F (X) = Σ∞MapB(X,E)

from retractive spaces over B to spectra. The map of Cohen and Jones described in the

introduction is the special case X = M qM , B = M , and E = LM qM . Our results in
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this section are proven using techniques from model categories, so we will fix some notation

for this following [MMSS01] and [MS06].

Definition 2.3.1. Let X and Y be unbased spaces over B, or retractive spaces over B.

• A q-cofibration X −→ Y is a retract of a relative cell complex.

• A q-fibration X −→ Y is a Serre fibration.

• An h-cofibration X −→ Y is a map of spaces satisfying the homotopy extension

property.

• An h-fibration X −→ Y is a Hurewicz fibration.

We should also be precise about our definition of F (X) = Σ∞MapB(X,E).

Definition 2.3.2. • If E is a retractive space over B, let ΣBE denote the fiberwise

reduced suspension of E.

• An ex-fibration is a retractive space E over B such that E −→ B is a Hurewicz

fibration, and B −→ E is well-behaved in a sense described in ( [MS06], 8.2). For

our purposes, the most important property of an ex-fibration E is that the fiberwise

reduced suspension ΣBE is again an ex-fibration.

• If X is a q-cofibrant retractive space over B and E is an ex-fibration over B, let

MapB(X,E) denote the space of maps X −→ E respecting the maps into and out of

B. If B is compact or X is finite CW then this space is well-based. If not, grow a

whisker so that Σ∞ will preserve equivalences.

• Similarly, let MapB(X,Σ∞B E) denote a spectrum whose kth level is fiberwise maps

from X into Σk
BE.

Now we will build up to the definition of the functors that approximate F . Let Mn be the

category whose objects are the finite unbased sets 0 = ∅, 1 = ∗, 2 = {1, 2}, . . . , n = {1, . . . , n}
and whose morphisms are the surjective maps. For any space X, we can form a diagram of

unbased spaces indexed by the opposite category Mop
n :

i 7→ Xi
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The morphisms in this diagram are clear when we think ofXi as Map(i,X). So algebraically,

this diagram is the functor represented by X. Geometrically, this is a diagram of generalized

diagonal maps: each map i −→ i− 1 results in a map Xi−1 −→ Xi whose image consists of

points in which a particular pair of coordinates is repeated. The union of all such images

the fat diagonal, which we will denote

∆ ⊂ Xi

Definition 2.3.3. Let X be a q-cofibrant retractive space over B and let E be an ex-

fibration over B.

• Let X ∧X denote the external smash product of X with itself; this is a retractive

space over B × B whose fiber over (b1, b2) is Xb1 ∧ Xb2 . More generally, if Y is a

retractive space over C then X ∧Y is a retractive space over B × C whose fiber over

(b, c) is Xb ∧ Yc.

• Let X ∧n denote the n-fold iterated external smash product. It is a retractive space

over Bn.

• Define

Map(Mop
n ,{Bi})(X

∧ i,Σ∞BiE
∧ i)

to be the spectrum whose kth level is collections of maps of retractive spaces

Σk∗ Σk
BE . . . Σk

BnE
∧n

∗

f0

OO

X

f1

OO

. . . X ∧n

fn

OO

such that each surjective map i←− j gives a commuting square

Σk
Bi
E ∧ i // Σk

Bj
E ∧ j

X ∧ i //

fi

OO

X ∧ j

fj

OO

Remark. Note that the collection of maps (f0, f1, . . . , fn) is completely determined by the

last map fn, which must be Σn-equivariant. When n ≥ 3, not every Σn-equivariant map
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arises this way.

Remark. One might expect S0 −→ ΣkS0 in the place of ∗ −→ Σk∗, since an empty smash

product is S0. This answer would give the approximation to the functor F ∨ S instead of

F . A similar phenomenon happens in Cor. 2.8.6 below.

Now we have defined a tower of functors

F (X) = Σ∞MapB(X,E)

↓
...

...

PnF (X) = Map(Mop
n ,{Bi})(X

∧ i,Σ∞
Bi
E ∧ i)

...
...

↓

P2F (X) = MapB×B(X ∧X,Σ∞B×BE ∧E)Σ2

↓

P1F (X) = MapB(X,Σ∞B E)

↓

P0F (X) = ∗

on the category of finite retractive CW complexes over B. We will justify the notation

with Theorem 2.3.13, which shows that PnF (X) is the universal n-excisive approximation

to F (X). This is a generalization of an observation made by Greg Arone about the tower

in [Aro99].

Remark. It is more natural to examine the functor X 7→ MapB(X,E) first, before applying

Σ∞ to it. But this functor is already 1-excisive, so it does not give an interesting tower. It

is also natural to consider

F̂ (X) = Σ∞MapB(X,E)

for unbased X over B, without a basepoint section. But F̂ (X) = F (X qB), so PnF̂ (X) =

PnF (X q B) by comparing universal properties. Therefore the case of F on Rop
B is more

general than the case of F̂ on Uop
B . This is true in general when the desired functor on Uop

B

extends to a functor on Rop
B .



CHAPTER 2. A TOWER FROM GAUGE GROUPS TO STRING TOPOLOGY 25

2.3.1 Cell Complexes of Diagrams

Many of the proofs that follow rely on the same basic idea: we start with a diagram of spaces

or spectra that is built inductively out of cells, and we define maps of diagrams one cell at a

time. In doing so, we are using the following standard facts. First, both spaces and spectra

have compactly generated model structures [MMSS01]. Therefore the category of diagrams

indexed by I can be endowed with the projective model structure. The weak equivalences

F −→ G of diagrams are the maps that give objectwise equivalences F (i)
∼−→ G(i), and

the fibrations are the objectwise (q-)fibrations. The projective model structure is again

compactly generated.

To understand the cofibrant diagrams, define a functor that takes a based space (or

spectrum) X and produces the diagram

Fi(X)(j) = I(i, j)+ ∧X

A map of diagrams Fi(X) −→ G is the same as a map of spaces (or spectra) X −→ G(i).

This property is clearly useful for defining maps of diagrams one cell at a time. We can

define a diagram cell by applying Fi to the maps Sn−1
+ −→ Dn

+, and then define a diagram

CW complex as an appropriate iterated pushout of diagram cells. Every diagram CW

complex is cofibrant in the projective model structure. More generally, if we weaken the

definition from relative CW complexes to retracts of relative cell complexes, we get all of

the cofibrations in the projective model structure.

We will now apply these ideas and check that a certain diagram is cofibrant in the

projective model structure. Recall that Mn is the category with one object i = {1, . . . , i}
for each integer 0 ≤ i ≤ n, with maps i −→ j the surjective maps of sets. The maps are

not required to preserve ordering, so in particular Mn(i, i) ∼= Σi, the symmetric group on i

letters.

Proposition 2.3.4. If X is a based CW complex, then {X∧i}ni=0 is a CW complex of Mop
n

diagrams. Similarly for Cartesian products {Xi}. If X is q-cofibrant then {X∧i} and {Xi}
are cofibrant diagrams.

Proof. It suffices to put a new cell complex structure on X∧n so that the fat diagonal is a

subcomplex, and every cell outside of the fat diagonal is permuted freely by the Σn-action.

We will do the case where X has a single cell, since the general case follows easily.
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The product
∏nDm ∼=

∏n[0, 1]m may be identified with the space of all n×m matrices,

with real entries between 0 and 1. The Σn action permutes the rows. Divide this space

into open simplices as follows. We define a simplex of dimension d for each partition of the

nm entries of the matrix into d nonempty equivalence classes, along with a choice of total

ordering on the equivalence classes. This simplex corresponds to the subspace of matrices

for which the equivalent entries have the same value, and the values are ordered according

to the chosen total ordering.

The closures of these simplices give a triangulation of the cube
∏nDm ∼=

∏n[0, 1]m.

Each generalized diagonal in (Dm)n is defined by setting an equivalence relation on the rows

of the matrix, and requiring that equivalent rows have the same values. This is clearly an

intersection of conditions we used to define the simplices above, so each generalized diagonal

is a union of simplices. In addition, the simplices off the fat diagonal are freely permuted

by the Σn action. This finishes the proof.

For the last statement in the proposition, a general q-cofibration is a retract of a relative

cell complex, but retracts of maps of spaces clearly give retracts of maps of diagrams, so we

are done.

Proposition 2.3.5. If X is a based CW complex and A is a subcomplex then {A∧i} −→
{X∧i} is a relative CW complex of Mop

n diagrams. If ∗ −→ A −→ X are q-cofibrations then

{A∧i} −→ {X∧i} is a cofibration of Mop
n diagrams.

Proof. Each cell of X∧i lying outside A∧i is a product of cells in X, at least one of which is

not a cell in A. As above, we subdivide each of these cells so that ∆∪A∧i is a subcomplex

when ∆ is any of the generalized diagonals. Off the fat diagonal, the Σi action still freely

permutes the cells. This gives the recipe for building the map of diagrams {A∧i} −→ {X∧i}
out of free cells of diagrams.

Suppose that ∗ −→ A −→ X are q-cofibrations, and we want to show that {A∧i} −→
{X∧i} is a cofibration of diagrams. Then without loss of generality we can replace A −→ X

by a relative cell complex A −→ X ′. Then we can replace ∗ −→ A by a relative cell

complex ∗ −→ A′, and we get the sequence of relative cell complexes ∗ −→ A′ −→ X ′∪AA′

containing ∗ −→ A −→ X as a retract. Then we apply the same argument as above.

Proposition 2.3.6. If X is a retractive CW complex over B then {Bi} −→ {X ∧ i} is a

relative CW complex of Mop
n diagrams. If B −→ A −→ X are q-cofibrations over B then

{A∧ i} −→ {X ∧ i} is a cofibration of Mop
n diagrams.
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Proof. We must verify that Bi ↪→ X ∧ i is a relative cell complex with one cell for each i-tuple

of relative cells of B ↪→ X. This is a straightforward adaptation of standard arguments,

but it is worth pointing out that these arguments derail if we don’t work in the category of

compactly generated weak Hausdorff spaces. Once we are assured that everything is a cell

complex, the rest of the proof follows as above.

Recall that an acyclic cofibration (of spaces, spectra, or diagrams) is a map that is both a

(q-)cofibration and a weak equivalence. An acyclic cell of spaces is a map Dn×{0} ↪→ Dn×I
for some n ≥ 0. Every acyclic cofibration of spaces is a retract of a cell complex built out

of these acyclic cells [MMSS01]. Similarly, an acyclic cell of diagrams is what we get by

applying Fi to the map Dn × {0} ↪→ Dn × I, and every acyclic cofibration of diagrams is

a retract of a relative complex built out of these acyclic cells. With this language, we now

give the following result:

Corollary 2.3.7. If ∗ −→ A −→ X are q-cofibrations and A −→ X is acyclic then

{A∧i} −→ {X∧i} is an acyclic cofibration of Mop
n diagrams. Similarly for Cartesian prod-

ucts.

Proof. Since A and X are q-cofibrant they are well-based (i.e. ∗ −→ A is an h-cofibration).

Therefore since A −→ X is a weak equivalence, A∧i −→ X∧i is a weak equivalence as

well.

Corollary 2.3.8. Each acyclic cofibration A −→ X of q-cofibrant retractive spaces over B

induces a acyclic cofibration of Mop
n diagrams {A∧ i} −→ {X ∧ i}.

Proof. Again, we just need to show that A∧ i −→ X ∧ i is a weak equivalence of total spaces.

The case where i = 2 generalizes easily. Let HA be the homotopy pushout of

B ×B

(A×B) ∪B×B (B ×A)

OO

// A×A
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Then HA is equivalent to the strict pushout A∧A, because the bottom map is an h-

cofibration. This gives a square

HA
∼ //

∼
��

HX

∼
��

A∧A // X ∧X

from which we see that the bottom map is an equivalence. For i > 2 simply replace one of

the two copies of A by the space A∧ (i−1).

2.3.2 Proof that the Tower is Correct

Proposition 2.3.9. F (X) = Σ∞MapB(X,E) as defined above in 2.3.3 takes weak equiv-

alences between q-cofibrant retractive spaces over B to level equivalences of spectra. In

particular, F is a homotopy functor on the relative CW complexes over B.

Proof. Since the spaces are modified to be well-based, it suffices to do this for the functor

MapB(X,E). By Ken Brown’s lemma, it suffices to take an acyclic q-cofibration X −→ Y

and show that

MapB(Y,E) −→ MapB(X,E)

is a weak equivalence. So take the square

Sn−1
+

//

��

MapB(Y,E)

��
Dn

+
//

88

MapB(X,E)

where the + means disjoint basepoint and is there to remind us that the map must be

an isomorphism on homotopy groups at all points. The right-hand vertical map is a weak

equivalence (actually an acyclic fibration) if we can show the dotted diagonal map exists.

This is equivalent to

(Sn−1 × Y ) ∪ (Dn ×X) //

��

E

��
Dn × Y //

66

B

Since E −→ B is a q-fibration, it suffices to show that the left-hand vertical map is an acyclic
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q-cofibration. This is the main axiom for checking that (compactly generated) spaces form

a monoidal model category, and it follows from a similar condition on the generating maps

Sn−1 −→ Dn and Dn × {0} −→ Dn × I as in [Hov99], so we are done. Alternatively, the

homotopy invariance of mapping spaces from cofibrant objects to fibrant objects could also

be deduced from the results of Dwyer and Kan on hammock localization [DK80].

Proposition 2.3.10. PnF (X) = Map(Mop
n ,{Bi})(X

∧ i,Σ∞
Bi
E ∧ i) as defined above in 2.3.3

takes weak equivalences between q-cofibrant retractive spaces over B to level equivalences of

spectra.

Proof. Again, by Ken Brown’s lemma it suffices to take an acyclic q-cofibration X −→ Y

and show that

Map(Mop
n ,{Bi})(Y

∧ i,Σ∞BiE
∧ i) −→ Map(Mop

n ,{Bi})(X
∧ i,Σ∞BiE

∧ i)

is a level equivalence of spectra. So take the square of spaces

Sn−1
+

//

��

Map(Mop
n ,{Bi})(Y

∧ i,Σk
Bi
E ∧ i)

��
Dn

+
//

55

Map(Mop
n ,{Bi})(X

∧ i,Σk
Bi
E ∧ i)

and show the dotted diagonal map exists. This is equivalent to a lift in this square of

diagrams indexed by Mop
n :

(Sn−1
+ ∧Y ∧ i) ∪ (Dn

+ ∧X ∧ i) //

��

Σk
Bi
E ∧ i

��
Dn

+ ∧Y ∧ i //

55

Bi

Since we assumed that E −→ B was an ex-fibration, the right-hand vertical map is an

ex-fibration as well ( [MS06], 8.2.4). Therefore it is also a q-fibration. So it suffices to show

the left-hand vertical map is an acyclic cofibration of diagrams. Using ( [MS06], 7.3.2), this

reduces to showing that

X ∧ i −→ Y ∧ i

is an acyclic cofibration of diagrams, but we already did that in Prop. 2.3.8 above.
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Proposition 2.3.11. F −→ PnF is an equivalence on the q-cofibrant space i q B when

0 ≤ i ≤ n.

Proof. When X = i q B, the fat diagonal covers all of X ∧ j for j > i. Therefore a natural

transformation of Mop
n -diagrams is determined by what it does on X ∧ i = ii q B. This

is an ii-tuple of points in various fibers of Σ∞
Bi
E ∧ i, with compatibility conditions. The

compatibility conditions force us to have only one point for each nonempty subset of i.

Therefore the map F (iqB) −→ PnF (iqB) becomes

Σ∞(Eb1 × . . .× Ebi) −→
∏

S⊂i,S 6=∅

Σ∞
∧
s∈S

Ebs

From Cor. 2.8.6 below, this map is always an equivalence.

Proposition 2.3.12. PnF is n-excisive.

Proof. Start with a strongly co-Cartesian cube indexed by the subsets of a fixed finite set

S, with |S| ≥ n + 1. This cube is equivalent to a cube of pushouts along relative CW

complexes

A −→ Xs s ∈ S

of retractive spaces over B. Applying PnF to this cube, we get a cube of spectra

T  PnF (
⋃
s∈T

Xs)

Let’s show that this cube is level Cartesian. Fix a nonnegative integer k and restrict

attention to level k of the spectra in the cube. This turns out to be a fibration cube as

defined in [Goo91]. To prove this, we have to construct this lift for any space K:

K //

��

Map(Mop
n ,{Bi})

((⋃
s∈S Xs

)∧ i
,Σk

Bi
E ∧ i

)
��

K × I //

44

lim
T(S

Map(Mop
n ,{Bi})

((⋃
t∈T Xt

)∧ i
,Σk

Bi
E ∧ i

)

Map(Mop
n ,{Bi})

(
colim
T(S

(⋃
t∈T Xt

)∧ i
,Σk

Bi
E ∧ i

)
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Rearranging gives

K ×
[(
{0} ×

(⋃
s∈S Xs

)∧ i) ∪ (I × colim
T(S

(⋃
t∈T Xt

)∧ i)] //

��

Σk
Bi
E ∧ i

��
K × I ×

(⋃
s∈S Xs

)∧ i //

33

Bi

This is a square of maps of diagrams. The left and right vertical maps are vertexwise

h-cofibrant and h-fibrant, respectively. Unfortunately, our model structure on diagrams is

q-type, not h-type. Fortunately, we can define maps of Mop
n -diagrams one level at a time,

one cell at a time. So consider inductively the modified square

K ×
[(
{0} ×

(⋃
s∈S Xs

)∧ i) ∪ (I × [∆ ∪ colim
T(S

(⋃
t∈T Xt

)∧ i])] //

��

Σk
Bi
E ∧ i

��
K × I ×

(⋃
s∈S Xs

)∧ i //

33

Bi

where ∆ ⊂ (
⋃
s∈S Xs)

∧ i is the fat diagonal. From Prop. 2.3.6 above we know that

(
⋃
S Xs)

∧ i is built up from its fat diagonal by attaching free Σi-cells, so we can define

the lift one free Σi-cell at a time. Each time, we get an acyclic h-cofibration on the left,

and the map on the right is an h-fibration, so the lift exists. By construction, it’s natural

with respect to all the maps in Mop
n .

Now that we have a fibration cube of spaces

(T ⊂ S) 7→ Map

(⋃
t∈T

Xt

)∧ i
,Σk

BiE
∧ i


we check that the map from the initial vertex into the ordinary limit of the rest is a weak

equivalence:

Map(Mop
n ,{Bi})

((⋃
s∈S Xs

)∧ i
,Σk

Bi
E ∧ i

)
// lim
T(S

Map(Mop
n ,{Bi})

((⋃
t∈T Xt

)∧ i
,Σk

Bi
E ∧ i

)

Map(Mop
n ,{Bi})

(
colim
T(S

[(⋃
t∈T Xt

)∧ i]
,Σk

Bi
E ∧ i

)
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But since i ≤ n < |S|, every choice of i points in
⋃
S Xs lies in some

⋃
T Xt for some proper

subset T of S. Therefore this map is a homeomorphism.

Theorem 2.3.13. PnF is the universal n-excisive approximation of F .

Proof. This follows from Cor. 2.2.6 above and Thm. 2.8.8 below. Together, they tell us

that the universal n-excisive approximation PnF exists and is uniquely identified by the

property that PnF is n-excisive and F −→ PnF is an equivalence on the spaces with at

most n points.

2.3.3 The Layers

We would like to identify each layer DnF of the tower, defined to be the homotopy fiber of

PnF −→ Pn−1F

In fact, the natural map PnF −→ Pn−1F is a level fibration of spectra, so DnF is equivalent

to the ordinary fiber. This in turn consists of all collections of maps that are trivial on X ∧ i

for i < n and that vanish on the fat diagonal of X ∧n. This spectrum may be written

DnF (X) ' MapBn(X ∧n/Bn∆,Σ∞BnE
∧n)Σn

Here the decoration (−)Σn means strict or categorical fixed points. These are not the

genuine fixed points as in [MM02], as we are not taking a fibrant replacement in the model

structure given by Mandell and May for orthogonal Σn-spectra. For concreteness, the above

spectrum is given at level k by the Σn-equivariant maps

X ∧n/Bn∆ −→ Σk
BnE

∧n

of retractive spaces over Bn.

Proposition 2.3.14. DnF (X) is an (m − d)n − 1 connected spectrum, where d = dimX

and m is the connectivity of E −→ B (and so m− 1 is the connectivity of the fiber Eb).

Proof. If Y is a c-connected based Σn-space and X is a d-dimensional based free Σn-CW

complex, then Map(X,Y )Σn has connectivity at least c− d. We prove this by constructing

an equivariant homotopy of Sk ∧X −→ Y to the constant map, one free Σn-cell at a time.

A straightforward adaptation of this argument gives the above result.
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Corollary 2.3.15. If m > d then the tower converges to its limit

P∞F (X) = Map(Mop
∞ ,{Bi})(X

∧ i,Σ∞BiE
∧ i)

The tower may converge to F (X) itself when m > d. In the case where B = ∗ this is

shown to be true in [Aro99]. For general B, here is a partial result:

Proposition 2.3.16. If m > d then the map F −→ P0F is m− d connected and the map

F −→ P1F is 2(m− d)− 1 connected.

Proof. First we replace every Σ∞ with Q = Ω∞Σ∞; this doesn’t change the homotopy

groups under the assumption that m > d because our spectra are connective. The first

result follows easily from the fact that if X is k connected then so is QX. The second

follows from the fact that if X is well-based and k connected then X −→ QX is 2k + 1

connected. (This in turn comes from the Freudenthal Suspension theorem.) We look at the

diagram

MapB(X,E) //

��

QMapB(X,E)

uu
MapB(X,QBE)

The vertical map is 2m−d− 1 connected and the horizontal map is 2m− 2d− 1 connected,

so the diagonal is 2m− 2d− 1 connected.

We will finish this section by specializing to the case where M is a closed manifold,

B = M , and X = M qM . Consider the following spaces:

• ∆ ⊂Mn is the fat diagonal.

• F (M ;n) ∼= Mn−∆ is the noncompact manifold of ordered n-tuples of distinct points

in M .

• ι : Mn −∆ ↪→Mn is the inclusion map.

• C(M ;n) ∼= F (M ;n)Σn is the noncompact manifold of unordered n-tuples of distinct

points in M .
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Then the layers of the above tower can be rewritten

DnF (M qM) = Γ(Mn,∆)(Σ
∞
MnE ∧n)Σn

' ΓcMn−∆

(
Σ∞MnE ∧n

∣∣∣
Mn−∆

)Σn

∼= ΓcF (M ;n)

(
Σ∞F (M ;n)ι

∗E ∧n
)Σn

∼= ΓcC(M ;n)(Σ
∞
C(M ;n)(ι

∗E ∧n)Σn)

' ((ι∗E ∧n)Σn)−T (C(M ;n))

The last step is the application of Poincaré duality (see [MS06], [CK09]) to the noncompact

manifold C(M ;n) with twisted coefficients given by the bundle of spectra (ι∗E ∧n)Σn . Since

the manifold in question is noncompact, Poincaré duality gives an equivalence between

cohomology with compact supports and homology desuspended by the tangent bundle of

C(M ;n). The result is the Thom spectrum

((ι∗E ∧n)Σn)−T (C(M ;n))

We will see a few examples of this in the next section.

2.4 Examples and Calculations

Example 2.4.1. Taking B = ∗ and E = Y for any based space Y gives

F (X) = Σ∞Map∗(X,Y )
...

...

PnF (X) = MapMop
n ,∗(X

∧i,Σ∞Y ∧i)
...

...

P2F (X) = Map∗(X ∧X,Σ∞Y ∧ Y )Σ2

P1F (X) = Map∗(X,Σ
∞Y )

P0F (X) = ∗

with nth layer

DnF (X) = Map∗(X
∧n/∆,Σ∞Y ∧n)Σn
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This coincides with Arone’s tower in [Aro99], and therefore converges when the connectivity

of Y is at least the dimension of X. It is curious that the Taylor tower in the Y variable

should agree with the polynomial interpolation tower in the X variable. We also expect

this to happen in the case B 6= ∗, though we do not prove this here.

Example 2.4.2. If X = S1 and Y is simply connected then the nth layer of the tower is

Map∗(S
n/∆,Σ∞Y ∧n)Σn ∼= ΩnΣ∞Y ∧n

If Y = ΣZ with Z connected, then the nth layer is

Σ∞Z∧n

It is well known that the tower splits in this case ( [Aro99], [Böd87]):

Σ∞ΩΣZ '
∞∏
n=1

Σ∞Z∧n

Example 2.4.3. If X is unbased we get the tower

F (X) = Σ∞Map(X,Y )
...

...

PnF (X) = MapMop
n

(Xi,Σ∞Y ∧i)
...

...

P2F (X) = Map(X ×X,Σ∞Y ∧ Y )Σ2

P1F (X) = Map(X,Σ∞Y )

P0F (X) = ∗

If Y = S0 and X is any finite unbased CW complex then the nth layer of this tower is

DnF (X) ' Map(Xn/∆,S)Σn ∼= D((Xn/∆)Σn) ∼= D(C(X;n))

where D denotes Spanier-Whitehead dual. If Y = Sm and m > dimX then the tower
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converges to Σ∞Map(X,Sm), and the nth layer is

DnF (X) ' Map(Xn/∆,ΣmnS)Σn ' ΣmnD((Xn/∆)Σn) ∼= ΣmnD(C(X;n))

2.4.1 Gauge Groups and Thom Spectra

Let B = M be a closed connected manifold, and let P −→M be a G-principal bundle. The

gauge group G(P) is defined to be the space of automorphisms of P as a principal bundle.

Consider the quotient

PAd = P ×G GAd

where GAd is the group G as a right G-space with the conjugation action. Then we may

identify G(P) with the space of sections ΓM (PAd). Taking E to be the ex-fibration (PAd)q
M and X to be the retractive space M qM gives the tower

F (M qM) = Σ∞ΓM (PAd qM) ∼= Σ∞+ G(P)
...

PnF (M qM) = Γ(Mop
n ,{M i})(Σ

∞
M i(PAd)i qM i)
...

P2F (M qM) = ΓM×M (Σ∞M×M (PAd)2 qM2)Σ2

P1F (M qM) = ΓM (Σ∞MPAd qM) ' (PAd)−TM

P0F (M qM) = ∗

The description of the nth layer in section 2.3.3 above becomes

DnF (M qM) ' C(PAd;n)−T (C(M ;n))

Here C(PAd;n) is configurations of n points in PAd with distinct images in C(M ;n). This

relates the stable homotopy type of the gauge group G(P) to Thom spectra of configuration

spaces.

If we use orthogonal spectra instead of prespectra, we get a tower of strictly associative

ring spectra. This proves Theorem 2.1.3 from the introduction. If G is replaced by a

grouplike A∞ space then we get a tower of A∞ ring spectra.

By the Thom isomorphism, the homology of C(PAd;n)−TC(M ;n) is the same as the
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homology of the base space C(PAd;n), with coefficients twisted by the orientation bundle

of C(M ;n) pulled back to C(PAd;n). We can calculate this homology using the zig-zag of

homotopy pullback squares

Gn

��

Gn

��

Gn

��
C(PAd;n)

��

F(PAd;n)

��

/Σnoo //
yx

(PAd)n

��
C(M ;n) F (M ;n)

/Σnoo //Mn

where F (M ;n) ∼= Mn−∆ is ordered configurations of n points in M . Note that the manifold

F (M ;n) is orientable iff M is orientable, while C(M ;n) is orientable iff M is orientable and

dimM is even.

Another approach to understanding the homology of configuration spaces comes from

the scanning map

C(M ;n) −→ ΓM (STM )n

C(PAd;n) −→ ΓM (STM ∧M (PAd qM))n

Here the subscript of n denotes sections that are degree n in the appropriate sense. If M

is open, the scanning map gives an isomorphism on integral homology in a stable range

[McD75]. If M is closed, it gives an isomorphism on rational homology in a stable range

[Chu11].

2.4.2 String Topology

Now we will finally construct the tower we described in the introduction. We may start

with the tower of section 2.3 and set B = M , E = LM qM , and X = M qM . Or, we may

take the tower from section 2.4.1 and set G ' ΩM and P ' ∗, so that PAd ' LM . Either
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construction gives the tower

F (M qM) = Σ∞ΓM (LM qM) ' Σ∞+ Ωidhaut(M)
...

PnF (M qM) = Γ(Mop
n ,{M i})(Σ

∞
M iLM

i qM i)
...

P2F (M qM) = ΓM×M (Σ∞M×MLM
2 qM2)Σ2

P1F (M qM) = ΓM (Σ∞MLM qM) ' LM−TM

P0F (M qM) = ∗

The nth layer is

DnF (M qM) ' C(LM ;n)−TC(M ;n)

As before, C(LM ;n) is configurations of n unmarked free loops in M with distinct base-

points. This proves Theorem 2.1.2 from the introduction.

Remark. The connectivity of the nth layer C(LM ;n)−TC(M ;n) is negative, and decreases to

−∞ as n −→∞. Therefore the tower does not converge to F . We may phrase this another

way: if the first layer is k-connected, then the nth layer is approximately nk-connected.

This is actually consistent with other results from calculus of functors (cf. [Goo03] Thm.

1.13 and [Aro99] Thm. 2), the difference here being that k is negative. In the more general

case of a principal bundle P over M , it seems likely that the tower will converge to F when

the dimension of M is at most the connectivity of G. (This is after factoring out the tower

for F (X) = S by taking a cofiber on each level.) We will not prove such a convergence

result in this paper.

We conclude this section with a short homology calculation. We will skip over the first

layer LM−TM , since it can be calculated using methods from [CJY04]. Instead, taking

M = Sn, we use standard Serre spectral sequence arguments to calculate the second layer

in rational homology

H∗(C(LSn; 2)−TC(Sn;2);Q)
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If n is odd, then Hq(C(LSn; 2);Q) with twisted coefficients is



Q q = n− 1, 2n− 2, 2n− 1, 3n− 2

Q2 q = 3n− 3, 4n− 4, 4n− 3, 5n− 4
...

...

0 otherwise

and if n is even the answer (with untwisted coefficients) is

Q q = n− 1, 3n− 3, 3n− 2, 4n− 4,

5n− 4, 6n− 6, 6n− 5, 8n− 7

Q2 q = 5n− 5, 7n− 7, 7n− 6, 8n− 8, 9n− 9,

9n− 8, 10n− 10, 10n− 9, 12n− 11
...

...

0 otherwise

To get the homology of the spectrum C(LSn; 2)−TC(Sn;2) we subtract 2n from each degree.

This spectrum is a homotopy fiber of a map of rings, so its homology carries an associative

multiplication with no unit. It is easy to check however that most of the products are zero,

and when n is odd, all the products are zero.

2.5 First Construction of PnF

We still need to add teeth to Cor. 2.2.6 by giving a functorial construction of PnF for

general F with the desired properties. We begin with a description of PnF in the non-

fiberwise case (B = ∗) that the author learned from Greg Arone. Broadly, the construction

in this section is the cellular approach to PnF , whereas our second construction in section

2.7 is the simplicial approach.

Let F : T op
fin −→ T be a contravariant homotopy functor from finite based spaces to

based spaces. We want to construct another functor PnF that agrees with F on the spaces

Tn with at most n points. A reasonable guess is to take a Kan extension from Tn back to

all of Tfin. In fact, if we assume in addition that F is topological (enriched over spaces) and

that we take the homotopy right Kan extension over topological functors, then we get the
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right answer.

We can give PnF more explicitly as follows. Recall that Tn ⊂ T is the subcategory of

finite based sets i+ = {1, . . . , i}+ with 0 ≤ i ≤ n and based maps between them. For a

fixed finite based space X, define two diagrams of unbased spaces over T op
n :

i+  Xi = Map∗(i+, X)

i+  F (i+)

Then consider the space of (unbased!) maps between these two diagrams

PnF (X)
?
= MapT op

n
(Xi, F (i+))

Note that since F is topological, there is a natural map from F (X) into this space. Further-

more, this map is a homeomorphism when X = i+ for 0 ≤ i ≤ n, since then the diagram

Xi is generated freely by a single point at level i+, corresponding to the identity map of

i+. This is good, but we have missed the mark a little bit because this construction is not

n-excisive in general.

To fix this, we take the derived or homotopically correct mapping space of diagrams

instead. We could do this by fixing a model structure on T op
n diagrams in which the weak

equivalences are defined objectwise. Then we would replace {Xi} by a cofibrant diagram

and {F (i+)} by a fibrant diagram. The space of maps between these replacements is by

definition the homotopically correct mapping space.

More concretely, we can fatten up the diagram {Xi} to the diagram

i+  hocolim
j
+
∈(T op

n ↓i+)
Xj

and leave {F (i+)} alone. Then the above conditions are satisfied for the projective model

structure defined above in section 2.3.1. This standard thickening is sometimes called a

two-sided bar construction [May75] [Shu06].

Equivalently, we can leave {Xi} alone and fatten up {F (i+)} to

i+  holim
j
+
∈(i+↓T

op
n )

F (j
+

)
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Then the above conditions would be satisfied for the injective model structure, if it existed.

Note that the two spaces we get in either case are actually homeomorphic:

PnF (X) = MapT op
n

[
hocolim

j
+
∈(T op

n ↓i+)
Xj , F (i+)

]
∼= MapT op

n

[
Xj , holim

i+∈(j
+
↓T op
n )

F (i+)

]

Take either of these as our definition of PnF (X). The natural map F (X) −→ PnF (X) can

be seen by taking the previous case and observing in addition that there are always natural

maps

hocolim −→ colim or lim −→ holim

Consider the second description

PnF (X) ∼= MapT op
n

[
Xj , holim

i+∈(j
+
↓T op
n )

F (i+)

]

When X = i+ and i ≤ n, we may evaluate our map of diagrams at the “identity” point of

(i+)i, giving a homeomorphism

PnF (i+)
∼=−→ holim

j
+
∈(i+↓T

op
n )

F (j
+

)

of spaces under F (i+). But the map

F (i+)
∼−→ holim

j
+
∈(i+↓T

op
n )

F (j
+

)

is an equivalence too, and this forces F (i+) −→ PnF (i+) to be an equivalence.

Next, consider the first description

PnF (X) = MapT op
n

[
hocolim

j
+
∈(T op

n ↓i+)
Xj , F (i+)

]

Remembering that X is a CW complex, the diagram on the left is a CW complex of

diagrams. It has one free cell of dimension d+m at the vertex i+ for every choice of d-cell

in Xj and choice of m-tuple of composable arrows

j
+

= i0+
−→ i1+

−→ . . . −→ im+
= i+
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Therefore the techniques of section 2.3.2 above tell us that PnF is n-excisive. This completes

the proof that n-excisive approximations exist for topological functors from based spaces to

based spaces.

The assumption that F is topological is not much stronger than the assumption that

F is a homotopy functor. To see this, first define ∆nd
X as below (2.6.4) as the category of

nondegenerate simplices ∆p −→ X. A map from ∆p −→ X to ∆q −→ X is a factorization

∆q ↪→ ∆p −→ X, where ∆q ↪→ ∆p is a composition of inclusions of faces. The classifying

space |∆nd
X | is homeomorphic to the thin geometric realization of S·X.

Even when F is not topological, each map ∆p
+ ∧ Y −→ X gives a map

∆p
+ ∧ F (X)

∼−→ F (X) −→ F (∆p
+ ∧ Y )

which assemble into a zig-zag

F (X) −→ holim
∆nd

Map∗(Y,X)

F (∆p
+ ∧ Y )

∼←− holim
∆nd

Map∗(Y,X)

F (Y )

∼= Map(|∆nd
Map∗(Y,X)|, F (Y ))

∼←− Map(Map∗(Y,X), F (Y ))

assuming Map∗(Y,X) has the homotopy type of a CW complex. So we don’t quite get

a map from F (X) to the far right-hand side, but we get something close enough for the

purposes of homotopy theory. In particular, setting Y = i+ we get a natural zig-zag

F (X) −→ . . . −→ Map(Xi, F (i+))

and therefore we get a natural zig-zag from F (X) to PnF (X), which gives a natural map

F −→ PnF in the homotopy category of functors. This map is still an equivalence when X

has at most n points, because in that case the homotopy limits become ordinary products

and we can use the same argument as above.

So much for the assumption that F is topological. Once we have the case where F

takes based spaces to spaces, we can also easily handle the case when F takes based spaces

to spectra. Simply post-compose F with fibrant replacement of spectra, and work one

level at a time. This works because every stable equivalence of fibrant spectra gives a weak

equivalence of spaces on each level. The above constructions naturally commute with taking

the based loop space Ω, so they pass to a construction on spectra.
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If F is defined on unbased spaces then we make the same construction, except that we

replace Tn with the category of finite unbased sets Un. Using Prop. 2.2.5 above, we have

finished the proof of the following:

Theorem 2.5.1. If F : Cop −→ D is a homotopy functor, where C = Ufin or Tfin and

D = T or Sp, then there is a universal n-excisive approximation PnF , and F −→ PnF is

an equivalence on spaces with at most n points.

This result is a good first step, but we really want to know that approximations exist

for functors defined on the categories UB,fin and RB,fin of fiberwise spaces. We will do this

in section 2.7 by switching to a more simplicial construction

PnF (X) = holim
∆p×i−→X

F (i×∆p)

It is worth pointing out that our “cellular” approach here can also be modified to work,

though there is a significant issue when dealing with functors

Rop
B,fin −→ T

from retractive spaces to spaces. Curiously, our simplicial approach also runs into a similar

problem, as discussed below in section 2.7.3.

2.5.1 Higher Brown Representability

Before we move on, we should point out that this first construction is better suited to proving

a kind of Brown Representability for homogeneous n-excisive functors. Let F : Cop −→ D
be a homotopy functor as in Thm. 2.5.1 above. Then F is n-reduced if Pn−1F ' ∗, or

equivalently if F (X) ' ∗ whenever X is a space with at most (n− 1) points. Note that

Fn(X) := hofib (F (X) −→ Pn−1F (X))

is always n-reduced, and Fn(n) is the cross effect crossnF (1, . . . , 1) defined below in section

2.8.

We say that F is homogeneous n-excisive if it is n-excisive and n-reduced. So DnF (X) =

hofib (PnF (X) −→ Pn−1F (X)) is always homogeneous n-excisive. Homogeneous 1-excisive

functors are a good notion of space-valued or spectrum-valued cohomology theories. From
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numerous sources (e.g. [Cho07], [CK09], [MS06]) we expect such cohomology theories to be

represented by spaces or spectra.

Examining the construction of PnF in this section, we see that PnF (X) −→ Pn−1F (X)

is a Serre fibration when X is a CW complex. Therefore the ordinary fiber is equivalent to

DnF . This can be rephrased as the following:

Proposition 2.5.2. • If F : Uop
fin −→ T is an n-reduced homotopy functor then there is

a natural map

F (X) −→ D(X) := Map∗(X
n/∆, F (n))Σn

in the homotopy category of functors on Uop
fin . If F is homogeneous n-excisive then

this map is an equivalence.

• If F : T op
fin −→ T then the same is true for

F (X) −→ D(X) := Map∗(X
∧n/∆, F (n+))Σn

• Analogous statements hold when the target of F is spectra.

We will now strengthen this to an equivalence of homotopy categories. Let G be a finite

group. Recall that the usual notion of G-equivalence of G-spaces is an equivariant map

X −→ Y which induces equivalences XH −→ Y H for all subgroups H < G. We will call

an equivariant map X −→ Y a näıve G-equivalence if it is merely an equivalence when we

forget the G action. It is well known that there are at least two cofibrantly generated model

structures on G-spaces, one which gives the G-equivalences and one which gives the näıve

G-equivalences.

Examining the behavior of D(X) on the spaces i or i+ for i ≤ n, it is clear that the

homotopy type of D(X) is determined by the nonequivariant or näıve homotopy type of

F (n) or F (n+). The following is then straightforward:

Proposition 2.5.3. The above construction gives an equivalence between the homotopy

category of homogeneous n-excisive functors to spaces and the näıve homotopy category of

Σn-spaces. A similar statement holds for functors to spectra.
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2.6 Properties of Homotopy Limits

In order to carry out our second construction of PnF , we need a small collection of facts

about homotopy limits. This section is expository except for Prop. 2.6.7.

Let [n] denote the totally ordered set {0, 1, . . . , n} as a category. Let ∆[p] denote the

standard p-simplex as a simplicial set, and let ∆p = |∆[p]| denote its geometric realization.

Let I be any small category. Recall [BK87] that if A : I −→ T is a diagram of based spaces,

the homotopy limit is defined

holim
I

A ⊂
∏

g:∆[n]−→NI

Map∗(∆
n
+, A(g(n))),

as the subset of all collections of maps that agree in the obvious way with the face and

degeneracy maps of the nerve NI. The following is perhaps the most standard result

about homotopy limits, and we have already used it several times. It is included here for

completeness.

Proposition 2.6.1. If A,B : I −→ T are two diagrams indexed by I, and A −→ B is a

natural transformation that on each object i ∈ I gives a weak equivalence A(i) −→ B(i),

then it induces a weak equivalence

holim
I

A −→ holim
I

B

Recall that if I
α−→ J is a functor and A : J −→ T is a diagram of spaces, then there is

a naturally defined map

holim
J

A −→ holim
I

(A ◦ α)

The functor I
α−→ J is homotopy initial (or homotopy left cofinal) if for each object j ∈ J

the overcategory (α ↓ j) has contractible nerve.

Proposition 2.6.2. If I
α−→ J is homotopy initial and A : J −→ T is a diagram of spaces,

then

holim
J

A −→ holim
I

(A ◦ α)

is an equivalence.

Given a functor α, we will use these results to determine whether α is homotopy initial:
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Lemma 2.6.3. • Each adjunction of categories induces a homotopy equivalence on the

nerves.

• If (α ↓ j) is related by a zig-zag of adjunctions to the one-point category ∗, then its

nerve is contractible and therefore α is homotopy initial.

• If (α ↓ j) has an initial or terminal object then α is homotopy initial.

• If α is a left adjoint then it is homotopy initial.

We will frequently use this example of a homotopy initial functor:

Definition 2.6.4. • If X is a space, let ∆nd
X denote the category of nondegenerate

simplices ∆p −→ X. A map from ∆p −→ X to ∆q −→ X is a factorization ∆q ↪→
∆p −→ X, where ∆q ↪→ ∆p is a composition of inclusions of faces. The classifying

space of ∆nd
Xi is homeomorphic to the thin geometric realization of Xi:

B∆nd
Xi
∼= |sd(S·(X

i))| ∼= |S·(Xi)| ∼= |(S·X)i| ∼= |S·X|i

• Let ∆X be the category of all (possibly degenerate) simplices in X, with face and

degeneracy maps between them. Then the inclusion ∆nd
X −→ ∆X is a left adjoint,

therefore homotopy initial.

• If X· is a simplicial set, there are obvious analogues of ∆nd
X·

and ∆X· . As before, the

inclusion ∆nd
X·
↪→ ∆X· is a left adjoint, therefore homotopy initial.

Next, we need a fact about iterated homotopy limits. We recall the colimit version

first. If F : I −→ Cat is a small diagram of small categories, the Grothendieck construction

gives a larger category I
∫
F , whose objects are pairs (i, x) of an object i ∈ I and an object

x ∈ F (i). The maps (i, x) −→ (j, y) are arrows i
f−→ j in I, and arrows F (f)(x) −→ y in

F (j). Thomason’s Theorem tells us that a homotopy colimit of a diagram A : I
∫
F −→ T

is expressed as an iterated homotopy colimit:

hocolim
I
∫
F

A ' hocolim
i∈I

(
hocolim

F (i)
A

)
To formulate the result for homotopy limits, we again let F : I −→ Cat be a small

diagram of small categories. Then the reverse Grothendieck construction gives a larger
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category I
∫ R

F , whose objects are again pairs (i, x) of an object i ∈ I and an object

x ∈ F (i). The maps (i, x) −→ (j, y) are arrows j
f−→ i in I, and arrows x −→ F (f)(y) in

F (i). Note that this is related to the original Grothendieck construction in that

I
∫ R

F ∼= (I
∫

(op ◦ F ))op

Proposition 2.6.5 (Dual of Thomason’s Theorem). For a diagram A : I
∫ R

F −→ T , there

is a natural weak equivalence

holim
I
∫R F A

∼−→ holim
i∈Iop

(
holim
F (i)

A

)

We will not give a proof of this since Schlictkrull gives an excellent one in [Sch09].

In this paper, we will come upon several homotopy limits that are indexed by forwards

Grothendieck constructions I
∫
F instead of reverse ones. Here we will demonstrate that

such a homotopy limit splits, but the result is more complicated.

Definition 2.6.6. If I is a small category, the twisted arrow category aI has as its objects

the arrows i −→ j of I. The morphisms from i −→ j to k −→ ` are the factorizations of

k −→ ` through i −→ j:

i

��

k

��

oo

j // `

Proposition 2.6.7. Given a diagram A : I
∫
F −→ T there is a natural weak equivalence

holim
I
∫
F
A
∼−→ holim

(i
f→j)∈aI

(
holim
F (i)

A ◦ F (f)

)

Remark. This proposition is motivated by a result of Dwyer and Kan on function com-

plexes [DK80]. Roughly, the left-hand side is the space of maps between two diagrams

indexed by I. The first diagram sends i to the nerve of F (i), while the other sends i to

A(i). Mapping spaces of this form, if they are “homotopically correct,” are equivalent to a

homotopy limit of mapping spaces Map(NF (i), A(j)) over the twisted arrow category aI;

this is roughly what we get on the right-hand side.

Proof. Recall that we already have a functor F : I −→ Cat. Define another functor
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(aI)op −→ Cat by taking i −→ j to F (i), and call this functor F by abuse of notation.

Then we can build the reverse Grothendieck construction (aI)op
∫ R

F .

The desired weak equivalence is the composite

holim
I
∫
F
A
∼−→ holim

(aI)op
∫R F A ◦ α

∼−→ holim
(i
f→j)∈aI

(
holim
F (i)

A ◦ F (f)

)

The second map is a weak equivalence by the dual of Thomason’s theorem, stated above.

The first map is induced by pullback along a functor

(aI)op

∫ R

F
α−→ I

∫
F

and it suffices to show that this functor is homotopy initial. Specifically, α does the following

to objects and morphisms:

(i
f // j,

h

��

x ∈ F (i))

ϕ

��

α // (j,

h

��

F (f)(x) ∈ F (j))

F (h)
��

F (g)(x′) ∈ F (i) F (hf)(x) ∈ F (j′)

F (hf)ϕ
��

(i′
f ′ //

g

OO

j′, x′ ∈ F (i′))

F (g)

OO

α // (j′, F (f ′)(x′) ∈ F (j′))

Fix an object (`, z ∈ F (`)) in the target category I
∫
F . We’ll show that the overcategory

(α ↓ (`, z)) is contractible. A typical map between objects of this overcategory is given by

the data

i
f // j

p //

h

��

`, x ∈ F (i)

ϕ

��

F (pf) // F (pf)(x)

F (pf)ϕ

��

σ // z

F (g)(x′) ∈ F (i)
F (pf)

((
i′

f ′ //

g

OO

j′
p′ // `, x′ ∈ F (i′)

F (g)

OO

F (p′f ′) // F (p′f ′)(x′)
σ′ // z

where everything commutes. Let J be the subcategory of (α ↓ (`, z)) consisting of objects

for which j = ` and p is the identity. Then there is a projection P : (α ↓ (`, z)) −→ J which

is left adjoint to the inclusion I : J −→ (α ↓ (`, z)). We can exhibit P and the natural
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transformation from the identity to I ◦ P in the following diagram:

i
f // j

p //

p

��

`, x ∈ F (i)
F (pf) // F (pf)(x)

σ // z

x ∈ F (i)
F (pf)

&&
i

pf // ` `, x ∈ F (i)

id

OO

F (pf) // F (pf)(x)
σ // z

To check the adjunction, it suffices to check that a map from any object of (α ↓ (`, z)) into

an object of J factors uniquely through this projection. Once this is checked, the next step

is to show that J has an initial subcategory K. A typical object of K is given in the first

row below.

` ` `, F (f)(x) ∈ F (`)
id // F (f)(x)

σ // z

F (f)(x) ∈ F (`)

id

''
i

f //

f

OO

` `, x ∈ F (i)

F (f)

OO

F (f) // F (f)(x)
σ // z

The rest of the diagram justifies the claim that K is initial. Finally, K is isomorphic to

the category of objects over z in F (`), which has terminal object z. We have completed a

zig-zag of adjunctions between (α ↓ (`, z)) and ∗, so (α ↓ (`, z)) is contractible. Therefore

α is homotopy initial and the equivalence is complete.

The equivalence is clearly natural in A, but it is also natural in F in the following

sense. A map of diagrams of categories F
η−→ G gives a map I

∫
F

I
∫
η

−→ I
∫
G, so a diagram

A : I
∫
G −→ T can be pulled back to I

∫
F . Our equivalence then fits into a commuting

square:

holim
I
∫
F

(I
∫
η)∗A // holim

(i
f→j)∈aI

(
holim
F (i)

((I
∫
η)∗A) ◦ F (f)

)

holim
I
∫
G
A //

OO

holim
(i
f→j)∈aG

(
holim
G(i)

A ◦G(f)

)
OO
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Lastly, we want a result on diagrams A : J −→ T for which every arrow i −→ j induces

a weak equivalence A(i) −→ A(j). Call such a diagram almost constant. Of course, if A is

a constant diagram sending everything to the space X, then its homotopy limit is

holim
J

A = Map(BJ, X)

where BJ = |NJ| is the classifying space of J. If A is instead almost constant, then we get

(see [CK09], [Dwy96])

Proposition 2.6.8. If A : J −→ T is almost constant, then there is a fibration EA −→ BJ

and a natural weak equivalence

holim
J

A ' ΓBJ(EA)

Moreover, if I
α−→ J is a functor then there is a homotopy pullback square

EA◦α //

��

EA

��
BI // BJ

Corollary 2.6.9. If A : J −→ T is almost constant, and I
α−→ J induces a weak equivalence

BI −→ BJ, then the natural map

holim
J

A −→ holim
I

(A ◦ α)

is a weak equivalence.

2.7 Second Construction of PnF : The Higher Coassembly

Map

Here we will describe how to construct PnF (X) as a homotopy limit

PnF (X) = holim
∆p×i−→X

F (i×∆p)
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When n = 1 and F is reduced, this construction is essentially the same as the coassembly

map described in [CK09]. The coassembly map is formally dual to the assembly map

( [WW93]) often found in treatments of algebraic K-theory.

We will prove that our construction of PnF satisfies four properties:

1. PnF is a homotopy functor.

2. PnF takes pushout cubes whose dimension is at least n+ 1 to Cartesian cubes.

3. If X is a CW complex then PnF (X) −→ holim
X′⊂X finite complex

PnF (X ′) is an equivalence.

4. F −→ PnF is an equivalence on Rop
B,n or Uop

B,n.

For functors on finite CW complexes, conditions (1), (2), and (4) are enough to imply

PnF is the universal n-excisive approximation of F . Condition (3) is a bit weaker than the

standard condition that filtered homotopy colimits go to homotopy limits; it is here because

the technology we need for (2) happens to make (3) easy.

There are 8 different setups we might consider, based on whether B is a point or not,

the spaces over B are fiberwise based (retractive) or unbased, and F goes into spaces or

spectra. We will first handle all cases where the spaces over B are unbased. Then we’ll

handle all cases where B = ∗ and the spaces over B are based. Together this gives an

extension and a second proof of Theorem 2.5.1 above:

Theorem 2.7.1. If F : C −→ D is a homotopy functor, where C = UB,fin or Tfin and

D = T or Sp, then there is a universal n-excisive approximation PnF , and F −→ PnF is

an equivalence on spaces with at most n points.

Finally, in section 2.8.2 below we will do the case of functors from retractive spaces over

B to spectra. We do not have a method that works for retractive spaces over B to spaces.

2.7.1 PnF for Unbased Spaces over B

Let CB,n denote a subcategory of simplicial sets over S·B consisting of objects of the form

i×∆[p], p ≥ 0 and 0 ≤ i ≤ n.

Specifically, we take one such object for each choice of p and i, and each choice of map of

simplicial sets i×∆[p] −→ S·B. We do not take the full subcategory on these objects. Each
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map

j ×∆[q] −→ i×∆[p]

must be a product of a single simplicial map ∆[q] −→ ∆[p] and a map of finite sets j −→ i.

Intuitively, CB,n is a simplicial fattening of UB,n.

Now let F be any contravariant homotopy functor from unbased spaces over B to spaces

or spectra. If F is a functor to spectra, compose it with fibrant replacement. This gives an

equivalent functor that takes weak equivalences of spaces to level equivalences of spectra,

and we can argue one level at a time. So now without loss of generality, F is a homotopy

functor to based spaces.

If X· is a simplicial set over S·B, define

PnF (X·) = holim
(CB,n↓X·)op

F (i×∆p)

Abusing notation, define PnF on spaces as the composite

UB
S·−→ sSet/S·B

PnF−→ T

or more explicitly,

PnF (X) = holim
(CB,n↓S·X)op

F (i×∆p)

The natural transformation F
pn−→ PnF is then induced by a collection of maps F (X) −→

F (i×∆p) for each map i×∆p −→ X.

When X = i, the object i × ∆[0]
∼=−→ S·i is initial in (CB,n ↓ S·i)op, so the homotopy

limit is obtained by evaluating at this initial object (Prop. 2.6.2). This proves property (4),

that F −→ PnF is an equivalence on Uop
B,n.

Next we’ll tackle property (1), that PnF is a homotopy functor. Let Un = U∗,n be the

category of finite unbased sets 0, . . . , n and all maps between them. Notice that we can

define a functor ∆ : Uop
n −→ Cat taking i to ∆Xi

·
. Each map i ←− j goes to the functor

∆Xi
·
−→ ∆

Xj
·

arising from the map Xi
· −→ Xj

· , whose definition is obvious once we observe

that Xi ∼= Map(i,X). Now take the forwards Grothendieck construction Uop
n

∫
∆. This is a

category whose objects are elements Xi
p and whose morphisms Xi

p −→ Xj
q are compositions

of maps Xi
· −→ Xj

· from above and maps Xj
p −→ Xj

q which are compositions of face and
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degeneracy maps. Equivalently, the objects can be described as maps

∆[p]× i −→ X·

and the morphisms are factorizations

∆[p]× i // X·

∆[q]× j //

OO

X·

in which the vertical map is a product of j −→ i and some simplicial map ∆[q] −→ ∆[p].

This is clearly the same category as (Cop
B,n ↓ X·)op, so we have a new way to write our

definition of PnF (X·):

PnF (X·) = holim
Uop
n

∫
∆
F (i×∆p)

Now Prop. 2.6.7 gives the following:

holim
Un

∫
∆Xi

F (∆p × i) ' holim
(i←−j)∈aUop

n

(
holim

∆
Xi·

F (j ×∆p)

)

The term inside the parentheses can be rewritten

holim
∆
Xi·

F (j ×∆p) ' holim
∆nd
Xi·

F (j ×∆p)

and this defines a homotopy functor in X· by Prop. 2.6.9. The homotopy limit of these is

also a homotopy functor, and using the naturality statement in Prop. 2.6.7 we conclude

that PnF (X·) is a homotopy functor. In fact, we have proven something stronger than (1),

that PnF actually takes weak equivalences of simplicial sets to weak equivalences.

Now we can prove (2). From [Goo91], each strongly co-Cartesian cube of spaces over B

is weakly equivalent to a pushout cube formed by a cofibrant space A and an (n+ 1)-tuple

of spaces X0, . . ., Xn over B, each with a cofibration A −→ Xi. Applying singular simplices

S·, we get a cube of simplicial sets

T  S·

(⋃
s∈T

Xs

)
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where the
⋃

is shorthand for pushout of spaces along A. By easy induction, this cube is

equivalent to the pushout cube of simplicial sets

T  
⋃
s∈T

S·Xs

where the
⋃

is shorthand for pushout of simplicial sets along S·A. Since PnF is a homotopy

functor on simplicial sets, applying PnF to both cubes gives equivalent results. Therefore

it suffices to show that PnF takes a pushout cube of simplicial sets to a Cartesian cube of

spaces.

So let S by any set with cardinality strictly larger than n, let A ∈ sSet be a simplicial

set, and for each element s ∈ S, let Xs ∈ sSet be a simplicial set containing A. Then there

is a pushout cube which assigns each subset T ⊂ S to the simplicial set
⋃
t∈T Xt, which is

shorthand for the pushout of the Xt along A. We want to show that PnF takes this to a

Cartesian cube. In other words, the natural map

holim
∆[p]×i→

⋃
S Xs

F (i×∆p) −→ holim
(T(S)op

(
holim

∆[p]×i→
⋃
T Xs

F (i×∆p)

)
is an equivalence. Using dual Thomason, we rewrite the right-hand side as

holim
(T,∆[p]×i→

⋃
T Xs)

F (i×∆p)

where each object of the indexing category is a proper subset T ( S, integers p ≥ 0 and

0 ≤ i ≤ n, and a map ∆[p]× i→
⋃
T Xs. A map between two objects looks like

T, i×∆[p] //
⋃
T Xs

U,

subset

OO

j ×∆[q] //

OO

⋃
U Xs

OO

This category maps forward into Uop
n

∫
∆(

⋃
S Xs)

i , in which a map between two objects is

given by the data

i×∆[p] //
⋃
S Xs

j ×∆[q] //

OO

⋃
S Xs

OO
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This functor α forgets the data of T and includes
⋃
T X

i
s into

⋃
S X

i
s. The natural map of

homotopy limits

holim
∆[p]×i→

⋃
S Xs

F (i×∆p) −→ holim
(T,∆[p]×i→

⋃
T Xs)

F (i×∆p)

is induced by a pullback of diagrams along α, so we just have to show that α is homotopy

initial. Given an object j×∆[q]
ϕ−→
⋃
S Xs in the target category, the overcategory (α ↓ ϕ)

has as its objects the factorizations of ϕ

j ×∆[q] −→ i×∆[p] −→
⋃
T

Xs −→
⋃
S

Xs

where T ( S must be a proper subset of S.

Let us give a terminal object for this overcategory. Since we are working with simplicial

sets instead of spaces, each q-simplex lands inside one of the sets Xs in the pushout.

Therefore there is a smallest subset T ⊂ S such that j × ∆[q]
ϕ−→
⋃
S Xs lands inside⋃

T Xs, and since j ≤ n < |S|, this subset is proper. This gives a terminal object for the

overcategory (α ↓ ϕ), so it’s contractible, which finishes (2).

Finally we check (3). Let X be a CW complex. We want to show that the natural map

holim
∆[p]×i→S·X

F (i×∆p) −→ holim
(finiteX′⊂X)op

(
holim

∆[p]×i→S·X′
F (i×∆p)

)
is an equivalence. Using dual Thomason, we rewrite the right-hand side as

holim
(finiteX′⊂X,∆[p]×i→S·X′)

F (i×∆p)

where each object of the indexing category is a finite subcomplex X ′ ⊂ X, integers p ≥ 0

and 0 ≤ i ≤ n, and a map ∆[p]× i→ S·X
′. A map between two objects looks like

X ′, i×∆[p] // S·X
′

X ′′,

inclusion

OO

j ×∆[q] //

OO

S·X
′′

OO

This category maps forward into Uop
n

∫
∆(S·X)i , in which a map between two objects looks
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like

i×∆[p] // S·X

j ×∆[q] //

OO

S·X

OO

This functor α forgets the data of X ′ and includes X ′ into X. The natural map of homotopy

limits defined above is again induced by a pullback of diagrams along α, so we just have to

show that α is homotopy initial. Given an object j ×∆[q]
ϕ−→ S·X in the target category,

the overcategory (α ↓ ϕ) has as its objects the factorizations of ϕ

j ×∆[q] −→ i×∆[p] −→ S·X
′ −→ S·X

where X ′ ⊂ X must be a finite subcomplex. But of course each q-simplex lands inside a

unique smallest subcomplex; taking the union over all j gives a smallest finite subcomplex

containing the image of ∆q × j. This gives a terminal object for the overcategory (α ↓ ϕ),

so it’s contractible and we are done proving (3).

2.7.2 PnF for Based Spaces

The argument mimics the one above, so we will only point out what is different. The

category Cn becomes a subcategory of based simplicial sets consisting of objects of the

form

(i×∆[p])+, p ≥ 0 and 0 ≤ i ≤ n.

with one such object for each choice of p and i. Each map

(j ×∆[q])+ −→ (i×∆[p])+

is a choice of simplicial map ∆[q] −→ ∆[p] and map of finite based sets j
+
−→ i+. Intu-

itively, Cn is a simplicial fattening of Tn ∼= Tn. If X· is a based simplicial set, define

PnF (X·) = holim
(Cn↓X·)op

F ((i×∆p)+)

Abusing notation, define PnF on spaces as the composite

T S·−→ sSet∗
PnF−→ Sp
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The category Un of finite sets is replaced by the category Tn of finite based sets. As before,

there is a functor ∆ : Uop
∗,n
∼= T op

n −→ Cat taking i+ to ∆Xi
·
, and we can rewrite PnF (X·)

as

PnF (X·) = holim
T op
n

∫
∆
F ((i×∆p)+)

To show that PnF is homotopy invariant we rewrite it as

holim
T op
n

∫
∆
F (∆p × i) ' holim

(i+←−j+)∈aT op
n

(
holim

∆
Xi·

F ((j ×∆p)+)

)

which proves (1). The proof of (2) and (3) is the same as in the unbased case.

2.7.3 Difficulties with Retractive Spaces over B

The above proof does not work when generalized to retractive spaces over B. We may define

UB,n as the subcategory of spaces under B consisting of spaces of the form

iqB, 0 ≤ i ≤ n

So a map iqB −→ j qB must act as the identity on B, but the points in i may map into

j or anywhere into B. Then we may define Uop
B,n

∫
∆, and then define PnF as a homotopy

limit over this category. The proof of (1), (2) and (3) is then straightforward. However, our

argument for (4) does not work because there aren’t enough maps in Uop
B,n

∫
∆ to make our

desired object initial.

Examining this shortcoming, it seems one must enrich Uop
B,n and use an enriched version

of the above theorems on homotopy limits. This is not entirely straightforward, since in

order to define PnF here, one must deal with the concept of a “diagram” that is indexed

not by a simplicially enriched category but by a simplicial object in Cat.

We will avoid doing this, and instead we will handle the case of F : Rop
B,fin −→ Sp in

section 2.8.2 using splitting theorems that only hold for functors into spectra.

2.8 Spectra and Cross Effects

From here onwards we will only consider functors from retractive spaces over B to spectra.

In this section the word spectra will refer to prespectra, though the arguments will also work
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for coordinate-free orthogonal spectra that have nondegenerately based levels [MMSS01].

Let fib denote homotopy fiber and cofib denote (reduced) homotopy cofiber. For spaces,

these have the usual definition

fib (X −→ Y ) = X ×Y Map∗(I, Y )

cofib (X −→ Y ) = (X ∧ I) ∪X Y

and for spectra these definitions are applied to each level separately.

We begin this section with some standard facts about spectra and splitting. Recall that

the natural map X∨Y −→ X×Y is an equivalence when X and Y are spectra. Comparison

of cofiber and fiber sequences then gives the following:

Proposition 2.8.1. Suppose that X, X ′, and Y are spectra with maps

X
i−→ Y

p−→ X ′

such that p ◦ i is an equivalence. Then there are natural equivalences of spectra

X ∨ fib (p)
∼−→ Y

∼−→ X × cofib (i)

which also yield an equivalence fib (p)
∼−→ cofib (i).

Corollary 2.8.2. If X is a retract of Y then Y ' X ∨ Z where

Z ' fib (Y −→ X) ' cofib (X −→ Y )

Corollary 2.8.3. If X is a well-based space then there is a natural equivalence

Σ∞(X+) ' Σ∞(X ∨ S0)

Corollary 2.8.4. If R(op)
B

F−→ Sp is any covariant or contravariant functor then there is

a splitting of functors

F (X) ' F (B)× F (X)

where F (X) can be defined as the fiber of F (X) −→ F (B) or the cofiber of F (B) −→ F (X).

This also holds if F is only defined on finite CW complexes.

We want a slight generalization of these results to n-dimensional cubes of retracts. First
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recall the higher-order versions of homotopy fiber and homotopy cofiber from [Goo91]. If F

is a n-cube of spectra then we can think of it as a map between two (n−1)-cubes. The total

homotopy fiber tfib (F ) is inductively defined as the homotopy fiber of the map between

the total homotopy fibers of these two (n − 1)-cubes. For a 0-cube consisting of the space

X, we define the total fiber to be X. Therefore the total fiber of a 1-cube X −→ Y is

fib (X −→ Y ).

The total homotopy cofiber tcofib (F ) has a similar inductive definition. Recall from

[Goo91] that a cube is Cartesian iff its total fiber is weakly contractible, and co-Cartesian

iff its total cofiber is weakly contractible. From this it quickly follows that a cube of spectra

is Cartesian iff it is co-Cartesian.

If F is a functor Rop
B −→ Sp, the nth cross effect crossnF (X1, . . . , Xn) is defined as

in [Goo03] to be the total fiber of the cube

S ⊂ n  F

(⋃
i∈S

Xi

)

whose maps come from inclusions of subsets of n. Here the big union denotes pushout along

B; one can think of it as a fiberwise wedge sum. Since F is contravariant, the initial vertex

of this cube corresponds to the full subset S = n. Note that there is a natural map

crossnF (X1, . . . , Xn)
in−→ F

⋃
i∈n

Xi


Similarly, the nth co-cross effect cocrossnF (X1, . . . , Xn) is defined as in [McC01] and

[Chi10] to be the total cofiber of the cube with the same vertices

S ⊂ n  F

(⋃
i∈S

Xi

)

where the maps come from the opposites of inclusions of subsets of n. Each inclusion S ⊆ T
results in a collapsing map ⋃

i∈S
Xi ←−

⋃
i∈T

Xi
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which becomes

F

(⋃
i∈S

Xi

)
−→ F

(⋃
i∈T

Xi

)
Note that the final vertex of this cube corresponds to S = n, so there is a natural map

F

⋃
i∈n

Xi

 pn−→ cocrossnF (X1, . . . , Xn)

It is known that the cross effect and co-cross effect are equivalent, when F is a functor from

spectra to spectra ( [Chi10], Lemma 2.2). A similar argument gives the following.

Proposition 2.8.5. If Rop
B

F−→ Sp is any contravariant functor, then the composite

crossnF (X1, . . . , Xn)
in−→ F

⋃
i∈n

Xi

 pn−→ cocrossnF (X1, . . . , Xn)

is an equivalence. Furthermore, F (
⋃
Xi) splits into a sum of cross-effects:

F

⋃
i∈n

Xi

 '
∏
S⊆n

cocross|S|F (Xs : s ∈ S)

'
∏
S⊆n

cross|S|F (Xs : s ∈ S)

'
∨
S⊆n

cross|S|F (Xs : s ∈ S)

The analogous result also holds for covariant functors, and for functors defined only on

finite CW complexes.

Remark. This does not assume that F is a homotopy functor.

Proof. The argument is by induction on n. We form the maps

∨
S(n

cross|S|F (Xs : s ∈ S) −→ F

⋃
i∈n

Xi

 −→ ∏
S(n

cocross|S|F (Xs : s ∈ S)

and observe that the composite is an equivalence. Therefore the middle contains either of

the outside terms as a summand. We use the alternate definitions of tfib and tcofib found
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in [Goo91] to identify the leftover summand with cross|S|F and cocross|S|F , which proves

that they are equivalent and that F splits into a sum of cross effects.

This generalizes the following well known result: (cf. [Bro69], [Coh80])

Corollary 2.8.6 (Binomial Theorem for Suspension Spectra). If X and Y are well-based

spaces then the obvious projection maps yield a splitting

Σ∞(X × Y )
∼−→ Σ∞(X ∧ Y )× Σ∞X × Σ∞Y

If X1, . . ., Xn are well-based spaces then we get a more general splitting

Σ∞
n∏
i=1

Xi
∼−→

∏
∅6=S⊂n

Σ∞
∧
i∈S

Xi

and in particular if X is well-based then

Σ∞Xn '
n∨
i=1

(
n

i

)
Σ∞X∧i

Remark. The corollary also follows easily if we start with

Σ∞(X+) ' Σ∞(X ∨ S0)

From there the proof is suggested by the facts

(x+ 1)(y + 1)− 1 = xy + x+ y

(x+ 1)n − 1 =

n∑
i=1

(
n

i

)
xi

We are now in a position to prove the existence of PnF for functors from retractive

spaces into spectra. First we’ll give a result that motivates the construction.

2.8.1 An Equivalence Between [Gop
n ,Sp] and [Mop

n ,Sp]

Let Gn = Tn be the category of based sets 0+, . . . , n+ and based maps between them.

Gn is the opposite category of Segal’s category Γ. As before, let Mn be the category of
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unbased sets 0 = ∅, 1, . . . , n and surjective maps between them. If I is a category then let

[I,Sp] denote the homotopy category of diagrams of spectra indexed by I.

The maps in Gn are generated by inclusions, collapses, rearrangements, and maps that

fold two points into one. From the last section, a diagram of spectra indexed by Gn will

split into a sum of cross effects. The first two classes of maps (inclusions and collapses) will

simply include or collapse these summands. Therefore our diagram has redundancies. If we

throw out the redundancies, only the last two classes of maps (rearrangements and folds)

still carry interesting information. But these are exactly the maps that generate the smaller

category Mn. We have just given a heuristic argument for the following known result:

Proposition 2.8.7. There is an equivalence of homotopy categories

[Gn,Sp]
C−→ [Mn,Sp]

obtained by taking cross-effects

CF (i) = crossiF (1+, . . . , 1+)

Its inverse is obtained by taking sums

[Gn,Sp]
P←− [Mn,Sp]

PG(i+) =

i∨
j=0

(
i

j

)
G(j)

There is also an equivalence of homotopy categories

[Gop
n ,Sp] ' [Mop

n ,Sp]

obtained from co-cross effects and products

CF (i) = cocrossiF (1+, . . . , 1+)

PG(i+) =
i∏

j=0

(
i

j

)
G(j)

Remark. The author learned a version of this result from Greg Arone. A similar result
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for diagrams of abelian groups was done by Pirashvili [Pir00]. Helmstutler [Hel08] gives

a more sophisticated treatment that handles both abelian groups and spectra in the same

uniform way. He gives a Quillen equivalence between the two categories of diagrams with the

projective model structure. This is of course stronger than just an equivalence of homotopy

categories, but we may think of the above result as a very explicit description of the derived

functors. This perspective was essential in making the correct guess for PnF in section 2.3

above, and it motivates our proof of Thm. 2.8.8 below.

Proof. We define diagrams that extend the above constructions on objects. The essential

ingredient is to define maps between the various cubes that show up in the definition of

total homotopy fiber and cofiber found in [Goo91]. These maps of cubes Ii −→ Ij are all

generalized diagonal maps coming from maps of sets i ←− j. Then it is easy to define a

natural equivalence of diagrams CPG −→ G. On the other hand, Prop. 2.8.5 gives an

equivalence PCF (i+) −→ F (i+) for each object i+ ∈ Gn, but these equivalences do not

commute with the maps of Gn. Instead, we define an isomorphism PCF −→ F in the

homotopy category of diagrams. To do this, we choose for each arrow i+ −→ j
+

of Gn a

contractible space of maps

PCF (i+) −→ F (j
+

)

that agrees in a natural way with compositions, and such that on the identity arrows i+ = i+

we choose only equivalences

PCF (i+) −→ F (i+)

Our chosen spaces of maps PCF (i+) −→ F (j
+

) end up being products of cubes, the same

cubes that appear in the definition of total homotopy fiber above. This gives the desired

equivalence of homotopy categories.

The contravariant case is similar, but we will give one more detail here since it is needed

in the next section. Let F : Gop
n −→ Sp be a diagram. For each map i+ ←− j

+
in Gn, we

use the diagonal map Ii −→ Ij to define

∨
S⊂i

I
i−S
+ ∧ F (S+) −→

∨
T⊂j

I
j−T
+ ∧ F (T+)

taking the summand for S ⊂ i to the summand for f−1(S) ⊂ j. This passes to a well-defined

map on the co-cross effects of F , which gives the arrows of the diagram CF .
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2.8.2 PnF for Retractive Spaces over B into Spectra

Let us consider homotopy functors

Rop
B,fin

F−→ Sp

from finite retractive spaces into spectra. Our previous construction of PnF was roughly

the same as a mapping space of diagrams indexed by Uop
B,n, the spaces under B with at

most n points. When B 6= ∗, this approach calls for more technology because UB,n needs

to be enriched. However, the equivalence [Gop
n ,Sp] ' [Mop

n ,Sp] suggests that we could just

eliminate the inclusion and collapse maps in UB,n. This leads to the category Mn again,

which does not need to be enriched.

So we replace our diagrams

UB,n −→ Sp

iqB  Xi

iqB  F (iqB)

with the diagrams of co-cross effects

Mn −→ Sp

i X ∧ i

i cocrossiF (1qB, . . . , 1qB)

where ∧ is the external smash product from Def. 2.3.3. We are being sloppy about the

existence of maps into Bi, but this gives enough intuition to suggest that we try the following

construction on retractive simplicial sets X· over S·B:

EnF (X·) = holim
(i←−j)∈aMop

n

(
holim
∆
X ∧ i·

cocrossjF (∆p qB, . . . ,∆p qB)

)
' holim

Mop
n

∫
∆
X ∧ i·

cocrossiF (∆p qB, . . . ,∆p qB)

As before, the equivalence comes from Prop. 2.6.7. Here X ∧ i· is a simplicial set containing

(S·B)i as a retract, whose fiber over a simplex in (S·B)i is the smash product of the fibers



CHAPTER 2. A TOWER FROM GAUGE GROUPS TO STRING TOPOLOGY 65

in X·. The homotopy type of X ∧ i· is homotopy invariant in X· by the same argument as

Prop. 2.3.8 above. As before, we extend EnF to spaces by EnF (X) := EnF (S·X).

Each surjective map i ←− j induces a cofibration X ∧ i· −→ X ∧ j· . This determines a

functor ∆ : Mop
n −→ Cat by that sends i to the category ∆X ∧ i·

. The diagram

Mop
n

∫
∆X ∧ i

cocrossF−→ Sp

is then defined by

i, ∆[p] // X ∧ i·

��

 cocrossiF (∆p qB, . . . ,∆p qB)

��
j,

OO

∆[q] //

OO

X ∧ j·  cocrossjF (∆q qB, . . . ,∆q qB)

The map of co-cross effects is defined in the proof of Prop. 2.8.7 above. We can show that

EnF is n-excisive by proving properties (1), (2), and (3) from section 2.7. Property (1)

follows from the above equivalences, and property (3) is straightforward. We will do (2) in

detail.

As before, we can start with a pushout cube of simplicial sets, with initial vertex A ∈
sSetS·B. It’s indexed by a set S, so for each element s ∈ S, let Xs ∈ sSetS·B be a simplicial

set containing A (and also containing S·B as a retract). Then there is a pushout cube which

assigns each subset T ⊂ S to the simplicial set
⋃
t∈T Xt, which is shorthand for the pushout

of the Xt along A. We want to show that EnF takes this to a Cartesian cube; in other

words, the natural map

holim
∆[p]→(

⋃
S Xs)

∧ i
cocrossiF (∆p qB, . . . ,∆p qB)

−→ holim
(T(S)op

(
holim

∆[p]→(
⋃
T Xs)

∧ i
cocrossiF (∆p qB, . . . ,∆p qB)

)
is an equivalence. Using dual Thomason, we rewrite the right-hand side as

holim
(T,i,∆[p]→(

⋃
T Xs)

∧ i)
cocrossiF (∆p qB, . . . ,∆p qB)

where each object of the indexing category is a proper subset T ( S, integers p ≥ 0 and
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0 ≤ i ≤ n, and a map ∆[p]→ (
⋃
T Xs)

∧ i. A map between two objects looks like

T, i, ∆[p] // (
⋃
T Xs)

∧ i

��
(
⋃
T Xs)

∧ j

U,

subset

OO

j,

OO

∆[q] //

OO

(
⋃
U Xs)

∧ j

OO

As before, this category maps forward into Mop
n

∫
∆(

⋃
S Xs)

∧ i , in which a map between two

objects looks like

i, ∆[p] // (
⋃
S Xs)

∧ i

��
j,

OO

∆[q] //

OO

(
⋃
S Xs)

∧ j

This functor α forgets the data of T and includes (
⋃
T Xs)

∧ i into (
⋃
S Xs)

∧ i. The natural

map of homotopy limits defined above is again induced by a pullback of diagrams along α,

so we just have to show that α is homotopy initial. Given an object ∆[q]
ϕ−→ (

⋃
S Xs)

∧ j

in the target category, the overcategory (α ↓ ϕ) has as its objects the factorizations of ϕ

∆[q] −→ ∆[p] −→ (
⋃
T

Xs)
∧ i −→ (

⋃
S

Xs)
∧ j

where T ( S must be a proper subset of S.

Let us give a terminal object for this overcategory. Either the map out of ∆q hits the

basepoint section, in which case we take T = ∅, or it misses the basepoint section, in which

case it gives a j-tuple of simplices in
⋃
S Xs, each of which lands inside one of the sets Xs

in the pushout. Therefore there is a smallest subset T ⊂ S such that ∆[q]
ϕ−→ (

⋃
S Xs)

∧ j

lands inside (
⋃
T Xs)

∧ j , and since j ≤ n < |S|, this subset is proper. This gives a terminal

object for the overcategory (α ↓ ϕ), so it’s contractible, which finishes (2).

We might now expect that F −→ EnF is an equivalence on Rop
B,n. This turns out to be

false, but Corollary 2.8.4 suggests the following fix. Define a new functor

PnF (X) = EnF (X)× F (0B)
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Note that PnF (X) is n-excisive because it is a homotopy limit of n-excisive functors.

Now let X = j qB. Then X ∧ i ∼= (j)iqB. We can partition ∆X ∧ i into two categories,

one in which the simplex lands in the basepoint section and another in which the simplex

misses the basepoint section. This leads to a partition of Mop
n

∫
∆ into three categories,

one in which there are no simplices, one in which the simplices land in B, and one in which

the simplices miss B. The homotopy limit of the first two is EnF (0B), which contains

the homotopy limit of the first F (0B). The homotopy limit of the last category is therefore

EnF (jqB). This last category contains a homotopy initial subcategory of objects ∆[0]×i ↪→
j, with i 6= 0 and i ↪→ j an order-preserving inclusion. Therefore

EnF (j qB) ' holim
06=i↪→j

cocrossiF (1qB, . . . , 1qB)

But the only surjective maps between subsets of j that respect the inclusion into j are

identity maps. So this homotopy limit is an ordinary product:

EnF (j qB) '
∏
∅6=i⊂j

cocrossiF (1qB, . . . , 1qB)

PnF (j qB) '
∏
i⊂j

cocrossiF (1qB, . . . , 1qB)

Using our splitting result (Prop. 2.8.5), this shows that F (j q B) −→ PnF (j q B) is an

equivalence. This finishes the proof that PnF exists for F from retractive spaces over B

into spectra:

Theorem 2.8.8. If F : Rop
B,fin −→ Sp is a homotopy functor, then there is a universal

n-excisive approximation PnF , and F −→ PnF is an equivalence on spaces with at most n

points.



Chapter 3

Coassembly and duality in THH

In this chapter we study the topological Hochschild homology (THH) of ring spectra

and spectral categories that are associated to contravariant forms of algebraic K-theory

of spaces. The simplest example is THH(DX+), where DX+ is the functional dual of

the unbased CW complex X. In this case we show that the known equivalence of spectra

(cf. [Cam14], [AF])

D(THH(DX+)) ' Σ∞+ LX ' THH(Σ∞+ ΩX)

can be extended to an equivalence of cyclotomic spectra. In the process of setting this

result up we review cyclic spaces and spectra, orthogonal G-spectra and fixed points, and

the cyclic bar construction. We also prove along the way a rigidity result for the geometric

fixed points ΦGX which appears to be new.

Next we demonstrate a splitting on THH(DX+) when X is a reduced suspension, and

use this splitting to recover the stable splitting of the free loop space

Σ∞LΣX '
∞∨
n=1

Σ∞S1
+ ∧Cn X∧n

found in [Coh87]. We analyze the case of DS1
+, calculating TC and demonstrating that the

coassembly map

K(DS1) −→ Map(S1,K(S))

is not split surjective; however K(DS1) 6' ∀(S1) and so this does not completely count out

68
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the possibility of a “dual” A-theory Novikov conjecture.

Finally we move to the case X = BG when G is a finite group, and study the THH

functor associated to ∀(BG). We demonstrate that the composite of a certain assembly

map with coassembly results in a transfer map. This has the surprising corollary that when

G is a finite p-group the coassembly map

∀(BG) −→ F (BG+,∀(∗))

is split surjective after p-completion, as a map of coarse S1-spectra.
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3.1 Cyclic spaces and cocyclic spaces

A cyclic set is a simplicial set with extra structure, which allows the geometric realization

to carry a natural S1-action [Con83]. One may use the analogous concepts of cyclic spaces

and cyclic spectra to efficiently build some rather sophisticated spaces and spectra with

S1-actions. In this section we will review the theory of cyclic sets, and extend the existing

theory to cocyclic spaces and (co)cyclic orthogonal spectra. This is all standard material

from [DHK85], [Jon87], [BHM93], and [Mad95] or a straightforward generalization thereof,

but we make an effort to be definite and explicit in areas where our later proofs require it.

3.1.1 The category Λ and the natural circle action.

To begin, recall the category ∆ and the notion of geometric realization:

Definition 3.1.1. ∆ is a category with one object [n] = {0, 1, . . . , n} for each n ≥ 0. The

morphisms ∆([m], [n]) are the functions f : [m]→ [n] which preserve the total ordering.

The category ∆ is generated by the coface maps

di : [n− 1] −→ [n], 0 ≤ i ≤ n

di(j) =

 j if j < i

j + 1 if j ≥ i

•0
•1
...
•i− 1
•i
...
•n− 1

• 0
• 1
...
• i− 1
• i
• i+ 1
...
• n

//
//

//

,,

,,

Figure 3.1: The coface map di.

and codegeneracy maps

si : [n+ 1] −→ [n], 0 ≤ i ≤ n
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si(j) =

 j if j ≤ i

j − 1 if j > i

•0
•1
...
•i
•i+ 1
...
•n+ 1

• 0
• 1
...
• i
...
• n

//
//

//22

22

Figure 3.2: The codegeneracy map si.

Definition 3.1.2. A simplicial object of C is a contravariant functor X• : ∆op −→ C.

We are particularly interested in the case where C is either based spaces or orthogonal

spectra. We will use the fact that any simplicial object X• is a coequalizer of representable

ones: ∨
m,n

∆(•, [m])+ ∧∆([m], [n])+ ∧Xn ⇒
∨
n

∆(•, [n])+ ∧Xn → X•

Because of this, a left adjoint like geometric realization is determined by what it does to

the simplicial based set ∆[n]+ = ∆(•, [n])+. As usual, we let ∆n be the convex hull of the

standard basis vectors in Rn+1, which has coordinates

∆n =
{
t ∈ Rn+1 :

∑
ti = 1, ti ≥ 0 ∀i

}
Then ∆([m], [n]) takes each function f : [m] → [n] to the unique linear map ∆m −→ ∆n

given by f on the vertices. Then geometric realization is the unique left adjoint which takes

∆[n]+ to ∆n
+:

Definition 3.1.3. The geometric realization of a simplicial based space X• : ∆op −→ Top∗

is the coequalizer of

∐
m,n

∆m ×∆([m], [n])×Xn ⇒
∐
n

∆n ×Xn
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or, equivalently, the coequalizer of

∨
m,n

∆m
+ ∧∆([m], [n])+ ∧Xn ⇒

∨
n

∆n
+ ∧Xn

The geometric realization of simplicial orthogonal spectra is given by the same construction

applied to each spectrum level.

Now we review Connes’ cyclic category Λ, which contains ∆ as a wide subcategory

[Con83]. This means that Λ has the same objects, one object [n] for each natural number

n ≥ 0. The morphisms can be described in several equivalent ways:

• A map [m] → [n] in Λ is an equivalence class of increasing functions f : Z −→ Z
satisfying

f(a+m+ 1) = f(a) + n+ 1

subject to the relation f ∼ f + n + 1. Each map in ∆ determines such a function f

on the subset {0, . . . ,m} which may then be extended in a periodic way.

• A map [m]→ [n] in Λ is an equivalence class of increasing degree 1 maps S1 −→ S1

sending the subgroup Z/(m + 1) into the subgroup Z/(n + 1), up to any homotopy

preserving this condition. In particular, the images of the points in Z/(m+ 1) cannot

move during the homotopy. This is the original definition by Connes [Con83].

• Let [n] denote the free category on the arrows

• n− 1

•
2

•1

•
0

•
n

{{hh

PP

;;

Figure 3.3: The circle category [n].

The geometric realization of [n] is homotopy equivalent to a circle. Then Λ([m], [n])

consists of those functors [m] → [n] which give a degree 1 map on the geometric

realizations.
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• Λ is the free category on ∆ and a cycle map τn : [n]→ [n] for each n ≥ 0, subject to

the additional relations found in [BHM93]:

τnd
i = di−1τn−1 1 ≤ i ≤ n

τnd
0 = dn

τns
i = si−1τn+1 1 ≤ i ≤ n

τns
0 = snτ2

n+1 1 ≤ i ≤ n

τn+1
n = id

In the above definitions τn corresponds to f : Z −→ Z sending x to x−1, or the circle

map S1 −→ S1 which multiplies by e−2πi/(n+1), or the functor

•
1

•
0

•
n

· · · · · ·

•
1

•
0

•
n

· · · · · ·

oo oo

oo oo�� ��

Figure 3.4: The cycle map τn.

• Λ is the free category on ∆ and an extra degeneracy map sn+1 : [n+ 1]→ [n] for each

n ≥ 0, subject to the additional relations found in [DHK85]:

sisn+1 = snsi 0 ≤ i ≤ n

sn+1di = disn 1 ≤ i ≤ n

(sn+1d0)n+1 = id

In the above definitions sn+1 corresponds to the function f : Z −→ Z which is the

identity on {0, . . . , n+ 1} and is extended periodically. It also corresponds to functor

[n+1]→ [n] which preserves the arrow i→ i+1 for all 0 ≤ i ≤ n but sends the arrow

n+ 1→ 0 to id0:



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 74

•
1

•
0

•
n+ 1

•
n

· · · · · ·

•
1

•
0

•
n

· · · · · ·

oo oo oo

oo oo�� �� �� ��

Figure 3.5: The extra degeneracy map sn+1.

The operations sn+1 and τn determine each other:

τ−1
n = sn+1d0

sn+1 = s0τ−1
n

Definition 3.1.4. The cyclic category Λ is the category defined in any of the above ways.

It is clear that each morphism f ∈ Λ([m], [n]) gives a well-defined map of sets Z/(m+

1) −→ Z/(n + 1). This rule respects composition (i.e. it defines a functor Λ −→ Set).

Conversely, each map of sets Z/(m + 1) −→ Z/(n + 1) comes from at most one such f ,

unless this map of sets is constant, in which case there are n+ 1 choices for f .

Definition 3.1.5. A cyclic based space is a functor X• : Λop −→ Top∗. The geometric

realization |X•| is defined by restricting X• to ∆op and taking the geometric realization of

the resulting simplicial space.

The geometric realization of a cyclic space has extra structure which we now examine

following [DHK85].

Let Λ[n] = Λ(−, [n]) denote the contravariant functor on Λ represented by the object

[n]. Then Λ[n] is a cyclic set, called the standard cyclic n-simplex. It has one k-simplex for

every point in the set Λ([k], [n]). Partition Λ([k], [n]) into two subsets

Λ([k], [n]) = ∆([k], [n]) ∪∆([k], [n])c

The first subset ∆([k], [n]) contains all functors in the first figure below which restrict to a

functor pictured in the second figure below.

These are k-simplices in ∆n in the usual sense, and they are classified as (k + 1)-tuples

of increasing integers

(i0, . . . , ik) 0 ≤ ij ≤ n ij ≤ ij+1
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•1

•
0

•
k

{{hh

PP

99

−→ •1

•
0

•
n

{{hh

PP

99

Figure 3.6: A map [k]Λ −→ [n]Λ.

•1

•
0

•
k

{{

PP

99

−→ •1

•
0

•
n

{{

PP

99

Figure 3.7: A map [k]∆ −→ [n]∆.

Each face map deletes one integer from the set, and each degeneracy map duplicates one in-

teger in the set. (This is the simplicial structure so we are not allowing the extra degeneracy

here.)

Each element of the complement ∆([k], [n])c is some functor f : [k] → [n] which sends

some unique arrow j → j+ 1 with 0 ≤ j and j+ 1 ≤ k to a composition of arrows including

n → 0. These functors are classified by two ascending sets of integers in {0, . . . , n}, one

for the image of 0 −→ . . . −→ j and one of the image of j + 1 −→ . . . −→ k, and the last

integer from the second set cannot be greater than the first integer of the first set. We may

rewrite this as a (k + 1)-tuple of ordered pairs

((0, i0), (0, i1), . . . , (0, ij), (1, ij+1), . . . , (1, ik)) ia ∈ {0, . . . , n}

subject to the ordering condition

ij+1 ≤ ij+2 ≤ . . . ≤ ik ≤ i0 ≤ i1 ≤ . . . ≤ ij

As before, each face map deletes an ordered pair from this set and each degeneracy maps

duplicates one pair. It is possible for a face map to bring us back over to the first set

∆([k], [n]), by deleting the last pair of the form (0,−) or the last pair of the form (1,−).

At this point it is natural start thinking about the simplicial complex Pn on the totally
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ordered set

{(0, 0), (0, 1), . . . , (0, n), (1, 0), (1, 1), . . . , (1, n)}

which has a k-simplex for any (k + 1)-tuple chosen from this set and satisfying the same

ordering condition as before. Restricting to tuples of the form (0,−) gives a subcomplex

P 0
n isomorphic to ∆[n] = ∆(−, [n]). Restricting to tuples of the form (1,−) gives a second

subcomplex P 1
n isomorphic to ∆[n]. The remaining simplices correspond with those in

∆(−, [n])c ⊂ Λ(−, [n]), so if we identify P 0
n ∼ P 1

n we recover the simplicial set Λ[n].

We provide below some pictures of Pn to build geometric intuition.

n Pn ∆[1]×∆[n]

0 •(0, 0) • (1, 0)// •(0, 0) • (1, 0)//

1 •(0, 0) • (1, 0)

•(0, 1) • (1, 1)

�� ��

//

//

;;

•(0, 0) • (1, 0)

•(0, 1) • (1, 1)

�� ��

//

//

##

2 •(0, 0) • (1, 0)

•(0, 1) • (1, 1)

•(0, 2) • (1, 2)

GG
��

��

GG

��
��

//

//

//

**
::

55
•(0, 0) • (1, 0)

•(0, 1) • (1, 1)

•(0, 2) • (1, 2)

GG

��
��

GG

��
��

//

//

//

33

''
++

Figure 3.8: Sketch of Pn for n = 0, 1, and 2.

There is an evident bijection between the vertices of Pn and the vertices of the simplicial

prism [0, 1]×∆n. This map of vertices extends by linear interpolation to a continuous map

of topological spaces

g : |Pn| −→ [0, 1]×∆n

The above pictures suggest that g is a homeomorphism. This is easily proven by flipping

the interval [0, 1] and comparing the resulting CW complex to the product |∆[1] × ∆[n]|.
Once this is established, we identify subcomplexes together to get a homeomorphism

|Λ[n]| ∼= |Pn|/(|P 0
n | ∼ |P 1

n |)
∼= [0, 1]×∆n/((0×∆n) ∼ (1×∆n))

∼= S1 ×∆n
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We define an S1-action on |Λ[n]| by acting on the first coordinate of S1 ×∆n:

θ · (φ, u0, . . . , un) = (θ + φ, u0, . . . , un)

The maps in Λ give natural maps between these standard cyclic simplices which are all

S1-equivariant. The trickiest one to check is τn, whose action on |Λ[n]| ∼= S1 ×∆n is given

by the formula

τn(θ, u0, u1, . . . , un−1, un) = (θ − u0, u1, u2, . . . , un, u0)

which is clearly S1-equivariant. Since geometric realization commutes with colimits, every

cyclic based space X• has geometric realization given by the coequalizer

∨
m,n

|Λ[n]|+ ∧Λ([n], [m])+ ∧Xm ⇒
∨
n

|Λ[n]|+ ∧Xn → |X•|

Since the S1-action on |Λ[n]| commutes with the action of Λ, it gives a well-defined natural

S1-action on |X•|:

Theorem 3.1.6. The geometric realization |X•| of a cyclic based space X carries a natural

based S1-action.

For the purposes of our calculation, we need a different homeomorphism

|Λ[n]| ∼= S1 ×∆n

By abuse of notation let g denote our original homeomorphism. Then compose g with the

S1-equivariant map

f : S1 ×∆n −→ S1 ×∆n

f(θ, u0, . . . , un) =

(
θ +

0u0 + 1u1 + 2u2 + . . .+ nun
n+ 1

, u0, . . . , un

)
=

(
θ − (n+ 1)u0 + nu1 + . . .+ un

n+ 1
, u0, . . . , un

)
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The following diagram commutes

|Λ[n]| g

∼=
//

τn

��

S1 ×∆n f

∼=
//

(θ−u0,u1,u2,...,un,u0)

��

S1 ×∆n

(θ− 1
n+1

,u1,u2,...,un,u0)

��
|Λ[n]| g

∼=
// S1 ×∆n f

∼=
// S1 ×∆n

and so under the homeomorphism given by f ◦ g, the cycle map τn acts by cycling the

vertices of ∆n and decreasing the circle coordinate θ by 1
n+1 . We provide a brief sketch to

give intuition for f ◦ g.

n Pn f(|Pn|)
0 •(0, 0) • (1, 0)// •(0, 0) • (1, 0)//

1 •(0, 0) • (1, 0)

•(0, 1) • (1, 1)

�� ��

//

//

;;

•(0, 0) • (1, 0)

•(0, 1) • (1, 1)

�� ��

//

//

DD

2 •(0, 0) • (1, 0)

•(0, 1) • (1, 1)

•(0, 2) • (1, 2)

GG
��

''

GG
��
''

//

//

//

)) 99

33 •(0, 0) • (1, 0)

•(0, 1) • (1, 1)

•(0, 2) • (1, 2)

??
��

++

??
��

++
//

//

//

'' ;;

77

Figure 3.9: Sketch of |Λ[n]| under different coordinate systems.

3.1.2 Skeleta and latching objects.

Recall that when X• is a simplicial space, the nth skeleton SknX• is obtained by restricting

X• to the subcategory of ∆op on the objects 0, . . . , n and then taking a left Kan extension

back. This may be re-expressed as the coequalizer

∨
k,`≤n

∆(•, [k])+ ∧∆([k], [`])+ ∧X` ⇒
∨
k≤n

∆(•, [k])+ ∧Xk → SknX•

and so the realization of the skeleton is the coequalizer

∨
k,`≤n

∆k
+ ∧∆([k], [`])+ ∧X` ⇒

∨
k≤n

∆k
+ ∧Xk → |SknX•|
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Clearly |SknX•| is covered by the two spaces
∨
k≤n−1 ∆k

+ ∧Xk and ∆n
+ ∧Xn. This leads to

a standard pushout square

LnX ×∆n ∪LnX×∂∆n Xn × ∂∆n //

��

Xn ×∆n

��
|Skn−1X•| // |SknX•|

(3.1)

where LnX is the nth latching object LnX ⊂ Xn, defined as the subspace consisting of all

points lying in the image of some degeneracy map

si : Xn−1 −→ Xn, 0 ≤ i ≤ n− 1

The simplicial space X• is said to be Reedy cofibrant if each LnX −→ Xn is a cofibration

in an appropriate sense. To be precise:

Definition 3.1.7. X• is Reedy q-cofibrant if each LnX −→ Xn is a cofibration in the

Quillen model structure on based spaces. X• is Reedy h-cofibrant if each LnX −→ Xn is a

classical cofibration, i.e. a map satisfying the HEP in the unbased sense.

Of course every Reedy q-cofibrant space is Reedy h-cofibrant. The standard result is

then

Theorem 3.1.8. For either notion of “cofibration,” if X• is Reedy cofibrant then each

|Skn−1X•| −→ |SknX•| is a cofibration and therefore |X•| is cofibrant. Moreover if X•, Y•

are Reedy cofibrant then any levelwise weak equivalence X•
∼−→ Y• induces an equivalence on

all skeleta |SknX•|
∼−→ |SknY•| and therefore an equivalence on realizations |X•|

∼−→ |Y•|.

The proof of this theorem relies on an induction using the pushout square for each

1 ≤ k ≤ n− 1

sk

(⋃k−1
i=0 si(Xn−2)

)
//

��

⋃k−1
i=0 si(Xn−1)

��

sk(Xn−1) //
⋃k
i=0 si(Xn−1)

and the usual pushout and pushout-product properties that cofibrations typically satisfy.

If one wants to use based h-cofibrations then one must also assume that all the spaces are

well-based.
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It is not hard to give a version of this theorem for orthogonal spectra. There is a

standard compactly-generated model structure which provides the q-cofibrations, and the

h-cofibrations are defined as maps having the obvious HEP with respect to the notion of

homotopy given by X ∧ I+. Then one can show

Theorem 3.1.9. For either notion of “cofibration,” if X• is a Reedy cofibrant simplicial

orthogonal spectrum then each |Skn−1X•| −→ |SknX•| is a cofibration and therefore |X•|
is cofibrant. Moreover if X•, Y• are Reedy cofibrant then any levelwise stable equivalence

X•
∼−→ Y• induces an equivalence on all skeleta |SknX•|

∼−→ |SknY•| and therefore an

equivalence on realizations |X•|
∼−→ |Y•|.

Proof. Easy adaptation of the space-level proof for q-cofibrations. For h-cofibrations this

is a little surprising since we do not assume any of the spectra involved are well-based.

The hardest piece of the proof is the statement that if f : K −→ L is an h-cofibration of

unbased spaces and g : A −→ X is an h-cofibration of orthogonal spectra then the pushout-

product f�g is an h-cofibration. This follows from the formal pairing result of Schwan̈zl

and Vogt quoted in ( [MS06], Thm. 4.3.2(i)), together with the fact that h-cofibrations of

unbased spaces are “strong,” but that comes from Strøm’s result quoted in ( [MS06], Thm

4.4.4(ii)).

By analogy with this, and following [BM11a], when X• is a cyclic space we define the nth

cyclic skeleton Skcyc
n X by restricting X• to the subcategory of Λop on the objects 0, . . . , n

and then taking a left Kan extension back. This may be re-expressed as the coequalizer

∨
k,`≤n

Λ(•, [k])+ ∧Λ([k], [`])+ ∧X` ⇒
∨
k≤n

Λ(•, [k])+ ∧Xk → Skcyc
n X•

and so the realization of the skeleton is the coequalizer

∨
k,`≤n

Λk+ ∧Λ([k], [`])+ ∧X` ⇒
∨
k≤n

Λk+ ∧Xk → |Skcyc
n X•|

As a matter of convention, we define the (−1)st cyclic skeleton as the equalizer of the

degeneracy and extra degeneracy maps:

Skcyc
−1X → X0 ⇒ X1
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In the simplicial case above the (−1)st skeleton was simply the initial object, which is ∗ in

the based case.

Next, define the nth cyclic latching object Lcyc
n X ⊂ Xn to be the subspace consisting of

all points lying in the image of some degeneracy map

si : Xn−1 −→ Xn, 0 ≤ i ≤ n

The 0th latching object is also taken to be Skcyc
−1X ⊂ X0 rather than being empty. The

only difference between LnX and Lcyc
n X is that the extra degeneracy is included in Lcyc

n X;

equivalently Lcyc
n X is the closure of LnX under the action of the cycle map tn of order n+1.

Now we give the analogue of the standard pushout square (3.1):

Proposition 3.1.10. For each k ≥ 0 there is a natural pushout square

Lcyc
k X ×Ck+1

Λk ∪LkX×∂Λk Xk ×Ck+1
∂Λk //

��

Xk ×Ck+1
Λk

��
|Skcyc

k−1X•| // |Skcyc
k X•|

(3.2)

for unbased cyclic spaces X•, and the obvious variant with smash products for based cyclic

spaces X•.

Proof. The square is clearly defined and natural, and the top horizontal map is the inclusion

of a subspace. We treat the case k = 0 separately, where the square becomes

(Lcyc
0 X × S1)q ∅ //

��

X0 × S1

��
Lcyc

0 X // |Skcyc
0 X•|

which is easily checked to be a pushout. For k ≥ 1, it suffices to check that it is pushout

when X• = Λ(•, [n]) is the standard cyclic n-simplex, because then we can take a colimit of

such things to get general cyclic spaces X•. Now when X• = Λ(•, [n]) and k ≥ 1 the square
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may be rewritten

Lcyc
k Λ[n]×Ck+1

Λk q (Λk[n]− Lcyc
k Λ[n])×Ck+1

∂Λk //

��

Λ[n]×Ck+1
Λk

��
|Skcyc

k−1Λ[n]| // |Skcyc
k Λ[n]|

The top map is a disjoint union of some isomorphisms and some nontrivial inclusions, so

we can strike out the isomorphisms without changing whether the square is pushout:

(Λk[n]− Lcyc
k Λ[n])×Ck+1

∂Λk //

��

(Λk[n]− Lcyc
k Λ[n])×Ck+1

Λk

��
|Skcyc

k−1Λ[n]| // |Skcyc
k Λ[n]|

The complement of the latching object Lcyc
k Λ[n] consists of maps in Λ([k], [n]) for which

the k + 1 points 0, . . . , k go to distinct points in 0, . . . , n. The Ck+1-action on these maps

is free and each orbit has a unique representative that comes from ∆([k], [n]), so we can

again simplify the square to

(∆k[n]− Lk∆[n])× ∂Λk //

��

(∆k[n]− Lk∆[n])× Λk

��
|Skcyc

k−1Λ[n]| // |Skcyc
k Λ[n]|

Now one may identify this square as the standard simplicial pushout square for ∆[n], mul-

tiplied by the identity map on S1. Alternatively, one can enumerate the cells of |Skcyc
k Λ[n]|

missing from |Skcyc
k−1Λ[n]| and check that the above map precisely attaches those cells. So

the square a pushout and the proof is complete.

From here we could discuss different notions of being Reedy cofibrant in a cyclic setting,

but we choose to avoid setting up a general theory that we will not use. In practice, it

suffices to use subdivision as in the next section to control the homotopy type of |X•|.
However we will be interested in dualizing |X•| and so we wish to give conditions which

guarantee that |X•| is a cofibrant S1-space.

To be definite about the meaning of “cofibrant” we use the following model structure

on G-spaces.
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Theorem 3.1.11. If G is a compact Lie group, there is a fine or genuine model structure

on the category of based G-spaces and based equivariant maps in which

• the cofibrations are the retracts of the relative G-cell complexes

• the weak equivalences are the maps X −→ Y for which each XH −→ Y H is a weak

equivalence

• the fibrations are the maps X −→ Y for which each XH −→ Y H is a Serre fibration

This model structure is topological, proper, and monoidal. It is compactly

generated [MMSS01] by the sets of cofibrations and acyclic cofibrations

I = {(G/H × Sn−1)+ ↪→ (G/H ×Dn)+ : n ≥ 0, H ≤ G}

J = {(G/H ×Dn)+ ↪→ (G/H ×Dn × I)+ : n ≥ 0, H ≤ G}

We prove the following result as a warm-up to a spectrum-level result needed for our

dualization theory:

Proposition 3.1.12. If X• is a cyclic space and each cyclic latching map Lcyc
n X −→ Xn

is a cofibration of Cn+1-spaces then |X•| is a cofibrant S1-space.

Proof. It suffices to show that each map of cyclic skeleta

|Skcyc
n−1X| −→ |Skcyc

n X|

is an S1-cofibration. The (−1)-skeleton

Lcyc
0 X = Skcyc

−1X

is already assumed to be cofibrant, and it has trivial S1-action, so it is also S1-cofibrant.

For the induction we use the square from Prop. 3.1.10 above

Lcyc
n X ×Cn+1 Λn ∪LnX×∂Λn Xn ×Cn+1 ∂Λn //

��

Xn ×Cn+1 Λn

��
|Skcyc

n−1X•| // |Skcyc
n X•|
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It suffices to prove that the Cn+1-orbits of the pushout-product of the latching map

Lcyc
n X −→ X and the inclusion ∂Λn −→ Λn is an S1-cofibration. We know that the

latching map is a Cn+1-cofibration and the inclusion of cyclic simplices is a free

S1-cofibration. Since the pushout-product and orbits both commute with all colimits, it

suffices to show that the simpler pushout-product

[(Cn+1/Cr × Sk−1 −→ Cn+1/Cr ×Dk)+�(S1 × S`−1 −→ S1 ×D`)+]Cn+1

is an S1-cofibration. By associativity of the pushout-product one may rewrite this as

[(Cn+1/Cr × S1)+ ∧ (Sk+`−1 −→ Dk+`)+]Cn+1

which simplifies to

(S1/Cr)+ ∧ (Sk+`−1 −→ Dk+`)+

and this is one of the generating S1-cofibrations.

3.1.3 Fixed points and subdivision.

Now we analyze fixed points |X•|Cr under the cyclic subgroup of order r, Cr ≤ S1. Of

course, these fixed points will always have an S1/Cr-action, which we often regard as an

S1-action by pulling back along the obvious isomorphism of groups

ρr : S1 ∼=−→ S1/Cr

The previous section suggests that when X• is appropriately cofibrant the Cr-fixed

points are built only by the cells coming from simplicial level (rk − 1) for k ≥ 1. In fact,

this is true without any cofibrancy assumptions. As a motivating special case, the reader

is invited to prove

Proposition 3.1.13. If r - n then |Λ[n−1]|+∧CnXn−1 has trivial Cr-fixed points. Otherwise

n = rk and there is a homeomorphism

|Λ[k − 1]|+ ∧Ck (Xn−1)Cr
∼=−→ (|Λ[n− 1]|+ ∧Cn Xn−1)Cr
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which in g-coordinates is given by the formula

(θ, u0, . . . , uk−1;x) 7→ (θ,
1

r
u0, . . . ,

1

r
uk−1,

1

r
u0, . . . ,

1

r
uk−1, . . . ;x)

The above suggests that the fixed points of |X•| should be the realization of some other

cyclic space, and we spend the rest of the section making that precise. Following [BHM93]

we define an “edgewise” subdivision functor that interacts well with the cyclic structure:

Definition 3.1.14. The r-fold edgewise subdivision functor a map of categories ∆
sdr−→ ∆

which takes [k − 1] to [rk − 1]. Each order-preserving map [m− 1] −→ [n− 1] is repeated

r times to give a map [rm − 1] −→ [rn − 1]. Given a simplicial space X, we let the r-fold

edgewise subdivision sdrX denote the simplicial space obtained by composing with sdr.

Proposition 3.1.15 ( [BHM93], Lem 1.1). There is a natural diagonal map Dr of geometric

realizations

|sdrX•|
Dr−→ |X•|

which sends each (k − 1)-simplex in Xrk−1 to the corresponding (rk − 1)-simplex in Xrk−1

by the diagonal

(u0, . . . , uk−1) 7→
(

1

r
u0, . . . ,

1

r
uk−1,

1

r
u0, . . . ,

1

r
uk−1, . . .

)
Moreover, Dr is always a homeomorphism.

Now the subdivision of a cyclic space is no longer cyclic, but it has an action by some

new category Λop
r :

Definition 3.1.16. The r-cyclic category Λr is the subcategory of Λ on the objects of the

form [rk − 1], k ≥ 1, generated by all maps in the image of sdr : ∆ −→ ∆ in addition to

the cycle maps (cf. [BHM93] Def 1.5). When working in Λr we relabel the object [rk − 1]

as [k − 1].

The r-cyclic category Λr contains ∆ as a subcategory in an obvious way, so any r-cyclic

object is a simplicial object with extra structure. We have now defined a commuting square

of injective functors

∆
sdr //

��

∆

��
Λr

sdr // Λ
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Corollary 3.1.17. If X• is a cyclic object then its r-fold subdivision is naturally an r-cyclic

object.

The r-cyclic category Λr has a simpler equivalent description: Λr([k − 1], [n− 1]) con-

sists of all increasing functions f : Z −→ Z such that f(x + k) = f(x) + n, up to the

equivalence relation f ∼ f + rn. Repeating the above analysis, the standard n-simplex

Λr(−, [n]) has realization given by r copies of our Pn glued end-to-end in a circular fashion

so as to make a space homeomorphic to S1 × ∆n (cf. [Jon87]). This allows us to define

a S1 = R/Z action on each standard n-simplex. This circle action respects the structure

maps of Λr just as before; the coface and codegeneracy maps are easy and the cycle map

is now given by formula

τrn−1(θ, u0, u1, . . . , un−1) = (θ − 1

r
u0, u1, u2, . . . , un−1, u0)

We easily get a natural S1-action on the realization of any r-cyclic space Y•.

By the above formula, the action of Cr ≤ S1 on Λr[n− 1] is generated by τnrn−1. When

we pass to the geometric realization, applying τnrn−1 ∧ id to Λr[n− 1]+ ∧ Yn−1 has the same

effect as applying id∧ tnrn−1 to Λr[n− 1]+ ∧Yn−1, but this map makes sense even if we only

remember the simplicial structure on Y•. Therefore the Cr action on |Y•| comes from the

simplicial map

tnrn−1 : Yn−1 −→ Yn−1

In summary:

Theorem 3.1.18. The realization of any r-cyclic space Y• carries a natural S1-action for

which the action of Cr ≤ S1 is the realization of a simplicial map.

It is also straightforward but tedious to check that

Proposition 3.1.19. For any cyclic space X•, we regard sdrX• as r-cyclic and define a

circle action on its realization as above. Then the diagonal homeomorphism

|sdrX•|
DCrr−→ |X•|

is S1-equivariant.

Now that we know how to subdivide any cyclic space without changing the realization

or S1 action at all, we are free to analyze the fixed points. It’s not hard to check that τnrn−1
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commutes with all maps in Λr, so the levelwise Cr-fixed points of a Λop
r -space Y• is another

Λop
r -space Y Cr

• . The cycle maps trn−1 at level n− 1 of Y Cr
• now have order n, so the action

of each map of Λr factors through the quotient functor

Pr : Λr([m− 1], [n− 1]) −→ Λ([m− 1], [n− 1])

which takes a function f : Z −→ Z up to f ∼ f + rn and mods out by the stronger

equivalence relation f ∼ f + n.

Corollary 3.1.20. If Y• is an r-cyclic space then Y Cr
• is a cyclic space in a canonical way.

The quotient functor Pr does nothing to the subcategory ∆:

∆

��

∆

��
Λr

Pr // Λ

So if X• is a cyclic space, there is a canonical isomorphism between the underlying simplicial

spaces of X• and PrX• := X• ◦ Pr. However upon realizations, this isomorphism is not

equivariant. Instead, we have

Lemma 3.1.21. If X• is a cyclic space, then on |PrX•| the subgroup Cr ≤ S1 acts trivially.

The canonical isomorphism

|X•| ∼= |PrX•|

becomes equivariant if we pull back one of the S1-actions along the isomorphism of groups

ρr : S1
∼=−→ S1/Cr:

|X•| ∼= ρ∗r |PrX•|

Corollary 3.1.22. If Y• is an r-cyclic space then when Y Cr
• is regarded as an r-cyclic space

there is a canonical S1-equivariant homeomorphism

|Y Cr
• | ∼= |Y•|Cr

and when Y Cr
• is regarded as a cyclic space there is a canonical S1-equivariant homeomor-

phism

|Y Cr
• | ∼= ρ∗r |Y•|Cr



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 88

Assembling a few of these results gives a useful result for describing Cr-fixed points of

|X•| as the realization of another cyclic space:

Corollary 3.1.23. If X• is a cyclic space then sdrX
Cr
• may be regarded as a cyclic space,

and the homeomorphisms

|sdrXCr
• | ∼= ρ∗r |Pr(sdrXCr

• )| ∼= ρ∗r(|sdrX•|Cr)
DCrr−→ ρ∗r(|X•|Cr)

are all S1-equivariant.

Finally we remark that subdivision can be iterated, giving a commuting triangle of

S1-equivariant homeomorphisms

|sdrsX•|

Dr
��

Drs

$$
|sdsX•|

Ds // |X•|

The homeomorphisms of the above proposition do nothing to the simplicial structure, other

than the final application of the diagonal map, so it follows quickly that

Proposition 3.1.24. The homeomorphisms of the above proposition make this triangle

commute:

|(sdrsX•)Crs |
∼=
��

∼=

((
ρ∗r |(sdsX•)Cs |Cr

∼= // ρ∗rs|X•|Crs

3.1.4 Cocyclic spaces.

The previous section dualizes easily to cocyclic spaces. We recall the basic definitions first.

Definition 3.1.25. A cosimplicial object of C is a covariant functor X• : ∆ −→ C.

Any cosimplicial space X• is canonically expressed as an equalizer

X• →
∏
n

Map(∆n
• , X

n)⇒
∏
m,n

Map(∆m
• ×∆(m,n), Xn)
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So a right adjoint out of cocyclic spaces is determined by what it does to the cosimplicial

space Map(∆n
• , X

n). The totalization is the unique right adjoint which takes Map(∆n
• , A)

to Map(∆n, A):

Definition 3.1.26. The totalization Tot(X•) of a cosimplicial based space is the equalizer

of ∏
n

Map(∆n, Xn)⇒
∏
m,n

Map(∆m ×∆(m,n), Xn)

The totalization of a cosimplicial orthogonal spectrum is given by the same construction

applied to each spectrum level.

If X• is not just cosimplicial, but cocyclic, then it may be expressed as an equalizer in

cocyclic spaces

X• →
∏
n

Map(Λ[n]•, X
n)⇒

∏
m,n

Map(Λ[m]• ×Λ(m,n), Xn)

and therefore the totalization is an equalizer

Tot(X•)→
∏
n

Map(|Λ[n]|, Xn)⇒
∏
m,n

Map(|Λ[m]| ×Λ(m,n), Xn)

The mapping spaces Map(|Λ[n]|, Xn) all have a natural S1-action in which θ ∈ S1 sends f

to f ◦ θ−1. The maps of the above equalizer are duals of maps that we already know to be

S1-equivariant, so they are equivariant as well, proving

Theorem 3.1.27. If X• is a cocyclic space then Tot(X•) has a natural S1-action. If

X• = Map(E•, X) for a cyclic space E• and space X then the canonical homeomorphism

Tot(X•) ∼= Map(|E•|, X)

is S1-equivariant.

A useful example to keep in mind is E• = S1
• . Then X• = Map(S1

• , X) is usual cosimpli-

cial model for the free loop space LX, but in fact this is a cocyclic space and its totalization

gives the usual circle action on LX.

Now we move on to subdivision. A cosimplicial or cocyclic space X• may be composed

with sdr to give a cosimplicial or r-cocyclic space sdrX
•. The dual diagonal is a natural
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map defined the totalization of each cosimplicial space as a map of equalizer systems

Tot(X•)
Dr //

��

Tot(sdrX
•)

��∏
k≥1 Map(∆k−1, Xk−1) //

�� ��

∏
k≥1 Map(∆k−1, Xrk−1)

�� ��∏
k,`≥1 Map(∆k−1 ×∆(k − 1, `− 1), X`−1) //

∏
k≥1 Map(∆k−1 ×∆(k − 1, `− 1), Xr`−1)

The horizontal map takes the function ∆rk−1 −→ Xrk−1 at level rk − 1 and composes

with the diagonal ∆k−1 −→ ∆rk−1 that we defined in the section on cyclic spaces. When

X• = Map(∆[n]•, X) this cosimplicial diagonal map is easily seen to be Map(−, X) applied

to the simplicial diagonal map on ∆[n]•, which we already know is a homeomorphism, but

X• is an equalizer of such things and so

Proposition 3.1.28. When X• is a comsimplicial space there is a natural dual diagonal

map Dr of totalizations

Tot(X•)
Dr−→ Tot(sdrX

•)

which is a homeomorphism.

As before, if X• is a cocyclic object then its r-fold subdivision sdrX
• is naturally an r-

cocyclic object. If Y • is any r-cocyclic object then it is an equalizer of duals of the standard

r-cyclic simplices

Y • →
∏
n

Map(Λr[n]•, Y
n)⇒

∏
m,n

Map(Λr[m]• ×Λr(m,n), Y n)

and therefore its totalization is an equalizer

Tot(Y •)→
∏
n

Map(|Λr[n]|, Y n)⇒
∏
m,n

Map(|Λr[m]| ×Λr(m,n), Y n)

So the natural S1-action we defined on |Λr[n]| passes to a natural S1-action on Tot(Y •).

As before, tnrn−1 at level n − 1 defines a cosimplicial endomorphism of Y • which on each

standard piece Map(Λr[k]•, Y
k) is the action of the generator of Cr ≤ S1. In summary:

Theorem 3.1.29. The realization of any r-cocyclic space Y • carries a natural S1-action
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for which the action of Cr ≤ S1 is the realization of a cosimplicial map.

Now the dual of the diagonal map is the dual of an equivariant map on each standard

space Map(Λr[k]•, Y
k), so

Proposition 3.1.30. For any cocyclic space X•, the diagonal homeomorphism

Tot(X•)
Dr−→ Tot(sdrX

•)

is S1-equivariant.

The remaining results go through with almost no modification to the proof:

Corollary 3.1.31. If Y • is an r-cocyclic space then (Y •)Cr is a cocyclic space in a canonical

way.

Lemma 3.1.32. If X• is a cocyclic space, then on Tot(PrX
•) the subgroup Cr ≤ S1 acts

trivially. The canonical isomorphism

Tot(X•) ∼= Tot(PrX
•)

becomes equivariant if we pull back one of the S1-actions along the isomorphism of groups

ρr : S1
∼=−→ S1/Cr:

Tot(X•) ∼= ρ∗rTot(PrX
•)

Corollary 3.1.33. If Y • is an r-cocyclic space then when (Y •)Cr is regarded as an r-cocyclic

space there is a canonical S1-equivariant homeomorphism

Tot((Y •)Cr) ∼= Tot(Y •)Cr

and when (Y •)Cr is regarded as a cocyclic space there is a canonical S1-equivariant homeo-

morphism

Tot((Y •)Cr) ∼= ρ∗rTot(Y •)Cr

Corollary 3.1.34. If X• is a cocyclic space then (sdrX
•)Cr may be regarded as a cocyclic

space, and the homeomorphisms

Tot((sdrX
•)Cr) ∼= ρ∗rTot(sdrX

•)Cr
DCrr←− ρ∗rTot(X•)Cr

are all S1-equivariant.



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 92

So, as before, the Cr-fixed points of the totalization of X• are themselves the totalization

of some other cocyclic space (sdrX
•)Cr .
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3.2 Orthogonal G-spectra and equivariant smash powers

We will need equivariant spectra for two purposes in this work: first, to understand the

cyclotomic structure on THH itself, and second, to understand the equivariant structures

related to ∀(BG). In this section we review enough of the theory to handle cyclic and

cocyclic spectra. We also review equivariant smash powers, and give a new rigidity result

for the functors that relate smash powers and geometric fixed points. In the next section

we will use this result to give a satisfactory account of how cyclic and cocyclic orthogonal

spectra behave, and later on it will be essential for checking some of the technical lemmas

for our construction of D(THH(R)).

3.2.1 Basic definitions, model structures, and fixed points.

Recall from [MM02] and [HHR09] the most fundamental definitions:

Definition 3.2.1. If G is a fixed compact Lie group, an orthogonal G-spectrum is a sequence

of based spaces {Xn}∞n=0 equipped with

• A continuous action of G×O(n) on Xn for each n

• A G-equivariant structure map ΣXn −→ Xn+1 for each n

such that the composite

Sp ∧Xn −→ . . . −→ S1 ∧X(p−1)+n −→ Xp+n

is O(p)×O(n)-equivariant.

Definition 3.2.2. Let U be a complete G-universe. The category JG has objects the finite-

dimensional G-representations V ⊂ U , and the mapping spaces JG(V,W ) are the Thom

spaces O(V,W )W−V consisting of linear isometric inclusions V −→W with choices of point

in the orthogonal complement W − V . The group G acts on O(V,W )W−V by conjugating

the map and acting on the point in W − V .

Definition 3.2.3. A JG-space is an equivariant functor JG into based G-spaces and

nonequivariant maps. That is, each V goes to a based space X(V ) and for each pair V,W

the map

JG(V,W ) −→ Map∗(X(V ), X(W ))
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is equivariant.

Proposition 3.2.4. Every JG-space gives an orthogonal G-spectrum by restricting to V =

Rn; denote this functor IR∞U . Conversely, given an orthogonal G-spectrum X one may

define a JG-space by the rule

X(V ) = Xn ∧O(n) O(Rn, V )+, n = dimV

Denote this functor IUR∞. Then IUR∞ and IR∞U are inverse equivalences of categories.

Definition 3.2.5. Given a G-representation V and based G-space A, the free spectrum

FVA is the JG-space

(FVA)(W ) := JG(V,W ) ∧A

For fixed V , the functor A 7→ FVA is the left adjoint to the functor that evaluates a JG-space

at V .

Proposition 3.2.6. There is a standard stable model structure on the category of orthogonal

G-spectra in which

• The cofibrations are the retracts of the cell complex spectra built out of the cells

{FV ((G/H × Sk−1)+) ↪→ FV ((G/H ×Dk)+) : k ≥ 0, H ≤ G,V ⊂ U}

• The weak equivalences are the maps inducing isomorphisms on the stable homotopy

groups

πHk (X) =


colim
V⊂U

πk(MapH∗ (SV , X(V ))), k ≥ 0

colim
V⊂U

π0(MapH∗ (SV−R
|k|
, X(V ))), k < 0,Rk ⊂ V

• The fibrations the maps for which each level fixed point map X(V )H −→ Y (V )H is a

Serre fibration and each square

X(V )H //

��

(ΩWX(V +W ))H

��
Y (V )H // (ΩWY (V +W ))H
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is a homotopy pullback square.

This model structure is topological, proper, and monoidal. It is compactly

generated [MMSS01] by the maps

I = {FV ((G/H × Sk−1)+) ↪→ FV ((G/H ×Dk)+) : k ≥ 0, H ≤ G,V ⊂ U}

J = {FV ((G/H ×Dk)+) ↪→ FV ((G/H ×Dk × I)+) : k ≥ 0, H ≤ G,V ⊂ U}

∪{(FV ((G/H × Sk−1)+) ↪→ FV ((G/H ×Dk)+))�(FW (SW ) ↪→ Cyl(FWS
W −→ F0S

0)))}

where � denotes the pushout-product.

Now we move on to different notions of fixed points. Recall that if X is a G-space and

H ≤ G is a subgroup, then the fixed point subspace XH has a natural action by only the

normalizer NH ≤ G. Of course H acts trivially and so we are left with a natural action by

the Weyl group

WH = NH/H ∼= AutG(G/H)

When X is a G-spectrum there are two natural notions of H-fixed points, each of which

gives a WH-spectrum:

Definition 3.2.7. For a JG-space X and a subgroup H ≤ G, the categorical fixed points

XH are the JWH -space which on each H-fixed G-representation V ⊂ UH ⊂ U is just the

fixed points X(V )H . More simply, if X is an orthogonal G-spectrum then XH is obtained

by taking H-fixed points levelwise.

Proposition 3.2.8. The categorical fixed points are a Quillen right adjoint from G-spectra

to WH-spectra. Their right-derived functor is called the genuine fixed points.

Definition 3.2.9. If X is a JG-space and H ≤ G then the geometric fixed points ΦHX are

defined as the coequalizer

∨
V,W

FWHS0 ∧ JHG (V,W ) ∧X(V )H ⇒
∨
V

FV HS
0 ∧X(V )H −→ ΦHX

These are naturally JWH -spaces on the complete WH-universe UH .

Theorem 3.2.10. The geometric fixed points ΦH satisfy the following technical properties:
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1. There is a natural isomorphism of WH-spectra

ΦHFVA ∼= FV HA
H

2. ΦH commutes with all coproducts, pushouts along a levelwise closed inclusion, and

filtered colimits along levelwise closed inclusions.

3. ΦH preserves all cofibrations, acyclic cofibrations, and weak equivalences between cofi-

brant objects.

4. If H ≤ K ≤ G then ΦH commutes with the change-of-groups from G down to K.

5. There is a canonical commutation map

ΦG(X ∧ Y )
α−→ ΦGX ∧ ΦGY

which is an isomorphism when X or Y is cofibrant (cf. [BM13]).

Though it does not seem to appear in the literature, the iterated fixed points map

of [BM13] easily generalizes:

Proposition 3.2.11. If H ≤ K ≤ NH ≤ G then there is a natural iterated fixed points

map

ΦKX
it−→ ΦK/HΦHX

which is an isomorphism when X = FVA, and therefore an isomorphism on all cofibrant

spectra. When H and K are normal this is a map of G/K-spectra.

3.2.2 The Hill-Hopkins-Ravenel norm isomorphism.

When X is an orthogonal spectrum, the smash product X∧n has an action of Cn ∼= Z/n
which rotates the factors. This makes X∧n into an orthogonal Cn-spectrum. It is natural

to guess that the geometric fixed points of this Cn-action should be X itself, and in fact

there is nautral diagonal map

X
∆−→ ΦCnX∧n

When X is cofibrant, this map is an isomorphism.
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More generally, if G is a finite group, H ≤ G, and X is an orthogonal H-spectrum, we

can define a smash product of copies of X indexed by G

NG
HX :=

∧
giH∈G/H

(giH)+ ∧H X ∼=
|G/H|∧

X

This construction is the multiplicative norm defined by Hill, Hopkins, and Ravenel. This

can be given a reasonably obvious G-action, but on closer inspection the action is dependent

on some fixed choice of representatives giH for each left coset of H ( [Boh14], [HHR09]).

Unfortunately, changing our choice of representatives changes this action, but up to nat-

ural isomorphism it turns out to be the same. We therefore implicitly assume that such

representatives have been chosen. The general form of the above observation about X∧n is

then

Theorem 3.2.12 (Hill, Hopkins, Ravenel). There is a natural diagonal of WH-spectra

ΦHX
∆−→ ΦGNG

HX

When X is cofibrant, ∆ is an isomorphism.

This appears in [ABG+14], Thm 2.33 and earlier in the proof of [HHR09], Prop B.96.

We will reproduce the proof here since it is surprisingly short.

Proof. It is conceptually useful to start by checking that on the space level, the indexed

smash product of A over G/H has fixed points AH :

AH
∼=−→
(
NG
HA
)G ∼=

|G/H|∧
A

G

The map from left to right is the diagonal:

a ∈ AH 7→ (a, . . . , a)

Now for the spectrum-level argument. We start by taking the coequalizer presentation



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 98

of the orthogonal H-spectrum X

∨
V,W

FWS
0 ∧ JH(V,W ) ∧X(V )⇒

∨
V

FV S
0 ∧X(V ) −→ X

and taking ΦGNG
H of everything in sight. Since ΦGNG

H commutes with wedges and smashes

up to isomorphism, this gives

∨
V,W

ΦGNG
HFWS

0 ∧ (NG
HJH(V,W ))G ∧ (NG

HX(V ))G ⇒
∨
V

ΦGNG
HFV S

0 ∧ (NG
HX(V ))G

−→ ΦGNG
HX

which simplifies to

∨
V,W

ΦGNG
HFWS

0 ∧ JHH(V,W ) ∧X(V )H ⇒
∨
V

ΦGNG
HFV S

0 ∧X(V )H −→ ΦGNG
HX

As a diagram, this is no longer guaranteed to be a coequalizer system, but it still commutes.

We can simplify using the string of isomorphisms

ΦGNG
HFVA

∼= ΦGFIndGHV
(NG

HA)

∼= F(IndGHV )G(NG
HA)G

∼= FV HA
H

for any based H-space A and H-represenation V . This gives

∨
V,W

FWHS0 ∧ JHH(V,W ) ∧X(V )H ⇒
∨
V

FV HS
0 ∧X(V )H −→ ΦGNG

HX

and the coequalizer of the first two terms is exactly ΦHX. The universal property of the

coequalizer then gives us a map

ΦHX −→ ΦGNG
HX

and we take this as the definition of the diagonal map.
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Now consider the special case when X = FVA. The inclusion of the term

FV HS
0 ∧AH

into the above coequalizer system maps forward isomorphically to ΦHX, and so we can

evaluate the diagonal map by just examining this term. But back at the top of our proof,

the inclusion of the term

ΦGNG
HFV S

0 ∧ (NG
HA)G

also maps forward isomorphically to ΦGNG
HX. Therefore up to isomorphism, the diagonal

map becomes the string of maps we used to connect FV HS
0∧AH to ΦGNG

HFV S
0∧(NG

HA)G,

but these maps were all isomorphisms. Therefore the diagonal is an isomorphism when

X = FVA. Since both sides preserve coproducts, pushouts along closed inclusions, and

sequential colimits along closed inclusions, we get by induction that the diagonal is an

isomorphism for all cofibrant X.

Remark. In [ABG+14], Def 2.17. the diagonal map is extended to a more general setting,

which includes that if H ≤ K ≤ G are normal subgroups a natural map

NG/KΦHX
∆−→ ΦKNG

HX

We will use this more general diagonal map when we check compatibility between our

cyclotomic maps below.

3.2.3 A rigidity theorem for geometric fixed points

In this section, we give a result which helps simplify our work on the cyclic bar construction

and its dual. It should be of independent interest because it assures us that all of the

natural transformations that we know relating geometric fixed points and smash powers of

orthogonal G-spectra are canonical in a very strong sense. To be clear, though, this is a

point-set statement about orthogonal spectra and not a statement about any derived space

of natural transformations.

To state it, let GSpO denote the category of orthogonal G-spectra, and let Free be the

full subcategory on the free spectra FVA, for all G-representations V and based G-spaces
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A. Let

ΦG ◦ ∧ :
k∏

Free −→ SpO

denote the composite of k-fold smash product followed by geometric fixed points, with

k ≥ 1.

Proposition 3.2.13. The only natural endomorphisms of ΦG ◦∧ are zero and the identity.

Proof. Consider a natural transformation T : ΦG◦∧ −→ ΦG◦∧. On (F0S
0, F0S

0, . . . , F0S
0),

T gives a map of spectra

F0S
0 −→ F0S

0

which is determined by at level 0 a choice of point in S0. So there are only two such maps,

the identity and zero.

Assume that T is the identity on this object. Then consider T on

(FV1S
0, FV2S

0, . . . , FVkS
0):

FV G1 +V G2 +...+V Gk
S0 −→ FV G1 +V G2 +...+V Gk

S0

Let mi := dimV G
i and fix an isomorphism between Rmi and V G

i . Then this map is deter-

mined by what it does at level m1 + . . .+mk:

O(m1 + . . .+mk)+ −→ O(m1 + . . .+mk)+

which in turn is determined by the image of the identity point, which is some element

P ∈ O(m1 + . . . + mk)+. Now for any point (t1, . . . , tk) ∈ Sm1 ∧ . . . ∧ Smk we can choose

maps of spectra FViS
0 −→ F0S

0 which at level Vi send the nontrivial point of S0 to the

point ti ∈ Smi ∼= (SVi)G. Since T is a natural transformation, this square commutes for all

choices of (t1, . . . , tk):

O(m1 + . . .+mk)+
·P //

ev(t1,...,tk)

��

O(m1 + . . .+mk)+

ev(t1,...,tk)

��
Sm1+...+mk id // Sm1+...+mk

Therefore P = id and T acts as the identity on (FV1S
0, FV2S

0, . . . , FVkS
0).

Finally let A1, . . . , Ak be a sequence of G-spaces and consider T on (FV1A1, . . . , FVkAk).

Each collection of choices of point ai ∈ AGi gives a sequence of maps FViS
0 −→ FViAi, and
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applying T to this sequence of maps gives a commuting square

FV G1 +...+V Gk
S0 ∧ . . . ∧ S0 id //

F...(a1,...,ak)
��

FV G1 +...+V Gk
S0 ∧ . . . ∧ S0

F...(a1,...,ak)
��

FV G1 +...+V Gk
AG1 ∧ . . . ∧AGk

? // FV G1 +...+V Gk
AG1 ∧ . . . ∧AGk

From inspection of level m1 + . . .+mk, the bottom map must be the identity on the point

id∧ (a1, . . . , ak). But this is true for all (a1, . . . , ak) and so the bottom map is the identity.

Therefore T is the identity on (FV1A1, . . . , FVkAk), so it is the identity on every object in∏k Free.

For the second case, we assume T is zero on (F0S
0, . . . , F0S

0) and follow the same

steps as before, concluding that T is zero on (FV1S
0, . . . , FVkS

0) and then it is zero on

(FV1A1, . . . , FVkAk).

To derive corollaries, we say that a functor φ :
∏kGSpO −→ SpO is rigid if restricting

to the subcategory
∏k Free gives an injective map on natural transformations out of φ.

In other words, a natural transformation out of φ is determined by its behavior on the

subcategory Free. The above implies

Corollary 3.2.14. If φ1 and φ2 are functors
∏kGSpO −→ SpO which when restricted to

the subcategory
∏k Free are separately isomorphic to ΦG ◦ ∧, and φ1 is rigid, then there is

at most one nonzero natural transformation φ1 −→ φ2.

We next check

Proposition 3.2.15. ∧ ◦ (ΦG, . . . ,ΦG) is a rigid functor.

Proof. We will show that (X,Y ) ΦGX ∧ΦGY is a rigid functor. ΦGX ∧ΦGY is a smash

product of a double coequalizer and so may be written as a coequalizer of two maps into

∨
V,W

FV GS
0 ∧ FWGS0 ∧X(V )G ∧ Y (W )G

Therefore a map ΦGX ∧ΦGY −→ Z is determined by the image of each of these terms for

each V and W . For a fixed choice of V and W , we can replace X by FVX(V ) and Y by

FWY (W ). Then on the (V,W ) summand above, this replacement map is

FV GS
0 ∧ FWGS0 ∧ (O(V )+ ∧X(V ))G ∧ (O(W )+ ∧ Y (W ))G
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−→ FV GS
0 ∧ FWGS0 ∧X(V )G ∧ Y (W )G

This is a surjective map of spaces and so the map into Z is determined by the composites

ΦG(FVX(V )) ∧ ΦG(FWY (W )) −→ ΦGX ∧ ΦGY −→ Z

for all V and W . Therefore ΦGX∧ΦGY is rigid; the general case of a k-fold smash product is

an easy generalization of this argument. In particular X  ΦGX is also a rigid functor.

Remark. The author does not know at the moment whether ΦG ◦ ∧ is a rigid functor in

general. It is not trivally true because fixed points do not commute with coequalizers. The

issue is whether the fixed points of (X ∧Y )(V ) are covered by the fixed points of FV ′X(V ′)

and FWY (W ) for varying V ′ and W .

The above results give new rigidity statements for the maps relating geometric fixed

points and smash powers:

Theorem 3.2.16. Let X and Y denote arbitrary G-spectra. Then the commutation map

ΦGX ∧ ΦGY
α−→ ΦG(X ∧ Y )

is the only nonzero natural transformation from ΦGX ∧ ΦGY to ΦG(X ∧ Y ).

Remark. If X and Y are G-spectra and H ≤ G then there is more than one natural map

ΦHX ∧ ΦHY −→ ΦH(X ∧ Y )

because we could for instance post-compose αH with IUR∞g, g ∈ Z(G). However αH is the

only natural transformation that respects the forgetful functor to H-spectra; in other words

it is the one that is natural with respect to all the H-equivariant maps of spectra and not

just the G-equivariant ones. Similar considerations apply to the iterated fixed points map

below.

Theorem 3.2.17. Let X denote an arbitrary H-spectrum with H ≤ G. Then the Hill-

Hopkins-Ravenel diagonal map

ΦHX
∆−→ ΦGNG

HX

is the only such map that is both natural and nonzero.
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Theorem 3.2.18. If X is a G-spectrum and N ≤ G is a normal subgroup, then the iterated

fixed points map

ΦGX
it−→ ΦG/NΦNX

is characterized by the property that it is natural in X and nonzero.

We end with five more corollaries that will be particularly useful for the present work;

they served as the motivation for the above results.

Proposition 3.2.19. If X and Y are a G-spectra and N ≤ G is a normal subgroup, then

the following square commutes:

ΦGX ∧ ΦGY

it∧it

��

αG // ΦG(X ∧ Y )

it
��

ΦG/NΦNX ∧ ΦG/NΦNY
αG/N // ΦG/N (ΦNX ∧ ΦNY )

ΦG/NαN // ΦG/NΦN (X ∧ Y )

Proposition 3.2.20. If X is an ordinary spectrum and m,n ≥ 0 then the following square

commutes:

X
∆Cmn //

∆Cm

��

ΦCmnX∧mn

it
��

ΦCmX∧m
ΦCm (∆∗) // ΦCmn/CnΦCnX∧mn

Here ∆∗ is the generalized HHR diagonal

NCmn/CnX
∆∗−→ ΦCnNCmnX

found in [ABG+14], Def 2.17.

Proposition 3.2.21. If X is an ordinary spectrum and m,n ≥ 0 then the square of non-

equivariant spectra

X∧m
∆∗ // ΦCnX∧mn

∼=
��

X∧m
∆n // ΦCnX∧mn

commutes when ∼= is any natural isomorphism; for example one may pick an isomorphism

of Cn-sets

Cmn ∼= Cm × Cn
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and apply ΦCn to the resulting map

NCmnX
∼=−→ NCm×CnX

Proposition 3.2.22. If X is an G-spectrum and g ∈ Z(G), then multiplication by g on the

trivial representation levels passes to a map of JG-spaces

X
IUR∞g // X

which on fixed points

ΦGX
ΦGIUR∞g // ΦGX

is the identity map.

Proposition 3.2.23. If X and Y are orthogonal spectra, then the self-map of orthogonal

Cr-spectra

f : NCr(X ∧ Y ) ∼= X∧r ∧ Y ∧r −→ X∧r ∧ Y ∧r

which rotates only the Y factors but not the X factors fits into a commuting triangle (cf.

[ABG+14] Prop. 2.20)

ΦCr(X∧r ∧ Y ∧r)

ΦCrIUR∞f

��

X ∧ Y

∆
77

∆

''
ΦCr(X∧r ∧ Y ∧r)



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 105

3.3 Cyclic spectra, cocyclic spectra, and the cyclic bar con-

struction

Cyclic and cocyclic orthogonal spectra work by applying the space-level constructions to

each level separately. This gives orthogonal spectra with S1-actions whose näıve fixed points

behave exactly as in the space case. However this by itself is not very helpful, because we

want to build the cyclic bar construction for spectra, and the näıve fixed points of an

equivariant smash power are not well-behaved.

From the previous section we know that the geometric fixed points of a smash product

are relatively simple. Therefore we will focus our energy on the relationship between cyclic

and cocyclic structures, subdivision, and the geometric fixed points. This gives us the

results we need to define the cyclic bar construction for ring spectra and spectrally-enriched

categories. Finally we give sufficient conditions for the cyclic bar construction to produce

a cofibrant S1-spectrum, so that we may dualize it in the next section.

3.3.1 Cyclic spectra.

Let X• be a cyclic orthogonal spectrum. Then sdrX• is an r-cyclic orthogonal spectrum.

At each simplicial level, (sdrX)n−1 is an orthogonal spectrum with Cr-action generated by

the nth power of the cycle map tnrn−1. This commutes with all the face, degeneracy, and

cycle maps, making sdrX• an r-cyclic object in orthogonal Cr-spectra. Now induce up to a

JCr -space and define the geometric fixed points of each simplicial level:

∨
V,W

FWCrS
0 ∧JCrCr(V,W )∧ (sdrX(V ))Crn−1 ⇒

∨
V

FV CrS
0 ∧ (sdrX(V ))Crn−1 −→ ΦCr(sdrX)n−1

Since geometric fixed points is a functor, we conclude that ΦCrsdrX• is naturally an r-cyclic

orthogonal spectrum. By Prop 3.2.22 above, the nth power of the cycle map tnrn−1 acts

trivially on these geometric fixed points, establishing that ΦCrsdrX• is a cyclic spectrum.

Using PrΦ
CrsdrX• to denote ΦCrsdrX• as an r-cyclic spectrum, we have the equivariant

isomorphisms

|ΦCrsdrX•| ∼= ρ∗r |PrΦCrsdrX•| ∼= ρ∗rΦ
Cr |sdrX•| ∼= ρ∗rΦ

Cr |X•|
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where the middle map is the canonical commutation of ΦCr with geometric realization.

These are all just the maps of Cor 3.1.23 applied to the term FV CrS
0 ∧ X(V )Cr in the

coequalizer system for ΦCrX.

For that commutation to work it is necessary to think of our object as r-cyclic, because

without the ΦCr the cycle map certainly does not act trivially. In summary:

Proposition 3.3.1. If X• is a cyclic spectrum then ΦCrsdrX• is naturally a cyclic spectrum,

and there is a natural S1-equivariant isomorphism

|ΦCrsdrX•| ∼= ρ∗rΦ
Cr |X•|

It’s worth pointing out that Prop 3.2.22 is not obviously true here because when V is a

nontrivial representation, the nth power of the cycle map acts on the fixed points of level

V

[(sdrX)n−1(V )]Cr ∼= [(sdrX)n−1(Rm) ∧O(m) O(Rm, V )+]Cr

by acting only on the left-hand term (sdrX)n−1(Rm). But this is not the Cr-action, which

acts on both terms, and one can see that tnrn−1 does not in fact act trivially on the Cr-fixed

points at this level. So the fact that it acts trivially on the coequalizer ΦCr is indeed special.

To round out our ability to do homotopy theory, we will apply Thm 3.1.9 to check

when a map of cyclic spectra gives a nonequivariant equivalence on the realizations, and

use subdivision to check the fixed points. However we need to do a bit more work to make

Prop 3.1.12 work on the spectrum level:

Proposition 3.3.2. If X• is a cyclic spectrum and each cyclic latching map Lcyc
n X −→ Xn

is a cofibration of Cn+1-spectra then |X•| is a cofibrant S1-spectrum.

Proof. It suffices to show that each map of cyclic skeleta

|Skcyc
n−1X| −→ |Skcyc

n X|

is an S1-cofibration. The (−1)-skeleton

Lcyc
0 X = Skcyc

−1X

is already assumed to be cofibrant, and it has trivial S1-action, so it is also S1-cofibrant.
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For the induction we use the square from Prop. 3.1.10

Lcyc
n X ×Cn+1 Λn ∪LnX×∂Λn Xn ×Cn+1 ∂Λn //

��

Xn ×Cn+1 Λn

��
|Skcyc

n−1X•| // |Skcyc
n X•|

It suffices to prove that the Cn+1-orbits of the pushout-product of the latching map

Lcyc
n X −→ X and the inclusion ∂Λn −→ Λn is an S1-cofibration. We know that the

latching map is a Cn+1-cofibration of spectra and the inclusion of cyclic simplices is a free

S1-cofibration of spaces. Since the pushout-product and orbits both commute with all

colimits, it suffices to show that the simpler pushout-product

[(FV (Cn+1/Cr × Sk−1)+ −→ FV (Cn+1/Cr ×Dk)+)�(S1 × S`−1 −→ S1 ×D`)+]Cn+1

is an S1-cofibration of spectra when V is any Cr-representation. By associativity of the

pushout-product one may rewrite this as

[FV (Cn+1/Cr × S1)+ ∧ (Sk+`−1 −→ Dk+`)+]Cn+1

which simplifies to

[FV (Cn+1/Cr)+ ∧Cn+1 S
1
+] ∧ (Sk+`−1 −→ Dk+`)+

It suffices to show the left-hand term is cofibrant as an S1-spectrum, but it is obtained by

applying the left Quillen functor − ∧Cn+1 S
1
+ to the Cn+1-cofibrant object FV (Cn+1/Cr)+,

so it is cofibrant and the result is proved.

3.3.2 Cocyclic spectra.

Let X• be a cocyclic orthogonal spectrum. Then sdrX
• is an r-cocyclic orthogonal spec-

trum, and by the same argument as above, ΦCrsdrX
• is naturally a cocyclic orthogonal

spectrum. As before, we get the string of equivariant maps

Tot(ΦCrsdrX
•) ∼= ρ∗rTot(PrΦ

CrsdrX
•)←− ρ∗rΦCrTot(sdrX

•) ∼= ρ∗rΦ
CrTot(X•)
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The middle map is the canonical commutation of ΦCr with totalization, but as one might

expect it is not an isomorphism.

To be specific:

Proposition 3.3.3. There is an interchange map

ΦCrTot(Z•) −→ Tot(ΦCrZ•)

which defines a natural transformation between functors on cosimplicial spectra with Cr-

actions.

Proof. The interchange map is given canonically by universal properties, as seen by a long

diagram-chase on the shorthand diagram

TotΦCr //
∏
k ΦCr // //

∏
k,` ΦCr

ΦCrTot

99

∏
k

∨
V

OO

////
∏
k,`

∨
V

OO

∨
V Tot

OO

//
∨
V

∏
k

88

////
∨
V

∏
k,`

99

∏
k

∨
V,W

OOOO

∨
V,W Tot

OOOO

//
∨
V,W

∏
k

88

OOOO

If Z• −→ Z̃• is a map of cosimplicial spectra with a Cr-action, one checks these squares
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commute

∨
V S
−V ∧ Tot(Z•)(V )Cr //

��

∨
V S
−V ∧ Tot(Z̃•)(V )Cr

��∨
V S
−V ∧

∏
k F (∆k

+, Z
k)(V )Cr //

��

∨
V S
−V ∧

∏
k F (∆k

+, Z̃
k)(V )Cr

��∏
k F (∆k

+,
∨
V S
−V ∧ Zk(V )Cr) //

��

∏
k F (∆k

+,
∨
V S
−V ∧ Z̃k(V )Cr)

��∏
k F (∆k

+,Φ
CrZk) //

∏
k F (∆k

+,Φ
Cr Z̃k)

and then applies the above large diagram to see that the interchange is indeed a natural

transformation.

In summary we get a weaker form of the result from the previous section:

Proposition 3.3.4. If X• is a cocyclic spectrum then ΦCrsdrX
• is naturally a cocyclic

spectrum, and there is a natural S1-equivariant map

ρ∗rΦ
CrTot(X•) −→ Tot(ΦCrsdrX

•)

The following result is closely related to ( [CJ02], Thm 10), and we can use it to produce

a large list of examples of cocyclic spectra:

Proposition 3.3.5. If X• is a cosimplicial based space and E is an orthogonal spectrum

(or prespectrum, or based space), then the canonical interchange map

E ∧
∏
k

Map∗(∆
k
+, X

k) −→
∏
k

E ∧Map∗(∆
k
+, X

k) −→
∏
k

Map∗(∆
k
+, E ∧Xk)

induces a closed inclusion

E ∧ Tot(X•) ↪→ Tot(E ∧X•)

If X• satisfies the condition that for all k, the unique map γk : Xk −→ X0 has γ−1(∗) = {∗},
then the above map is a homeomorphism. In particular if X• is an unbased cosimplicial

space then the analogous map is a homeomorphism.
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Proof. It suffices to check this on each spectrum level so assume E is a based space. Smash-

ing commutes with equalizers ( [Str09], 5.3 ) and so we have a map of equalizer systems

E ∧ Tot(X•) //

��

Tot(E ∧X•)

��
E ∧

∏
k Map∗(∆

k
+, X

k) //

�� ��

∏
k Map∗(∆

k
+, E ∧Xk)

�� ��
E ∧

∏
k,`,∆(k,`) Map∗(∆

k
+, X

`) //
∏
k,`,∆(k,`) Map∗(∆

k
+, E ∧X`)

We check that the composite from the top-left going down and then right is a closed inclu-

sion. It lands in the image of Tot(E ∧X•) and so lifts to a closed inclusion

E ∧ Tot(X•) ↪→ Tot(E ∧X•)

Now we check that if X• satisfies our condition then this map is surjective. Each point in

the totalization gives maps Map(∆k
+, E ∧Xk), and the only morphism in ∆(k, 0) gives the

commuting square

∆k //

��

E ∧Xk

��
∆0 // E ∧X0

Now if our map ∆0 −→ E∧X0 hits the basepoint, then by our condition all the ∆k must go

to the basepoint. Otherwise the map ∆0 −→ E∧X0 picks out some unique point e ∈ E, and

every point in every ∆k must hit something of the form (e,−). Therefore each of our maps

factors through the closed inclusion S0 = {e, ∗} ↪→ E, giving a system of continuous maps

that agree with cofaces and codegeneracies; this is our desired preimage in E∧Tot(X•).

This implies that the interchange gives an isomorphism of spectra

Σ∞+ LX
∼= Tot(Σ∞+ X

•+1)

Note that this cosimplicial spectrum is not Reedy fibrant, though when X is finite and

simply-connected, a connectivity argument implies that Σ∞+ LX will be equivalent to the

derived totalization too.
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3.3.3 The cyclic bar construction.

Let R be an orthogonal ring spectrum. The cyclic bar construction on R is the cyclic

spectrum N cyc
• R with

N cyc
n R = R∧(n+1) = R∧n ∧R

We underline the last copy of R since in the simplicial structure it plays a special role. The

action of Λ is best visualized by taking the category [n] and labelling the arrows with copies

of R:

•

•

•

• •

R

RR

R

{{hh

PP

;;

Figure 3.10: The cyclic bar construction.

Each map [k] −→ [n] induces a map R∧(n+1) −→ R∧(k+1) as follows. For each arrow

i −→ i + 1, its image in [n] is some composition j −→ . . . −→ j + `, which corresponds to

` copies of R in R∧(n+1), which we smash together and multiply using the product on R,

giving the single copy of R in slot i in R∧(k+1). If there are no arrows then we simply insert

a copy of S along the identity map of R.

More generally, if C is a spectral category, which for us means a category enriched in

orthogonal spectra, then the cyclic nerve on C is defined as

N cyc
n C =

∨
c0,...,cn∈ob C

C(c0, c1) ∧C(c1, c2) ∧ . . . ∧C(cn−1, cn) ∧C(cn, c0)

One may think of these objects loosely as “functors” from [k] into C, where ordinary

products have been substituted by smash products, and this suggests the correct face,

degeneracy, and cycle maps. The face maps mutiply adjacent copies of C(ci, ci+1):

di : N cyc
n C −→ N cyc

n−1C, 0 ≤ i ≤ n



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 112

d0 : C(c0, c1) ∧ . . . ∧C(cn, c0) −→ . . . ∧C(cn, c1)

di : . . . ∧C(ci, ci+1) ∧C(ci+1, ci+2) ∧ . . . −→ . . . ∧C(ci, ci+2) ∧ . . .

dn : . . . ∧C(cn−1, cn) ∧C(cn, c0) −→ . . . ∧C(cn−1, c0)

The degeneracy maps and the extra degeneracy map both insert copes of S and include into

some C(ci, ci) along the identity map of spectra S −→ C(ci, ci):

si : N cyc
n C −→ N cyc

n+1C, 0 ≤ i ≤ n+ 1

s0 : S ∧C(c0, c1) ∧ . . . −→ . . .C(c0, c0) ∧C(c0, c1) ∧ . . .

si : . . . ∧ S ∧C(ci, ci+1) ∧ . . . −→ . . . ∧C(ci, ci) ∧C(ci, ci+1) ∧ . . .

sn : . . . ∧ S ∧C(cn, c0) −→ . . . ∧C(cn, cn) ∧C(cn, c0)

sn+1 : . . . ∧C(cn, c0) ∧ S −→ . . . ∧C(cn, c0) ∧C(c0, c0)

These are enough to determine the action of the cycle map tn = (d0sn+1)−1:

tn : C(c0, c1) ∧ . . . ∧C(cn, c0) −→ C(cn, c0) ∧C(c0, c1) ∧ . . . ∧C(cn−1, cn)

Since the cyclic nerve N cycC is a cyclic spectrum, its geometric realization is an S1-

spectrum. In this paper we will call this geometric realization the topological Hochschild

homology of C and denote it THH(C) for short.

Using relatively recent work on the norm functor, we can say a surprising amount about

the geometric fixed points of this construction:

Proposition 3.3.6. If C is a spectral category then there are natural maps of S1-spectra

for r ≥ 0

γr : THH(C) −→ ρ∗nΦCrTHH(C)

which are compatible in the following sense:

T
γmn //

γm

��

ρ∗mnΦCmnT

it
��

ρ∗mΦCmT
ρ∗mΦCmγn // ρ∗mΦCmρ∗nΦCnT

If every C(ci, cj) is a cofibrant orthogonal spectrum then every γr is an isomorphism.
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Proof. This is a straightforward extension of the result in [ABG+14] for ring spectra, but

we will take care to spell out the steps more explicitly. We use from the previous section

the isomorphism of S1-spectra

|ΦCrsdrN
cycC|

∼=−→ ρ∗rΦ
Cr |N cycC|

The r-cyclic spectrum sdrN
cycC is at level (n − 1) the wedge of smash products with rn

terms ∨
c0,...,crn−1∈ob C

C(c0, c1) ∧ . . . ∧C(crn−1, c0)

and the Cr-action is by tnrn−1, which rotates this rn-fold smash product by n slots.

Let V be a Cr representation. Restricting to spectrum level V of simplicial level (n−1),

we now have a big wedge indexed by rn-tuples of objects of C. The Cr-action on the

summands is complicated, but on the indices of those summands it is simple: the rn-tuple

of objects gets cycled by n slots. Therefore any Cr-fixed point must lie in a wedge summand

indexed by some collections of objects of the form

c0, c1, . . . , cn−1, c0, c1, . . . , cn−1, c0, c1, . . . , cn−1

that is, only n objects that are repeated r times. The inclusion of these summands into

the rest induces an isomorphism on ΦCr , because it induces a homeomorphism on the fixed

points of each spectrum level separately.

Once we have restricted to these summands, the Cr-action preserves the summands, so

we calculate ΦCr of each summand separately. Now we are calculating

ΦCr (C(c0, c1) ∧ . . . ∧C(cn−1, c0))∧r

and so we use the Hill-Hopkins-Ravenel norm diagonal

C(c0, c1) ∧ . . . ∧C(cn−1, c0)
∆−→ ΦCr (C(c0, c1) ∧ . . . ∧C(cn−1, c0))∧r

We want to show that these diagonal maps for each n ≥ 1 assemble into a map of cyclic

spectra

N cycC
∆−→ ΦCrsdrN

cycC
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(cf. [ABG+14], Thm 5.3) We need to check commutativity with the face, degeneracy, and

cycle maps. Most of the face and degeneracy maps easily follow because the diagonal is

natural. However we run into issues with d0 and trn−1. The r-fold smash (d0)∧r of d0 from

the cyclic structure is not the same map as d0 in the r-cyclic structure. However, they differ

by one or two applications of the map

f : (C(c0, c1) ∧ . . . ∧C(cn−1, c0))∧r −→ (C(c0, c1) ∧ . . . ∧C(cn−1, c0))∧r

which simply takes the factors C(cn−1, c0) and cycles them while leaving all the other terms

fixed. (Similarly for trn−1.) We have defined f on the trivial universe and it commutes with

the Cr-action so it passes to a well-defined map IUR∞f on a complete universe. It suffices to

show that f commutes with ∆, but we did that in Prop 3.2.23 above.

This proves that the diagonal norm map is a map of cyclic spectra, and we define γr to

be its geometric realization:

|N cycC| |∆r|−→ |ΦCrsdrN
cycC|

∼=−→ ρ∗rΦ
Cr |N cycC|

These are all S1-equivariant by Prop 3.3.1 above. When all the C(ci, ci+1) are cofibrant, γr

is a realization of isomorphisms at each level, so γr is an isomorphism.

Now we check compatibility, and for simplicity we forget the S1-equivariance. The

compatibility square may be expanded and subdivided

|N cycC| ∆mn //

∆m

��

|ΦCmnsdmnN
cycC|

it
��

Dmn
∼=

// ΦCmn |N cycC|

it
��

|ΦCmsdmN
cycC| ΦCm∆∗ //

Dm∼=
��

|ΦCmn/CnΦCnsdmnN
cycC|

Dm∼=
��

Dmn
∼=

// ΦCmn/CnΦCn |N cycC|

ΦCm |N cycC| ΦCm∆n // ΦCm |ΦCnsdnN
cycC| Dn

∼=
// ΦCmn/CnΦCn |N cycC|

The right-hand squares commute easily. Prop 3.2.20 tells us that the top-left square com-

mutes. For the bottom-left we pull of the ΦCm and forget the Cm-actions, leaving us with

the commuting square from Prop 3.2.21.

Blumberg and Mandell remark in ( [BM08], Sec 3) that this kind of cyclic bar con-

struction is often insufficient to give an S1-spectrum with the kind of cyclotomic structure
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described in the previous proposition. We advertise that the existence of this structure is

an exciting and newly-discovered feature of the cyclic bar construction in the category of

orthogonal spectra, and our treatment here is little more than an elaboration of the work

in [ABG+14].

Finally, in order to do homotopy theory, we need to know what sorts of maps of categories

C −→ D will be sent to weak equivalences under this functor, and we need conditions

guaranteeing that |N cycC| will be cofibrant. For both of these purposes we need to describe

the latching maps and cyclic latching maps. Let S denote the initial spectrally-enriched

category on the objects of C:

S(ci, cj) =

 S ci = cj

∗ ci 6= cj

Then the latching maps can be described concisely in terms of the canonical functor S −→
C:

Proposition 3.3.7. For every n ≥ 0 the latching map LnN
cycC −→ N cyc

n C is the wedge

of pushout-products

∨
c0,...,cn∈ob C

(S(c0, c1) −→ C(c0, c1))� . . .�(S(cn−1, cn) −→ C(cn−1, cn))�(∗ −→ C(cn, c0))

and the cyclic latching map Lcyc
n N cycC −→ N cyc

n C is the wedge of pushout-products

∨
c0,...,cn∈ob C

(S(c0, c1) −→ C(c0, c1))� . . .�(S(cn, c0) −→ C(cn, c0))

Proof. We induct using the usual pushout squares. Or, using the fact that the latching map

is a closed inclusion, we identify it as the correct subspace on each spectrum level.

Definition 3.3.8. C is cofibrant if every map S(ci, cj) −→ C(ci, cj) is a cofibration of

orthogonal spectra.

This is weaker than the notion of “cofibrant” one would need for a model structure; in

particular when C has one object it is just the condition that the inclusion of the unit is a

cofibration. Now we can give our homotopical results:
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Proposition 3.3.9. If C, D are cofibrant and C −→ D is a pointwise weak equivalence

which is the identity on objects, then it induces an F-equivalence of S1-spectra |N cycC| −→
|N cycD|.

Proof. A map of S1-spectra X −→ Y is an F-equivalence iff it induces equivalences on the

genuine fixed points (fX)Cn −→ (fY )Cn for all n ≥ 0. By the usual isotropy separation

argument this is equivalent to X −→ Y inducing equivalences on the geometric fixed points

ΦCn(cX) −→ ΦCn(cY ) for all n ≥ 0. By the above, the geometric fixed points are naturally

equivalent to the original spectrum. The proposition below assures us that these geometric

fixed points are derived. Therefore it suffices to show that |N cycC| −→ |N cycD| is an

ordinary stable equivalence of spectra.

On each simplicial level N cycC is a wedge of smashes of cofibrant spectra and so the

smash products are derived, so N cycC −→ N cycD is a levelwise weak equivalence. Therefore

we only need the simpicial objects to be “proper,” meaning the inclusion of the latching

object is an h-cofibration. But by Prop 3.3.7 and the fact that the pushout-product preserves

cofibrations, every latching map is a cofibration of orthogonal spectra, so it is certainly an

h-cofibration.

For the next section we will need more control over when the resulting S1-spectrum

|N cycC| is cofibrant, which we’ll provide here:

Proposition 3.3.10. If C is cofibrant then |N cycC| is a cofibrant S1-spectrum. Moreover

the inclusion of each cyclic skeleton into the next is a cofibration of S1-spectra.

Proof. By Prop 3.3.2 it suffices to show that the cyclic latching map from Prop 3.3.7

∨
c0,...,cn−1∈ob C

(S(c0, c1) −→ C(c0, c1))� . . .�(S(cn−1, c0) −→ C(cn−1, c0))

is a Cn-cofibration of spectra, and this is proven along the same lines as the argument that

iterated pushout-products of cells of orthogonal spectra yield cells of orthogonal G-spectra:

(FnS
k−1
+ −→ FnD

k
+)�G ∼= (FnρGS(kρG)+ −→ FnρGD(kρG)+)
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3.4 Mapping and dualizing cyclotomic spectra

In this section we use the technology developed thus far to prove that cyclotomic structures

can be dualized, and show that the equivalence of ordinary spectra

D(THH(D(X+))) ' THH(Σ∞+ ΩX) ' Σ∞+ LX

is actually an equivariant equivalence of cyclotomic spectra (when X is a finite simply-

connected CW complex).

3.4.1 A general framework for dualizing cyclotomic structures.

Recall that a cyclotomic spectrum is an orthogonal S1-spectrum T with compatible maps

of S1-spectra for all n ≥ 1

cn : ρ∗nΦCnT −→ T

for which the composite map

ρ∗nLΦCnT −→ ρ∗nΦCnT −→ T

is an F-equivalence of S1-spectra. To be more specific about the compatibility, we require

that for all m,n ≥ 1 the square

ρ∗mnΦCmnX
cmn //

it
��

X

ρ∗mΦCmρ∗nΦCnX
ρ∗mΦCmcn // ρ∗mΦCmX

cm

OO

commutes. The left vertical is the canonical iterated fixed points map described in [BM13],

Prop 2.4, and it is an isomorphism when X is cofibrant as an S1-spectrum.

A pre-cyclotomic spectrum has all the same structure except that the derived cn need

not be an equivalence.

In contrast to this, we give a more restrictive definition:
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Definition 3.4.1. A tight cyclotomic spectrum is a cofibrant S1-spectrum with isomor-

phisms γn : T
∼=−→ ρ∗nΦCnT of S1-spectra for all n ≥ 0 compatible in the following way:

T
γmn
∼=

//

γm∼=
��

ρ∗mnΦCmnT

it∼=
��

ρ∗mΦCmT
ρ∗mΦCmγn

∼=
// ρ∗mΦCmρ∗nΦCnT

Here “cofibrant” means in the usual stable model structure on orthogonal S1-spectra.

This includes the cofibrant spectra in the F-model structure too. In particular since T is

cofibrant, ρ∗nΦCnT is already derived. So a tight cyclotomic spectrum may be regarded as

a cyclotomic spectrum, by taking cn = γ−1
n and then forgetting that it is an isomorphism.

The previous section tells us

Proposition 3.4.2. If R is an orthogonal ring spectrum and S −→ R is a cofibration of

orthogonal spectra then THH(R) is naturally a tight cyclotomic spectrum. If C is a spectral

category, each C(ci, cj) is a cofibrant orthogonal spectrum, and each unit S −→ C(c, c) is a

cofibration of orthogonal spectra, then THH(C) is a tight cyclotomic spectrum.

The point of these definitions is to discuss dualization of cyclotomic structures. Our

first result is

Proposition 3.4.3. If T is a tight cyclotomic spectrum and T ′ is pre-cyclotomic then the

function spectrum F (T, T ′) has a natural pre-cyclotomic structure.

Corollary 3.4.4. If T is a tight cyclotomic spectrum then the functional dual DT = F (T, S)

is pre-cyclotomic.

Proof. We define the structure map cr as the composite

ρ∗rΦ
CrF (T, T ′)

α−→ F (ρ∗rΦ
CrT, ρ∗rΦ

CrT ′)
F (γr,cr)−→ F (T, T ′)

where α is the “restriction” map adjoint to

ρ∗rΦ
CrF (T, T ′) ∧ ρ∗rΦCrT

α−→ ρ∗rΦ
Cr(F (T, T ′) ∧ T ) −→ ρ∗rΦ

CrT ′

and α is the usual commutation of ΦCr with smash products. By the usual rules for

equivariant adjunctions, cr is automatically S1-equivariant.
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We verify that these maps are compatible. Clearly they are natural in T and T ′, so in

the diagram

ρ∗mnΦCmnF (T, T ′)
ρ //

it
��

F (ρ∗mnΦCmnT, ρ∗mnΦCmnT ′)
F (id,it) // F (ρ∗mnΦCmnT, ρ∗mΦCmρ∗nΦCnT ′)

OO
∼= F (it,id)

ρ∗mΦCmρ∗nΦCnF (T, T ′) // ρ∗mΦCmF (ρ∗nΦCnT, ρ∗nΦCnT ′) //

∼=
��

F (ρ∗mΦCmρ∗nΦCnT, ρ∗mΦCmρ∗nΦCnT ′)

∼=
��

ρ∗mΦCmF (T, ρ∗nΦCnT ′) //

��

F (ρ∗mΦCmT, ρ∗mΦCmρ∗nΦCnT ′)

��
ρ∗mΦCmF (T, T ′) // F (ρ∗mΦCmT, ρ∗mΦCmT ′)

��
F (T, ρ∗mΦCmT ′)

��
F (T, T ′)

the two small squares automatically commute. The left-most and right-most paths compose

to give the two maps we are trying to compare (the wrong-way map along the right edge is

an isomorphism because the iterated fixed points map is an isomorphism on the cofibrant

spectrum T ). So, we just need to show that the big rectangle at the top commutes. It is

adjoint to

ρ∗mnΦCmnF (T, T ′) ∧ ρ∗mnΦCmnT

it∧it
��

α // ρ∗mnΦCmn(F (T, T ′) ∧ T ) //

it
��

ρ∗mnΦCmnT ′

it
��

ρ∗mΦCmρ∗nΦCnF (T, T ′) ∧ ρ∗mΦCmρ∗nΦCnT
α◦α // ρ∗mΦCmρ∗nΦCn(F (T, T ′) ∧ T ) // ρ∗mΦCmρ∗nΦCnT ′

The right square is by naturality of the iterated fixed points map, and the left square is by

Prop 3.2.19.

Remark. The technical lemmas we have checked here are enough to ensure that the smash

product of two op-pre-cyclotomic spectra is op-pre-cyclotomic, and that there is a pairing

adjunction between op-pre-cyclotomic spectra and pre-cyclotomic spectra, but we will not

spell that out here.

Our main example of interest will be when T = |N cycC| is the cyclic nerve of a ring or
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category. In this case F (T, T ′) is clearly the totalization of the cocyclic S1-spectrum

Y k = F (N cyc
k C, T ′)

The S1 acts only on the T ′, and Λ acts by composing the map into T ′ with the action

of Λop on the cyclic bar construction. Therefore the totalization carries two commuting

S1-actions, so we restrict to the diagonal action to get the S1-action which extends to the

pre-cyclotomic structure defined above. The following result allows us to re-express that

pre-cyclotomic structure purely in terms of constructions on the totalization of Y •.

Proposition 3.4.5. The structure map on Tot(Y •) ∼= F (|N cycC|, T ′) is equal to the com-

posite of S1-equivariant maps

ρ∗rΦ
CrTot(F (N cyc

• C, T ′))
Dr−→ ρ∗rΦ

CrTot(F (sdrN
cyc
• C, T ′))

−→ ρ∗rTot(ΦCrF (sdrN
cyc
• C, T ′))

α−→ ρ∗rTot(F (PrΦ
CrsdrN

cyc
• C,ΦCrT ′))

∼=−→ Tot(F (ΦCrsdrN
cyc
• C, ρ∗rΦ

CrT ′))
F (∆,cr)−→ Tot(F (N cyc

• C, T ′))

Proof. We compare to the structure map we defined above:

ρ∗rΦ
CrF (|N cyc

• C|, T ′)
∼= //

α
��

Dr
∼= ++

ρ∗rΦ
CrTot(F (N cyc

• C, T ′))

Dr
��

F (ρ∗rΦ
Cr |N cyc

• C|, ρ∗rΦCrT ′)

Dr
∼= ++

ρ∗rΦ
CrF (|sdrN cyc

• C|, T ′)

α
��

∼= // ρ∗rΦ
CrTot(F (sdrN

cyc
• C, T ′))

��
F (ρ∗rΦ

Cr |sdrN cyc
• C|, ρ∗rΦCrT ′)

∼=
��

ρ∗rTot(ΦCrF (sdrN
cyc
• C, T ′))

α
��

F (ρ∗r |PrΦCrsdrN
cyc
• C|, ρ∗rΦCrT ′)

∼=
��

∼= // ρ∗rTot(F (PrΦ
CrsdrN

cyc
• C,ΦCrT ′))

∼=
��

F (|ΦCrsdrN
cyc
• C|, ρ∗rΦCrT ′)

F (∆,cr)

��

∼= // Tot(F (ΦCrsdrN
cyc
• C, ρ∗rΦ

CrT ′))

F (∆,cr)
��

F (|N cyc
• C|, T ′)

∼= // Tot(F (N cyc
• C,ΦCrT ′))
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All maps here have been carefully checked to be S1-equivariant. The ρ∗r ’s have to re-

main out front on the right-hand side for a while longer because ΦCrF (sdrN
cyc
• C, T ′) and

F (ΦCrsdrN
cyc
• C,ΦCrT ′) are not cyclic but are merely r-cyclic (though their realizations

still do have trivial Cr-action). Most of these squares commute easily, but the nontrivial

one in the middle can be simplified to the following: if X• is a simplicial Cr-spectrum and

T is a Cr-spectrum then

ΦCrF (|X•|, T )
∼= //

α
��

ΦCrTot(F (X•, T ))

��
F (ΦCr |X•|,ΦCrT )

∼=
��

Tot(ΦCrF (X•, T ))

α
��

F (|ΦCrX•|,ΦCrT )
∼= // Tot(F (ΦCrX•,Φ

CrT ))

commutes.

Now we know that F (T, T ′) has a pre-cyclotomic structure, but this will not be too useful

in practice unless we can make F (T, T ′) derived so that it carries homotopical meaning.

Unfortunately, this is quite difficult to do directly without weakening the structure maps of

F (T, T ′) to mere zig-zags. However the model structure on cyclotomic and pre-cyclotomic

spectra defined in [BM13] allows us to avoid that. It has following attractive property that

allows our constructions to be derived:

Lemma 3.4.6. If T is cofibrant or fibrant in the model* category on (pre)cyclotomic spectra,

then it is also cofibrant or fibrant, respectively, as an orthogonal S1-spectrum in the F-model

structure.

Proof. The fibrant part is true by definition. For the cofibrant part it suffices to check that

the monad

CX =
∨
n≥1

ρ∗nΦCnX

preserves cofibrant objects in the F-model structure. This is true because wedge sums,

geometric fixed points, and change of groups all preserve cofibrations.

In light of this fact, we can replace T ′ with a fibrant cyclotomic spectrum fT ′, result-

ing in the pre-cyclotomic spectrum F (T, fT ′) whose underlying S1-equivariant spectrum
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is derived. Specializing to T ′ = S gives a pre-cyclotomic structure on the derived dual

F (T, fS).

Now if the underlying S1-spectrum of T is a retract of a finite S1-cell spectrum, or

equivalently is dualizable, then by ( [LMSM86], III.1.9) the cyclotomic structure maps of

F (T, fT ′) are all weak equivalences. Therefore F (T, fT ′) is actually cyclotomic, and not

just pre-cyclotomic, when T is finite.

In general F (T, fT ′) is not cyclotomic: a counterexample is T = Σ∞+ RP∞ and T ′ = S.

However we will see an example in the next section where T is infinite and F (T, fT ′) is still

cyclotomic.

3.4.2 The cyclotomic dual of THH(DX+) is Σ∞+ LX.

Let X be a finite based CW complex and let D(X+) = F (X+,S) denote its Spanier-

Whitehead dual. Though S is not fibrant, X is compact, and so this spectrum has the

correct homotopy type. Unfortunately, though DX+ is finite, it is not compact. Even

worse, a big realization of a simplicial spectrum built out of such things is not compact.

So when we dualize it again we will need to map into a fibrant sphere, which slightly

complicates the proof below.

DX+ is a commutative ring, with multiplication given by the dual of the diagonal map

X+ −→ (X ×X)+

Now the levelwise fiber sequence of spectra

F (X,S) −→ F (X+,S) −→ S

preserves the multiplications coming from the diagonal maps on both X and X+, so we can

conclude that the most obvious map

S ∨DX ∼−→ DX+

is an equivalence of ring spectra, where on the left the S is the unit and the multiplication

on F (X,S) is the dual of the diagonal

X −→ X ∧X
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Let cDX denote cofibrant replacement of DX as a unitless ring, so that

cDX+ := S ∨ cDX −→ S ∨DX

is a particularly nice cofibrant replacement of ring spectra. We’ll take as our example of a

tight cyclotomic spectrum

T = THH(cDX+)

This is equivalent to the derived THH of the derived dual of X+. Our starting point is the

result

Theorem 3.4.7 (Cohen,Campbell). [Cam14] When X is a finite simply-connected CW

complex there is an equivalence of ordinary spectra

D(THH(D(X+))) ' THH(Σ∞+ ΩX) ' Σ∞+ LX

when everything is derived and LX = Map(S1, X) is the free loop space.

Remark. When M is a manifold DM+ ' M−TM is a Thom spectrum, but the analysis

of [BCS08] does not apply because the multiplication on M−TM does not arise from the

normal bundle M −→ BO being a loop map.

We will spend the rest of this section proving a more highly-structured version of that

result:

Theorem 3.4.8. Let fS be a fibrant replacement of S as a cyclotomic spectrum. Then for

every unbased space X there is a natural map of pre-cyclotomic spectra

Σ∞+ LX −→ F (THH(cDX+), fS)

The left-hand side is always cyclotomic. When X is a finite simply-connected CW-complex

the right-hand side is cyclotomic and the map is an F-equivalence.

Corollary 3.4.9. When X is a finite simply-connected CW-complex, the equivalence be-

tween THH(Σ∞+ ΩX) and the functional dual of THH(DX+) is an equivalence of cyclotomic

spectra.

Proof. As above, let Y • denote the cocyclic S1-spectrum

Y k = F (N cyc
k cDX+, fS) = F ((cDX+)∧(k+1), fS)



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 124

Then the totalization of Y • is isomorphic to F (|N cyccDX+|, fS), and Prop 3.4.5 gives us a

recipe for the pre-cyclotomic structure.

Define a second cosimplicial spectrum Z• by

Zk = Σ∞+ Map(Λ([k], [0]), X) ∼= Σ∞+ X
k+1

with Λ action given by applying Σ∞+ to the usual Λop action on the Λ([k], [0]) term. By the

same reasoning above, the totalization of Z• would be homeomorphic to Map(|Λ[0]|, X) ∼=
LX if not for the Σ∞+ . But by Prop 3.3.5, the usual interchange still gives an isomorphism

of spectra

Σ∞+ LX
∼= Tot(Z•)

Note that Z• is not Reedy fibrant, though when X is finite and simply-connected, Y •

will turn out to be its fibrant replacement and so Σ∞+ LX will be equivalent to the derived

totalization too.

Now we construct a cosimplicial map Z• −→ Y •. The evaluation map composed with

the product in S and fibrant replacement

(
Σ∞+ X

)∧(k+1) ∧ c(DX+)∧(k+1) −→
(
Σ∞+ X

)∧(k+1) ∧ (DX+)∧(k+1)

−→ (S)∧(k+1) −→ S −→ fS

is adjoint to a map

Zk = Σ∞+ X
k+1 ∼−→ F ((cDX+)∧(k+1), fS) = Y k

It clearly commutes with the S1-action on each level coming from fS. We check that it

commutes with the cocyclic structure: for each γ ∈ Λ([k], [`]) we have the square

Map(Λ[0]k, X) ∼= Xk+1 //

γ

��

F ((cDX+)∧k+1, fS)

γ

��
Map(Λ[0]`, X) ∼= X`+1 // F ((cDX+)∧`+1, fS)
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which commutes if this one commutes:

Xk+1 ∧ (cDX+)`+1 γ∧id //

id∧γ
��

X`+1 ∧ (cDX+)`+1

��
Xk+1 ∧ (cDX+)k+1 // S

Both branches have the same description: γ gives a map from a necklace with k + 1 beads

and every segment labelled by X to a necklace with `+ 1 beads and every segment labelled

by DX. Each copy of X is sent by γ to a string of a copies of DX; we apply the diagonal

to X+
∆−→ (

∏aX)+ and pair with those a copies of DX.

Therefore we have a map of cocyclic S1-spectra Z• −→ Y •, with S1 acting trivially on

each cosimplicial level of Z•. This gives an equivariant map Tot(Z•) −→ Tot(Y •), and our

next task is to check that it respects the pre-cyclotomic structures that we already have on

Σ∞+ LX and Tot(Y •):

ΦCrΣ∞+ LX

∼=

��

∼= // ρ∗rΦ
CrTot(Z•) //

Dr∼=
��

ρ∗rΦ
CrTot(Y •)

Dr∼=
��

ρ∗rΦ
CrTot(sdrZ

•) //

��

ρ∗rΦ
CrTot(sdrY

•)

��
Tot(ΦCrsdrZ

•) //
OO

∆∼=

ρ∗rTot(ΦCrsdrY
•)

F (∆,cr)◦α
��

Σ∞+ LX
∼= // Tot(Z•) // Tot(Y •)

(3.3)

We start with the left-hand rectangle of (3.3), where everything is a suspension spectrum
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and so all maps are completely determined by what they do at spectrum level 0:

LXCr

∼=

��

∼= // Tot(Z•)Cr

∼=
��

Tot(sdrZ
•)Cr

��
Tot((sdrZ

•)Cr)
OO
∼=

LX
∼= // Tot(Z•)

Now the horizontal homeomorphisms may be computed by observing that Λ[0]k = Λ([k], [0])

has (k+1) points f0, . . . , fk, where fi : Z −→ Z sends 0 through i−1 to 0 and i through k to

1 (or if i = 0 it sends 0 through k to 0). Using our choice of homeomorphism |Λ[0]| ∼= R/Z
from the previous section, the k-simplex given by fi maps down to the circle R/Z by the

formula

(t0, . . . , tk) 7→ (ti + . . .+ tk) ∼ (1− (t0 + . . .+ ti−1))

Negating the circle and reparametrizing ∆k ⊂ Rk as points (x1, . . . , xk) for which 0 ≤ x1 ≤
x2 ≤ . . . ≤ xk ≤ 1 according to the rule xi = t0 + . . .+ ti−1, we arrive at the simple rule

(fi, x1, . . . , xk) 7→ xi, x0 := 0

So now the homeomorphism LX ∼= Tot(X•+1) can be expressed by the formula

∆k−1 × LX −→ Xk

(r1, . . . , rk−1, γ) 7→ (γ(0), γ(r1), . . . , γ(rk−1))

which is the formula in [CJ02].

Under this change of coordinates, we calculate the map along each branch to be

γ(−) −→ (r1, . . . , rk−1) 7→ (γ(0), γ(
1

r
r1), γ(

1

r
r2), . . . , γ(

1

r
rk−1), γ(0), γ(

1

r
r1), . . .)

and so the square commutes.



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 127

Returning to (3.3), the top and middle squares of the right-hand row automatically com-

mute by the naturality of the cosimplicial diagonal and the interchange map with geometric

fixed points. The final square is then

Tot(ΦCrsdrZ
•) //

OO

∆∼=

ρ∗rTot(ΦCrsdrY
•)

F (∆,cr)◦α
��

Tot(Z•) // Tot(Y •)

The map ∆ is the cocyclic map

ΦCrΣ∞+ X
rk ∼=←− Σ∞+ X

k

given by the Hill-Hopkins-Ravenel diagonal; this is almost tautologically cosimplicial. The

map F (∆, cr) ◦α is also cocyclic, so to check that this square commutes it suffices to check

level k − 1. This boils down to this rectangle:

ΦCrΣ∞+ X
rk ∧ ΦCr(cDX+)∧rk

α // ΦCr(Σ∞+ X
rk ∧ (cDX+)∧rk) // ΦCrS

∼=
��

Σ∞+ X
k ∧ (cDX+)∧k

∆∧∆

OO

∆

33

// S

The top triangle commutes because the norm diagonal commutes with smash products.

The trapezoid commutes because the inverse of the right-hand isomorphism is the norm

diagonal on S (in fact there is only one isomorphism S −→ S), and the norm diagonal is

natural. We have finished the proof that Tot(Z•) −→ Tot(Y •) is a map of pre-cyclotomic

spectra.

In total we now have a map of pre-cyclotomic spectra Σ∞+ LX −→ Tot(Y •). Next we

check that for each r the structure map of Tot(Y •) = F (|N cyc
• cDX+|, fS) is nonequivari-

antly an equivalence when ΦCr is derived. To be precise, we forget every circle action and

just remember the cosimplicial Cr-action on sdrY
•, making it a cosimplicial Cr-spectrum.



CHAPTER 3. COASSEMBLY AND DUALITY IN THH 128

Then our structure maps respect the restriction to the k-skeleton for each k ≥ 0:

ΦCrF (|sdrN cyc
• cDX+|, fS) //

��

F (ΦCr |sdrN cyc
• cDX+|,ΦCrfS) //

��

F (|N cyc
• cDX+|, fS)

��
ΦCrF (|SkksdrN

cyc
• cDX+|, fS) // F (ΦCr |SkksdrN

cyc
• cDX+|,ΦCrfS) // F (|SkkN

cyc
• cDX+|, fS)

(3.4)

We prove that the bottom horizontal composite is an equivalence when the left-hand ΦCr

is derived, by induction on k. Since ΦCr preserves fiber sequences, to power the induction

it suffices to show that on the fiber of the map from the k-skeleton into the (k− 1)-skeleton

this structure map is an equivalence. On the right-hand term this is the dual of

|SkkN
cyc
• cDX+|/|Skk−1N

cyc
• cDX+| ∼= ∆k/∂∆k ∧ cDX∧k ∧ cDX+

because the cofiber of the latching map

(S −→ cDX+)�k�(∗ −→ cDX+)

is the smash product of the cofibers

cDX∧k ∧ cDX+

To compute the left-hand terms we use the Cr-equivariant cofiber sequence

S −→ (cDX+)∧r −→
∨(

r

1

)
cDX ∨

∨(
r

2

)
cDX∧2 ∨ . . . ∨ cDX∧r

to show that the cofiber of the latching map

(S −→ (cDX+)∧r)�k�(∗ −→ (cDX+)∧r)

is isomorphic to(∨(
r

1

)
cDX ∨

∨(
r

2

)
cDX∧2 ∨ . . . ∨ cDX∧r

)∧k
∧ (cDX+)∧r
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Therefore the left-hand fiber is the dual of

|SkksdrN
cyc
• cDX+|/|Skk−1sdrN

cyc
• cDX+|

∼= ∆k/∂∆k ∧
(∨(

r

1

)
cDX ∨

∨(
r

2

)
cDX∧2 ∨ . . . ∨ cDX∧r

)∧k
∧ (cDX+)∧r

When i < r the term
∨(r

i

)
(cDX)∧i has Cr-action that acts transitively on the indexing

set of the wedge, so the geometric fixed points ΦCr are trivial. On the last term i = r the

norm isomorphism tells us that the geometric fixed points are cDX. Since ΦCr commutes

with wedge sums and smash products, we conclude that the diagonal map induces an

isomorphism

cDX∧k ∧ cDX+
∆−→ ΦCr |SkksdrN

cyc
• cDX+|/|Skk−1sdrN

cyc
• cDX+|

Abbreviating |SkksdrN
cyc
• cDX+| as Tk, the fiber of maps between levels becomes

ΦCrcF (∆k/∂∆k ∧ Tk/Tk−1, fS) −→ F (∆k/∂∆k ∧ ΦCrTk/Tk−1,Φ
CrfS))

∼=−→ F (∆k/∂∆k ∧ cDX∧k ∧ cDX+,Φ
CrfS))

−→ F (∆k/∂∆k ∧ cDX∧k ∧ cDX+, fS))

It is not quite obvious that this composite is an equivalence, because ΦCrfS is not a fibrant

orthogonal spectrum. However since we are not using the ring structure on cDX+ here,

we may replace the reduced ring cDX by a spectrum with finitely many cells, and apply

the above maps. Then the replaced composite is an equivalence. But the replacement is

equivalent to the above composite on the first and last terms, and so the above composite

must be an equivalence too. This powers the desired induction, and we conclude that the

bottom row of (3.4) is an equivalence for all k ≥ 0.

We shorten (3.4) to

ΦCrF (|sdrN cyc
• cDX+|, fS) //

��

F (|N cyc
• cDX+|, fS)

��
ΦCrF (|SkksdrN

cyc
• cDX+|, fS) // F (|SkkN

cyc
• cDX+|, fS)
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The bottom horizontal map is an equivalence for all k ≥ 0, but ΦCr does not commute

with homotopy inverse limits, so we cannot immediately conclude that the top horizontal

is an equivalence. However the right vertical is an isomorphism on π≤k because the fibers

of maps between higher levels are all at least (k + 1)-connected. (Since X is 1-connected

X∧k is (2k − 1)-connected, so Ωk−1X∧k is k-connected.) Similarly, X∧rk can be given a

Cr-equivariant cell structure in which the lowest-dimensional cells are the diagonal ones, of

dimension at least 2k. Then ΦCrX∧rk still has dimension at least 2k and so is (2k − 1)-

connected. Therefore Ωk−1ΦCrX∧rk is k-connected and by the same reasoning as before

the left vertical is an isomorphism on π≤k. So we conclude that the top horizontal map is

an isomorphism on π≤k. But this is true for all k ≥ 0 so the top map is an equivalence,

proving that Tot(Y •) = F (|N cyc
• cDX+|, fS) is cyclotomic.

Finally, Tot(Z•) −→ Tot(Y •) known to be a weak equivalence nonequivariantly. One

could check it by noting that Y • is Reedy fibrant, so it suffices to show that the derived

totalization of Z• converges to the ordinary totalization. In fact this rearranges to the

observation that the “Taylor tower” of the functor F (X) = Σ∞+ LX converges to F , which

is proven for instance in ( [Goo91], 4.4). At any rate, any map of cyclotomic spectra which

is a weak equivalence on the underlying spectra is automatically an F-equivalence of S1

spectra and so we are done.
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3.5 A stable splitting of THH(D+ΣX)

3.5.1 Proof of the splitting

We continue to assume that X is a finite based CW complex. Now the levelwise fiber

sequence

F (X,S) −→ F (X+,S) −→ S

preserves the multiplications coming from the diagonal maps on both X and X+, so we can

conclude that there is an equivalence of ring spectra

S ∨ F (X,S)
∼−→ F (X+,S)

where on the left the S is the unit and the multiplication on F (X,S) is the dual of the

diagonal

X −→ X ∧X

Let cDX denote cofibrant replacement of F (X,S) as a unitless ring, so that S ∨ cDX is a

ring spectrum for which the unit map is a cofibration. Therefore there is an equivalence of

ring spectra

S ∨ cD(ΣX)
∼−→ D(ΣX)+

The ring spectrum on the left is the free ring spectrum on the unitless ring E = cD(ΣX),

which has multiplication given by the diagonal map

ΣX −→ ΣX ∧ ΣX

We wish to show that this is equivalent by a zig-zag of unitless rings to the same ring E

but with 0 as the multiplication map. First, we construct an A∞ operad whose nth space

is

(R≥0)n−1

The point (t1, . . . , tn−1) maps E∧n −→ E by dualizing the map

S1 ∧X −→ Sn ∧X∧n

(s, x) 7→ (s+ t1, s+ t2, . . . , s+ tn−1, s, x, x, . . . , x)
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Here we think of Sn as Rn modulo the complement of the open set (0, 1)n. The composition

comes from adding the ti together. This operad contains within it the associative operad

(all ti equal to 0), giving the original multiplication on E. It also contains a large A∞

suboperad (all ti ≥ 1) giving only the 0 multiplication. Using the monadic bar construction

and these changes of operad, we can build a zig-zag equivalence of ring spectra S∨E ' S∨E
between the multiplication we started with and the 0 multiplication.

Now that we’ve made the multiplication zero, we calculate THH(S ∨ cD(ΣX)). After

we mod out the degeneracies, all that is left at simplicial level k is

(cD(ΣX))∧(k+1) ∨ (S ∧ (cD(ΣX))∧k)

The second term is in the image of the extra degeneracy map, so it lies in the S1-orbit of

the first term from one level down. Therefore we get

THH(S ∨ cD(ΣX) ∼= S ∨
∞∨
n=1

|Λ[n− 1]|/∂|Λ[n− 1]| ∧Cn (cD(ΣX))∧n

Using the homeomorphism |Λ[n − 1]| ∼= S1 × ∆n−1 for which the Cn-action rotates the

vertices and decreases the S1-coordinate by 1/n, we get

THH(S ∨ cD(ΣX) ∼= S ∨
∞∨
n=1

((∆n−1/∂∆n−1) ∧ S1
+) ∧Cn (cD(ΣX))∧n

∼= S ∨
∞∨
n=1

(SρCn ∧ S1
+) ∧Cn (cD(ΣX))∧n

where ρCn denotes the reduced regular representation. We can further simplify using the

equivariant equivalence

D(ΣX)∧n ∧ SρCn ∼−→ D(Σ(X∧n))

which then gives

THH(D+ΣX) ' S ∨ Σ−1

( ∞∨
n=1

D(X∧n) ∧Cn S1
+

)

When written in this last form, the S1 action is the obvious one.
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3.5.2 Dualization and examples

Now we dualize:

D(THH(D+ΣX)) ' S× Σ

( ∞∏
n=1

D(D(X∧n) ∧Cn S1
+)

)

' S ∨ Σ

( ∞∏
n=1

D[(D(X∧n) ∧ S1
+)hCn ]

)

' S ∨ Σ

( ∞∏
n=1

D[D(X∧n) ∧ S1
+]hCn

)

' S ∨ Σ

( ∞∏
n=1

D[D(X∧n) ∧ S1
+]Cn

)

' S ∨ Σ

( ∞∏
n=1

FCn(D(X∧n) ∧ S1
+,S)

)

' S ∨ Σ

( ∞∏
n=1

FCn(S1
+, D(D(X∧n)))

)

Now assume that X is finite CW and connected (but not necessarily simply-connected):

D(THH(D+ΣX)) ' S ∨ Σ

( ∞∏
n=1

FCn(S1
+, D(D(X∧n)))

)

' S ∨ Σ

( ∞∏
n=1

FCn(S1
+, X

∧n)

)

' S ∨ Σ

( ∞∏
n=1

Σ−TS
1
S1

+ ∧Cn X∧n
)

' S ∨
∞∨
n=1

Σ∞S1
+ ∧Cn X∧n

Using the previous section we recover the splitting of the free loop space of a suspension

Σ∞+ (LΣX) '
∞∨
n=1

Σ∞S1
+ ∧Cn X∧n

found in [Coh87].
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We end with a few specific choices of X for added concreteness. The simplest is X = S0,

which gives

THH(D(S1
+)) ' S ∨ Σ−1

∞∨
n=1

Σ∞+ (S1/Cn)

The reader may find it illuminating to rewrite the nth term in this sum as

Σ−1
+ S1/Cn ∼= Σ

−T (S1/Cn)
+ S1/Cn

because this is the dual in the S1-equivariant stable category of Σ∞+ S
1/Cn.

When ΣX = S3 we get

THH(D(S3
+)) ' S ∨ (ΩS−2 ∧ S1

+) ∨ (ΩS−4 ∧C2 S
1
+) ∨ (ΩS−6 ∧C3 S

1
+) ∨ . . .

Nonequivariantly, this may be rewritten

S ∨ (S−3 ∧ S1
+) ∨ (S−5 ∧ S1

+) ∨ (S−7 ∧ S1
+) ∨ . . . ' S ∨

∞∨
k=1

(S−2k−1 ∧ S1
+)

and when ΣX = Sn with n odd we get

THH(D(Sn+)) ' S ∨ (S−n ∧ S1
+) ∨ (S−2n+1 ∧ S1

+) ∨ (S−3n+2 ∧ S1
+) ∨ . . .

' S ∨
∞∨
k=1

(S−kn+k−1 ∧ S1
+)

The dual of this is therefore an infinite wedge of spheres. Indeed this agrees with

Σ∞+ LS
n ' Σ∞+ S

n ∨ Σ∞+ ΩSn

using Snaith splitting for Σ∞ΩSn!

For even spheres ΣX = S2n we instead get

THH(D(S2n
+ )) ' S ∨ (S−2n ∧ S1

+) ∨ (S−4n ∧RP2
+) ∨ (S−6n+2 ∧ S1

+) ∨ (S−8n+2 ∧RP2
+) ∨ . . .

' S ∨
∞∨
k=1

(S−(4k−2)n+2(k−1) ∧ S1
+) ∨

∞∨
k=1

(S−4kn+2(k−1) ∧ RP2
+)
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3.5.3 Multiplicative structure

The above splitting for THH(D(ΣX)+) implies

Theorem 3.5.1. The Bökstedt spectral sequence for THH(D(ΣX)+) collapses, resulting

in the E∞-page

E∞p,q
∼= E2

p,q
∼= HHp(C∗(D(ΣX)+))deg q

∼= HHp(C
∗(ΣX+))deg(−q)

This is useful for computing the multiplicative structure on THH(D(ΣX)+), which is

guaranteed to be a commutative ring spectrum. It gives for instance

π∗(THH(D+S
1)) ∼= π∗(S)[α, β]/(β2 = 0)

with commutativity in both the ordinary and graded senses, because |αi| = 0 and |β| = −1.

If n is even,

π∗(THH(D+S
n+1)) ∼= π∗(S)[α, β]/(β2 = 0)

where |αi| = −in and |β| = −n− 1.
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3.6 The calculation of TC(DS1
+) and its linear approximation

3.6.1 TC(DS1
+)

Now we move on to TC, which is a homotopy limit of genuine fixed point spectra

THHCpm

over the restriction and Frobenius maps. We will start with the specific example where the

ring spectrum is D+S
1 and try to see how to generalize from there. From the last section,

THH(D+S
1) ' S ∨ Ω

( ∞∨
n=1

Σ∞+ S
1
Cn

)

and we want the homotopy limit over F and R. The first sphere factor splits off as a

cyclotomic spectrum, giving TC(S), which has already been calculated. So we ignore it.

We may also ignore the Ω because it commutes with F , R, and holims. So our next move

is to calculate the genuine Cpm-fixed points of the nth summand using tom Dieck splitting:

(Σ∞+ S
1)Cpm ' Σ∞+

 ∐
0≤i≤m

ECpm−i ×Cpm−i (S1
Cn)Cpi


Keeping in mind that S1

Cn
is homeomorphic to S1 with the S1 action that rotates around

n times, some of the terms disappear and we get

Σ∞+

 ∐
0≤i≤m,pi|n

ECpm−i ×Cpm−i S
1
Cn


Let k be the largest integer such that pk | n. Then the ith summand changes form depending

on k:

k < i ∅

k = i S1
Cpm−in

i ≤ k ≤ m BCpk−i × S1
C
pm−kn

k ≥ m BCpm−i × S1
Cn

These calculations were done using the following
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Lemma 3.6.1. Let G be a finite group, and let X be an unbased G-CW complex. Let

H ≤ G be the largest subgroup that fixes all of X, necessarily normal. If G/H acts freely

on X then

XhG
∼= BH ×XG/H

Proof.

XhG := (EG×X)G

∼= ((EG)/H ×X)G/H

' (E(G/H)×BH ×X)G/H

' BH ×XG/H

Now we have a complete description of (Σ∞+ S
1)Cpm . Our next task is to compute the

Frobenius maps

(Σ∞+ S
1)Cpm −→ (Σ∞+ S

1)Cpm−1

and the inverse limit over all of them. Since m is going to infinity, we would like to simplify

our analysis by always assuming that i and k are smaller than m. Unfortunately, this

involves pruning stuff off from infinitely many terms in the holim system, which is not

allowed. Still, most instances of the Frobenius map fall into that case:

Lemma 3.6.2. On a typical summand the Frobenius map

Σ∞+ BCpk−i × S1
C
pm−kn

−→ Σ∞+ BCpk−i × S1
C
p(m−1)−kn

is simply the transfer

Σ∞+ S
1
C
pm−kn

−→ Σ∞+ S
1
C
p(m−1)−kn

on the right-hand factor smashed with the identity on the left-hand factor.

Proof. If G is abelian and K ≤ H ≤ G then consider the square

π
G/K
∗ (Σ∞+ E(G/K)×XK)

tD //

res

��

πG∗ (Σ∞+ X)

res

��
π
H/K
∗ (Σ∞+ E(G/K)×XK)

tD // πH∗ (Σ∞+ X)
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The maps labeled tD are components in the tom Dieck splitting, defined in Schwede’s notes.

This square commutes, essentially because the definition of tD involves only restriction and

maps of spectra, and the restriction maps are clearly natural. The last thing to check is

that our way of identifying the left-hand side with homotopy groups of E(G/K)×G/K XK

agrees with the transfer:

π
{e}
∗ (Σ∞+ E(G/K)×G/K XK)

tr
∼
//

tr
��

π
G/K
∗ (Σ∞+ E(G/K)×XK)

res

��

π
{e}
∗ (Σ∞+ E(G/K)×H/K XK)

tr
∼
// π
H/K
∗ (Σ∞+ E(G/K)×XK)

WLOG the subgroup K is trivial:

π
{e}
∗ (Σ∞+ EG×G X)

tr
∼
//

tr
��

πG∗ (Σ∞+ EG×X)

res

��
π
{e}
∗ (Σ∞+ EG×H X)

tr
∼
// πH∗ (Σ∞+ EG×X)

This follows from [Mad95], equation (4.1.6).

There is one more interesting case:

Lemma 3.6.3. On the summands where m = i the Frobenius map

Σ∞+ S
1
Cpm
−→ Σ∞+ S

1
Cpm

is an equivalence to the summand (m− 1, i− 1).

Proof. Anytime the cyclotomic spectrum T is a suspension spectrum Σ∞+ X, the Frobenius

map on the geometric fixed points summand of THHCpm is always

Σ∞+ X ' Σ∞+ (XCp) ↪→ Σ∞+ X

In the classical case Σ∞+ LX this resulted in a p-fold power map, but here the map is simply

an equivalence to another summand! This isn’t totally crazy since the S1/Cp-action is still

shifted into an S1-action that winds around p times too fast.

On the next page we give a table in which the entries are arranged so that the Frobenius
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maps (not drawn) go vertically up the columns. Entries in grey have k > m. They would

be irrelevant to TC, if not for the fact that there are infinitely many and they go infinitely

far down. On just about every summand m > i and the Frobenius map goes up and is a

transfer. However, when m = i we get a different Frobenius map which is an equivalence

onto the summand with m and i each decreased by one. One may use the given indices to

check this table against

k < i ∅

k = i S1
Cpm−in

i ≤ k ≤ m BCpk−i × S1
C
pm−kn

k ≥ m BCpm−i × S1
Cn
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summand 1 2 . . . p− 1 p . . . p2

k = 0 k = 0 . . . k = 0 k = 1 . . . k = 2

i = 0 i = 0 . . . i = 0 i = 1 i = 0 . . . i = 2 i = 1 i = 0

m = 0 Σ∞+ S1 Σ∞+ S1
C2

. . . Σ∞+ S1
Cp−1

− Σ∞+ S1
Cp

. . . − − Σ∞+ S1
C

p2

m = 1 Σ∞+ S1
Cp

Σ∞+ S1
C2p

. . . Σ∞+ S1
C(p−1)p

Σ∞+ S1
Cp

∨ Σ∞+ BCp × S1
Cp

. . . − Σ∞+ S1
C

p2
∨ Σ∞+ BCp × S1

C
p2

m = 2 Σ∞+ S1
C

p2
Σ∞+ S1

C
2p2

. . . Σ∞+ S1
C

(p−1)p2
Σ∞+ S1

C
p2

∨ Σ∞+ BCp × S1
C

p2
. . . Σ∞+ S1

C
p2

∨ Σ∞+ BCp × S1
C

p2
∨ Σ∞+ BCp2 × S1

C
p2

m = 3 Σ∞+ S1
C

p3
Σ∞+ S1

C
2p3

. . . Σ∞+ S1
C

(p−1)p3
Σ∞+ S1

C
p3

∨ Σ∞+ BCp × S1
C

p3
. . . Σ∞+ S1

C
p3

∨ Σ∞+ BCp × S1
C

p3
∨ Σ∞+ BCp2 × S1

C
p3

...
...

...
...

...
...

m =∞ Σ∞Σ+∗ Σ∞Σ+BC2 . . . Σ∞Σ+BCp−1 Σ∞Σ+∗ ∨ Σ∞Σ+BCp . . . Σ∞Σ+∗ ∨ Σ∞Σ+BCp ∨ Σ∞Σ+BCp2

Table 3.1: The splitting of THH(D+S
1)Cpn .
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It looks like we’ll soon encounter inverse limits of Cp-transfer maps, so we recall [Mad95],

Lemma 4.4.9 (an extension of [BHM93], Lemma 5.15):

Lemma 3.6.4. For any S1-spectrum T , the S1-transfer induces a p-adic equivalence

ΣThS1 −→ holim
←−

ThCpn

Now we will discuss in detail two approaches to this calculation. The first one follows

[BHM93]. When we look at the holim system for TC of Σ∞+ LX,

LX

LXCp

∆p

OO

LXhCp

tr
ff

LXCp2

∆p

OO

(LXCp)hCp

tr
ee

LXhCp2

tr
gg

LXCp3

∆p

OO

(LXCp2 )hCp

tr
ee

(LXCp)hCp2

tr
ff

LXhCp3

tr
ee

...
...

...
...

it becomes natural to separate out the behavior in the first column from the rest. This is

easiest to do if we calculate TR (the inverse limit in the vertical direction). Observe that

R splits, so

TR(D+S
1) '

∞∏
i=0

THH(D+S
1)hCpi

That was easy! Next we need the homotopy fiber of F − id. Using the above lemmas, we

know these maps as well. F shifts from level i in the product to i− 1, but it sends the 0th

factor to itself. To correct this weirdness, we separate out the 0th factor:

∨∞
n=1 Σ∞+ S

1
Cn

//

F−id

��

∏∞
i=0 ΣTHH(D+S

1)hCpi
//

F−id
��

∏∞
i=1 ΣTHH(D+S

1)hCpi

F−id
��∨∞

n=1 Σ∞+ S
1
Cn

//
∏∞
i=0 ΣTHH(D+S

1)hCpi
//
∏∞
i=1 ΣTHH(D+S

1)hCpi
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In the left column, F takes summand n to summand pn by an equivalence. The fiber of the

middle column is the suspension of the desired TC. The fiber of the right-hand column is

the homotopy limit of

. . .
transfer−→ ΣTHH(D+S

1)hCp3
transfer−→ ΣTHH(D+S

1)hCp2
transfer−→ ΣTHH(D+S

1)hCp

which by the above lemma is

Σ2THH(D+S
1)hS1

Using

S1
hS1 ' ∗

(S1
Cn

)hS1 ' BCn

and the fact that orbits commute with wedges, we get a pullback square after p-completion

TC(D+S
1)∧p //

��

Σ∞Σ+CP∞ ×
∨∞
n=1 Σ∞+ BCn

��
S× Σ−1

∨∞
n=1 Σ∞+ S

1
Cn

∆p−id // S× Σ−1
∨∞
n=1 Σ∞+ S

1
Cn

Now, since Cn acts freely on the 1-sphere, its cohomology is 2-periodic:

H∗(BCn) ∼= Z 0 Z/n 0 Z/n 0 Z/n . . .

When pk is the largest power of p dividing n, use the covering map

BCn −→ BCpk

and its stable transfer to form a p-adic equivalence (Σ∞+ BCn)∧p ' (Σ∞+ BCpk)∧p . This leads

to the simplification

TC(D+S
1)∧p //

��

Σ∞Σ+CP∞ ×
∨∞
n=1 Σ∞+ BCpk

��
S× Σ−1

∨∞
n=1 Σ∞+ S

1
C
pk

∆p−id // S× Σ−1
∨∞
n=1 Σ∞+ S

1
C
pk

where our convention is that pk is the highest power of p dividing n. The square splits into
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an infinite wedge of squares. The easiest is

S ∨ ΣCP∞−1
//

��

Σ∞Σ+CP∞

��
S 0 // S

The rest may be divided according to the equivalence class of n, where two positive integers

are equivalent if they differ by a factor of pk. Each equivalence class gives the same pullback

square

X //

��

∨∞
k=1 Σ∞+ BCpk

��
Σ−1

∨∞
k=1 Σ∞+ S

1
C
pk

∆p−id// Σ−1
∨∞
n=1 Σ∞+ S

1
C
pk

Remember that the “power map” ∆p actually takes the kth summand to the k + 1st sum-

mand by an equivalence. This allows us to simplify the pullback square. To do this, start

by observing that if G is an abelian group, then there is a short exact sequence

0 −→
∞⊕
k=1

G
f−id−→

∞⊕
k=1

G
Σ−→ G −→ 0

where f is the map that shifts everything one slot to the right:

f(g1, g2, . . .) = (0, g1, . . .)

Therefore we can add to the above pullback square

X //

��

∨∞
k=1 Σ∞+ BCpk

��
Σ−1

∨∞
k=1 Σ∞+ S

1
C
pk

∆p−id//

��

Σ−1
∨∞
n=1 Σ∞+ S

1
C
pk

��
∗ // Σ−1Σ∞+ S

1

and conclude

X ' hofib{
∞∨
k=1

Σ∞+ BCpk −→ Σ−1Σ∞+ S
1}
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Finally,

TC(D+S
1)∧p ' S ∨ ΣCP∞−1 ∨

∞∨
X

We will proceed to repeat this calculation by a second method, which starts with TF

instead of TR. The motivation for this is that the above method will not generalize well to

TC(D+S
n), but the below method (hopefully) will. It’s a bit trickier though, so it helps to

start on D+S
1 to ensure we get the same answer as in the above method.

To begin, we define a fiber sequence of cyclotomic spectra whose fiber is

Σ∞+ S
1 Σ∞+ S

1
Cp

Σ∞+ S
1
Cp2

∗ Σ∞+ S
1
Cp

R

cc
F

;;

∗ Σ∞+ S
1
Cp2

R

jj

F
::

∗

∗ ∗ ∗ Σ∞+ S
1
Cp2

R

ii

F
::

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

...
...

...
...

...
...

(we’ll just draw the 1, p, and p2 summands), whose total space is

Σ∞+ S
1 Σ∞+ S

1
Cp

Σ∞+ S
1
Cp2

Σ∞+ S
1
Cp

F

OO

Σ∞+ S
1
Cp

R

dd
F

88

Σ∞+ BCp × S1
Cp

F

OO

Σ∞+ S
1
Cp2

R

kk

F

66

Σ∞+ BCp × S1
Cp2

F

OO

Σ∞+ S
1
Cp2

F

OO

Σ∞+ S
1
Cp2

F

OO
R

dd

Σ∞+ BCp × S1
Cp2

F

OO

Σ∞+ S
1
Cp2

R

kk

F
88

Σ∞+ BCp × S1
Cp2

F

OO
R

kk

Σ∞+ BCp2 × S1
Cp2

F

OO

Σ∞+ S
1
Cp3

F

OO

Σ∞+ S
1
Cp3

F

OO
R

dd

Σ∞+ BCp × S1
Cp3

F

OO

Σ∞+ S
1
Cp3

F

OO
R

kk

Σ∞+ BCp × S1
Cp3

F

OO
R

kk

Σ∞+ BCp2 × S1
Cp3

F

OO

...
...

...
...

...
...
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and whose base is

∗ ∗ ∗

Σ∞+ S
1
Cp

∗ Σ∞+ BCp × S1
Cp

∗ Σ∞+ BCp × S1
Cp2

Σ∞+ S
1
Cp2

F

OO

Σ∞+ S
1
Cp2

R
dd

Σ∞+ BCp × S1
Cp2

F

OO

∗ Σ∞+ BCp × S1
Cp2

R

kk

Σ∞+ BCp2 × S1
Cp2

F

OO

Σ∞+ S
1
Cp3

F

OO

Σ∞+ S
1
Cp3

F

OO
R

dd

Σ∞+ BCp × S1
Cp3

F

OO

Σ∞+ S
1
Cp3

R

kk

Σ∞+ BCp × S1
Cp3

F

OO
R

kk

Σ∞+ BCp2 × S1
Cp3

F

OO

...
...

...
...

...
...

Now TF of the base is a product of inverse limit systems, each of which consists of all

columns that start at a specified horizontal level. Therefore the inverse limit is a product

of the inverse limits:

TF =
∞∏
k=0

∨
n≥1,pk|n

Σ∞Σ+BCpk

Then R on this limit shifts the factors down by 1. To get the homotopy groups of the

hofiber of R− id, note that if G is an abelian group, we have the short exact sequence

0 −→ G
∆−→

∞∏
k=1

G
f−id−→

∞∏
k=1

G −→ 0

where f is the map that shifts everything one slot to the left:

f(g1, g2, . . .) = (g2, g3, . . .)

Therefore the homotopy fiber of R− id is equivalent to

TC =
∨
n≥1

Σ∞Σ+BCpk

where here k is the largest power of p dividing n. So much for the base; now we look at

the fiber TC. Letting G take the place of homotopy groups of Σ∞+ S
1, the inverse system of
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homotopy groups is

. . . −→
∞⊕
n=2

G −→
∞⊕
n=1

G −→
∞⊕
n=0

G

where the maps include summands. The inverse limit of this is zero, but it does not satisfy

the Mittag-Leffler condition, so we have a lim1. To calculate lim1 we do

0 // 0 //

��

⊕∞
n=0G

//

��

∏∞
n=0G

//

��

lim1

...

��

...

��

...

��
0 //

⊕∞
n=2G

//

��

⊕∞
n=0G

//

��

G⊕G

��

// 0

0 //
⊕∞

n=1G
//

��

⊕∞
n=0G

//

��

G

��

// 0

0 //
⊕∞

n=0G
//

��

⊕∞
n=0G

//

��

0

��

// 0

0 0 0

This gives the homotopy groups of TF :

TF ' Σ−1cofib(

∞∨
Σ∞+ S

1 −→
∞∏

Σ∞+ S
1)

The Σ−1 is the grading shift from lim1, not the Σ−1 from THH that we are ignoring. The
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next step is to take the fiber of R− id. We use the square

0

��

0

��

0

��
0 // 0 //

��

⊕∞G R−id //

��

⊕∞G //

��

0

0 // G
∆ //

��

∏∞G R−id //

��

∏∞G //

��

0

0 // G //

��

lim1 R−id //

��

lim1 //

��

0

0 0 0

to see that TC ' Σ−1S1
+. Of course, we add in the extra Σ−1s at the end to get the fiber

sequence

S−1 ∨ S−2 0−→ TC(D+S
1)/TC(S) −→

∨
n≥1

Σ∞+ BCpk

which agrees with the previous answer we got from “TR first.”

Now that we’ve finished both calculations of

TC(D+S
1)∧p ' S ∨ ΣCP∞−1 ∨

∨∞X
X ' hofib{

∨∞
k=1 Σ∞+ BCpk −→ Σ−1Σ∞+ S

1}

take p ≥ 7 and examine the rational homotopy groups of the p-completion of our spectra.

spectrum πQ−2 πQ−1 πQ0 πQ1 πQ2 πQ3 πQ4 πQ5 πQ6

K(S)∧p 0 0 Qp 0 0 0 0 Qp 0

(D+S
1 ∧K(S))∧p 0 Qp Qp 0 0 0 Qp Qp 0

TC(S)∧p 0 Qp Qp Qp 0 Qp 0 Qp 0

(D+S
1 ∧ TC(S))∧p Qp Q2

p Q2
p Qp Qp Qp Qp Qp Qp

X Qp 0
∞⊕

Qp ? 0 ? 0 ? 0

TC(D+S
1)∧p

∞⊕
Qp Qp

∞⊕
Qp Qp⊕? 0 Qp⊕? 0 Qp⊕? 0

Table 3.2: Rational homotopy groups of TC(D+S
1) and related spectra.

The question marks refer to the extra non-torsion that emerges in π∗(TC(D+S
1)∧p ) as
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a result in the infinite torsion in odd degrees in the homology of the infinite wedge

∞∨
k=1

Σ∞+ BCpk

and the assumption p ≥ 5 ensures that, in this range, the homotopy of our spectra with Fp
coefficients agrees with homology with Fp coefficients. Now from [BHM93] the Qp summand

in degree 4 in D+S
1 ∧ K(S) maps to the corresponding Qp summand in D+S

1 ∧ TC(S).

However, there is nothing in TC(D+S
1) to hit this homotopy class. From this it is easy to

deduce that

K(D+S
1) −→ D+S

1 ∧K(S)

cannot be surjective on rational homotopy. So the dual K-theoretic Novikov conjecture is

false for S1.

3.6.2 Comparison with TC(Σ∞+ ΩS1)

Recall from [BHM93] that we have a homotopy pullback square

TC(Σ∞+ Z)∧p //

��

Σ∞Σ+(LS1)hS1

��
Σ∞+ LS

1 ∆p−id // Σ∞+ LS
1

Under the equivalence LS1 ' S1 × Z, the S1-action that rotates the loop (domain) coordi-

nate acts on the component

S1 × {n}

by rotating the circle n times. Therefore

(LS1)hS1 ' . . .qBC2 q ∗ q (S1 × CP∞)q ∗ qBC2 qBC3 q . . .

and the pullback square becomes

TC(Σ∞+ Z)∧p //

��

Σ∞Σ+(S1 × CP∞) ∨
∨
n6=0 Σ∞Σ+BC|n|

��
Σ∞+ S

1 × Z
∆p−id // Σ∞+ S

1 × Z
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Again, this splits into squares based on the equivalence class of n modulo multiplication by

p. The simplest summand is n = 0, which is

S1
+ ∧ TC(S)∧p //

��

S1
+ ∧ Σ∞Σ+CP∞

��
S1

+ ∧ S 0 // S1
+ ∧ S

The others are all equivalent, and we simply name the pullback Y :

Y //

��

∨∞
k=1 Σ∞Σ+BCpk

��∨∞
k=1 Σ∞+ S

1 ∆p−id //

��

∨∞
k=1 Σ∞+ S

1

��
∗ // Σ∞+ S

1

As above, the map ∆p forms an equivalence between each summand and the next, which

justifies the lower half of the pullback square. We conclude

TC(Σ∞+ ΩS1)∧p ' S1
+ ∧ (S ∨ ΣCP∞−1) ∨

∞∨
Y

The similarity to TC(D+S
1) is striking. We put them side by side for comparison:

X //

��

∨∞
k=1 Σ∞+ BCpk

��
∗ // Σ−1Σ∞+ S

1

Y //

��

∨∞
k=1 Σ∞Σ+BCpk

��
∗ // Σ∞+ S

1

Since both maps are transfers, it is easy to show that

Y ' ΣX

Now our comparison reads

TC(Σ∞+ ΩS1)∧p ' S1
+ ∧ (S ∨ ΣCP∞−1) ∨

∨
Z\{0}

Y
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TC(D+S
1)∧p ' S ∨ ΣCP∞−1 ∨

∨
N
X

There are curious parallels. Extending our previous table,

spectrum πQ−2 πQ−1 πQ0 πQ1 πQ2 πQ3 πQ4 πQ5 πQ6

TC(S)∧p 0 Qp Qp Qp 0 Qp 0 Qp 0

X Qp 0
∞⊕

Qp ? 0 ? 0 ? 0

Y 0 Qp 0
∞⊕

Qp ? 0 ? 0 ?

S1
+ ∧ TC(S)∧p 0 Qp Q2

p Q2
p Qp Qp Qp Qp Qp

TC(Σ∞+ ΩS1)∧p 0
∞⊕

Qp Q2
p

∞⊕
Qp Qp⊕? Qp Qp⊕? Qp Qp⊕?

TC(D+S
1)∧p

∞⊕
Qp Qp

∞⊕
Qp Qp⊕? 0 Qp⊕? 0 Qp⊕? 0

(D+S
1 ∧ TC(S))∧p Qp Q2

p Q2
p Qp Qp Qp Qp Qp Qp

Table 3.3: Comparison to the rational homotopy groups of TC(Σ∞+ ΩS1).

We conclude that the reduced TC of the ring Σ∞+ ΩS1 is the suspension of TC of the

Koszul dual D+S
1.

3.6.3 Coassembly on THH(D+ΣX) and TC(D+ΣX)

To determine the coassembly map for the functor X −→ THH(D(X+)), we compare to the

assembly map for the dual

Σ∞+ X −→ Σ∞+ LX

Inclusion of constant loops is an obvious choice, and since it defines a map from a linear

functor into F that is an equivalence when X = ∗, it must be the assembly map. This gives

a hint for what coassembly should do to homology, but we must be careful because there

are many maps between spheres which give the same thing on homology (i.e. 0 for most of

the summands) but which are nontrivial.

Fortunately it is possible to be very explicit. Each point in ΣX gives an evaluation map

S ∨D(ΣX) //

id∨ev

44D+(ΣX)
ev // S

which is a map of ring spectra on both the left and middle terms. (The multiplication on the
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left-hand spectrum is the one given by the diagonal, not zero.) This passes to a map from

the above simplicial spectrum to a simpler one for S0. Assembling these together yields a

map into the simplicial spectrum which at every level is D+(ΣX), with constant face and

degeneracy maps:

{(D+ΣX)∧n}n −→ {(D+ΣX) ∧ S∧n}n

This coassembly map is, at each level, just the dual of the diagonal map on ΣX. The

simplices and Λ[n− 1]s turn out to be irrelevant; the coassembly map squashes them down

to a point. In total, the coassembly map

S ∨ Σ−1

( ∞∨
n=1

D(X∧n) ∧Cn S1
+

)
−→ S ∨ Σ−1DX ' D+(ΣX)

is the unit on the first summand, and on all the others squashes the circle and maps the

rest in by the dual of the diagonal.

But it doesn’t stop there! This is a map of cyclotomic spectra, so it extends to a map on

TR and TC. In the case ΣX = S1, TR is a product, and we can write the map explicitly

on the factors (where for simplicity we are only taking the wedge summands n = pk from

THH):

TR(D+S
1) −→ D+S

1 ∧ TR(S)

THH S ∨ Σ−1
∨∞
k=0(S1

C
pk

)+ −→ S ∨ Σ−1S

THHhCp Σ∞+ BCp ∨ Σ−1
∨∞
k=0(BCp × S1

C
pk

)+ −→ Σ∞+ BCp ∨ Σ−1Σ∞+ BCp

THHhCp2
Σ∞+ BCp2 ∨ Σ−1

∨∞
k=0(BCp2 × S1

C
pk

)+ −→ Σ∞+ BCp2 ∨ Σ−1Σ∞+ BCp2

...
...

The maps respect the wedge sum of two things. The left wedge summand gets mapped by

the identity to the left wedge summand. The right wedge summand gets mapped by the

obvious “extremely surjective” map

∞∨
k=0

(S1
C
pk

)+ −→ (∗)+

times the identity on BCpk . Now we want to take the hofiber of F − id to get TC. As
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above, we separate out what happens on the first row:

Σ−1
∨∞
k=0 S

1
+

F−id //

∨∞collapse
��

Σ−1
∨∞
k=0 S

1
+
∨∞id //

∨∞collapse
��

Σ−1S1
+

not surjective!
��wwS0 0 // S0 // S0 ∨ S1

The dotted arrow forms two commuting triangles. Using this fact we see that this map is

not surjective on the third term, which is a bad sign because applying Σ−1 once more gives

the coassembly map on the hofiber of F − id.

Now we turn our attention to the rest of the system and take the hofiber of F − id. We

get the inverse limit of the hCpk orbits under the transfer, which is the hS1 orbits:

Σ+(∗)hS1 ∨
∞∨
k=0

((S1
C
pk

)hS1)+ −→ Σ+(∗)hS1 ∨ ((∗)hS1)+

Σ+CP∞ ∨
∞∨
k=0

(BCpk)+ −→ Σ+CP∞ ∨ CP∞+

The first summands are connected by the identity map, so we remove them from consider-

ation. The rest is, on Z/p homology,

H∗(
∨∞
k=0 Σ∞+ BCpk ;Z/p) H∗(Σ

∞
+ CP∞;Z/p)

0
⊕∞

k=0 Z/p
(1,1,1,...) // Z/p

1
⊕∞

k=0 Z/p 0

2
⊕∞

k=0 Z/p
(1,1,1,...) // Z/p

3
⊕∞

k=0 Z/p 0

4
⊕∞

k=0 Z/p
(1,1,1,...) // Z/p

...
...

...

Combine this with the above calculation

H∗(S−1 ∨ S0;Z/p) H∗(S−1 ∨ S0;Z/p)
−1 Z/p 1 // Z/p
0 Z/p 0 // Z/p

and take homotopy fibers. The homotopy fibers of the sources give a spectrum we call X,
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to be consistent with previous sections. We calculate its Z/p homology as follows:

H∗(X;Z/p) H∗(
∨∞
k=0 Σ∞+ BCpk ;Z/p) H∗(Σ

−1Σ∞+ S
1;Z/p)

−2 Z/p 0 0

−1 0 0 Z/p
0

⊕∞
k=1 Z/p //

⊕∞
k=0 Z/p

(1,0,0,...) // Z/p
1

⊕∞
k=0 Z/p

id //
⊕∞

k=0 Z/p 0

2
⊕∞

k=0 Z/p
id //

⊕∞
k=0 Z/p 0

The (1, 0, 0, . . .) is a transfer map. We calculated it by looking at the row y = 1 in the

E2-page of the Serre SS for the fiber bundle

S1 −→ S1
C
pk
× ES1 −→ BCpk

Moving on, the homotopy fibers of the targets give

Σ−1TC(S) = Σ−1(S ∨ ΣCP∞−1)

Using all of this, we deduce that coassembly on X on Z/p homology is

H∗(X;Z/p) H∗(Σ
−1(S ∨ ΣCP∞−1);Z/p)

−2 Z/p 1 // Z/p
−1 0 Z/p
0

⊕∞
k=1 Z/p

(1,1,1,...) // Z/p
1

⊕∞
k=0 Z/p 0

2
⊕∞

k=0 Z/p
(1,1,1,...) // Z/p

3
⊕∞

k=0 Z/p 0
...

...
...

The TC of D+S
1, once we remove TC(S) is actually an infinite wedge sum of spectra

equivalent to X, but the map on each one is the same. So coassembly is not surjective

on Z/p-homology. Passing to connective covers does not help, since the missing Z/p in

dimension −1 simply becomes a missing Z/p in a higher dimension.
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On rational homology/homotopy we also do not get a surjective map:

H∗(X;Q) H∗(
∨∞
k=0 Σ∞+ BCpk ;Q) H∗(Σ

−1Σ∞+ S
1;Q)

−2 Qp 0 0

−1 0 0 Qp

0
⊕∞

k=1 Qp
//
⊕∞

k=0 Qp
(1,p,p2,...) // Qp

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0

H∗(X;Q) H∗(Σ
−1(S ∨ ΣCP∞−1);Q)

−2 Qp
1 // Qp

−1 0 Qp

0
⊕∞

k=1 Qp
(1,1,1,...) // Qp

1 0 0

2 0 Qp

3 0 0

4 0 Qp
...

...
...

Here passing to connective covers does indeed help with degree −1, but the map is still not

surjective in any even degree. One should also be careful because H(−;Q) changes after we

p-complete. However in the above coassembly table, the groups on the right do not change,

and the groups on the left only change in odd positive degrees (when the degree is less than

about 2p). So the map is still not surjective (except perhaps for a few small values of p).
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3.7 THH of finite spectra with a G-action

Here we prove the following statements, which are reminiscient of the K-theory Novikov

conjecture:

Theorem 3.7.1. If G is a finite p-group, then the assembly and coassembly maps

BG+ ∧ THH(∗) −→ THH(BG)

THH(P ′(Σ∞+ G)) −→ F (BG+, THH(∗))

are split injective and split surjective maps of spectra, respectively, after p-completion.

Theorem 3.7.2. The composite of assembly, inclusion, and coassembly

BG+ ∧A(∗) −→ A(BG) −→ ∀(BG) −→ F (BG+, A(∗))

is up to homotopy the transfer BG+ −→ F (BG+,S) smashed with the identity on A(∗).

These both follow quickly from our main technical result:

Theorem 3.7.3. The composite of assembly, inclusion, and coassembly

BG+ ∧ THH(∗) −→ THH(BG) −→ THH(P ′(Σ∞+ G)) −→ F (BG+, THH(∗))

is up to homotopy the transfer BG+ −→ F (BG+,S) along the bundle over BG×BG with

fiber G and monodromy given by left and right multiplication of G on itself. There is a

similar composite

BWH+ ∧ THH(∗) −→ THH(BWH) −→ THH(P ′(Σ∞+ G)) −→ F (BG+, THH(∗))

which is up to homotopy the transfer BWH+ −→ F (BG+, S) along the bundle over BG×
BWH with fiber G/H and monodromy given by the left action of G and the right action of

WH ∼= AutG(G/H)op.

In this first section, we will prove the special case of G = Z/2, BG = RP∞. We prove

the more general case in the next section. We will sometimes adopt the notation

THH(Σ∞+ Z/2,fin) = THH(P ′(Σ∞+ Z/2))
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We link assembly and coassembly together in the following way:

RP∞+ ∧ THH(S)
α // THH(Σ∞+ Z/2)

THH(ι)// THH(P ′(Σ∞+ Z/2))
cα // F (RP∞+ , THH(S))

Here ι is simply an inclusion of Waldhausen categories: those modules over Σ∞+ Z/2 which

are finite and Z/2-free are contained inside those modules which are finite. We wish to

prove that the composite, when summed with the map

THH(∗) −→ THH(RP∞; fin)
cα−→ F (RP∞+ , THH(∗))

gives an equivalence.

Before we dive into the THH result, we should begin by characterizing which maps

S ∨ Σ∞+ RP∞ −→ D(RP∞+ )

are 2-adic equivalences. We know one such map in particular: it is the composite of the tom

Dieck splitting and the usual inclusion of genuine fixed points into homotopy fixed points:

S ∨ Σ∞+ RP∞ −→ SC2 −→ ShC2 ∼= D(RP∞+ )
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We can describe this composite fairly explicitly (here σ is the sign representation of C2):

RPn−1
+

//

��

(ΩnσSnσ)C2

��
RP∞+ //

��

(colim
n

ΩnσSnσ)C2

��
(colim

n
Ωn+nσSn+nσ)C2

��
Map∗(S(∞)+, colim

n
Ωn+nσSn+nσ)C2

Map∗(S(∞)+, colim
n

ΩnSn)C2

∼
OO

Map∗(RP∞+ ,Ω∞S∞)

The dotted line lift-up-to-homotopy is formed by picking a Z/2-equivariant homotopy be-

tween the two maps

RP∞+ ∧ S(∞)+ ∧ S∞ ∧ S∞σ −→ S∞ε ∧ S∞σε

(x, y, z, w) 7→ (z, w − x̃)

(x, y, z, w) 7→ (?, w)

Here x̃ is whichever lift of x to S(∞) is closer to w; as long as ε < 1 such a lift exists or it is

irrelevant because the map goes to the basepoint. The Z/2-action is negation on y and w,

as well as the second slot of the output. All other coordinates are fixed. To fill in the (?)

and pick a homotopy, we first pick a Z/2×Z/2-equivariant map g : S∞×S∞ −→ S∞, where

the Z/2×Z/2-action on the right is trivial on the diagonal Z/2 and the usual action on the

quotient by that diagonal. Not only does such a map g exist, but the space of all possible

choices for g is weakly contractible. (This is because the source is a free Z/2 × Z/2-CW

complex and the target is contractible.) Now we take our homotopy to be

(x, y, z, w, t) 7→ (z − (sin t)g(x̃, y), w − (cos t)x̃)
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Here again the map is well-defined because, though there may be two values of (cos t)x̃ that

are within ε of w, in that case only one of those values of x̃ gives a value of (sin t)g(x̃, y)

that is within ε of z. It is also straightforward to check it is equivariant. The end of the

homotopy is

(x, y, z, w) 7→ (z − g(x̃, y), w)

and then we can restrict to Map∗(RP∞+ ,Ω∞S∞) by forgetting the w coordinate:

(x, y, z) 7→ z − g(x̃, y)

Therefore the composite is given in the following proposition. The map g is the obvious

map between the quotients

RP∞ × RP∞ g−→ RP∞

which is in fact uniquely characterized by the property that on π1 it sends the generator

from each factor on the left to the generator on the right.

Proposition 3.7.4. The Segal conjecture 2-adic equivalence

S ∨ Σ∞+ RP∞ −→ D(RP∞+ )

is the obvious collapse or unit map on the first S. On the second term, it is adjoint to the

composite

Σ∞+ (RP∞ × RP∞)
g−→ Σ∞+ RP∞ transfer−→ S

Furthermore this map is an equivalence of rings, with multiplication on the left given by

transfer and on the right by the dual of the diagonal.

As a sanity check, we may also check that this map satisfies the condition given by

Adams, that the functional Sq4 is nonzero. In fact, all functional Sqis are nonzero. To see

this, we first prove the same fact for the transfer

Σ∞+ RP∞ −→ S

using that its cofiber is RP∞−1, the Thom spectrum of the “real vector bundle” whose Stiefel-

Whitney class is

(1 + a)−1 = 1 + a+ a2 + a3 + . . .
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Tracing through the definition of functional Sqi, we see that the nonvanishing of the co-

efficient of ai above is equivalent to the fact that functional Sqi is nonzero for this map.

Returning to the composite

Σ∞+ (RP∞ × RP∞)
g−→ Σ∞+ RP∞ transfer−→ S

we prove the functional Sqi is nonzero by an elementary diagram chase, using the rela-

tionships between the cofibers of the above two maps and the cofiber of their composition.

(The only needed property of g is that it is injective on mod 2 cohomology. Which is a

bit disturbing, since the collapse of one copy of RP∞ is also injective, but cannot give the

Segal conjecture equivalence.) So the map we described above definitely gives the desired

equivalence S ∨ Σ∞+ RP∞ ∼−→ D(RP∞+ ).

Now we will prove our splitting results on THH by building models for the assembly and

coassembly maps, and comparing them to the above characterization of the Segal conjecture

isomorphism. Consider the diagram

RP∞+ ∧ THH(S)
α // THH(Σ∞+ Z/2)

THH(ι)// THH(P ′(Σ∞+ Z/2))
cα // F (RP∞+ , THH(S))

The assembly map on the left is simply inclusion of constant loops

RP∞+ ∧ S α−→ Σ∞+ LRP∞ ' Σ∞+ RP∞ q RP∞

which is an equivalence onto the first term in the disjoint union RP∞qRP∞. This hits the

component of THH(Σ∞+ Z/2) composed of those simplices for which the product of all the

elements of Z/2 is the identity.

Coassembly is trickier. We need to compare modules over S[G] with parametrized

spectra over BG. The comparison is straightforward:

• If X is a module over S[G], i.e. a naive G-spectrum, we form a parametrized spectrum

X//G over BG = B(∗, G, ∗) whose nth space is B(∗, G,Xn).

• If E is a parametrized spectrum over BG then we take the fiber to recover our original

spectrum with a G-action.

• The homotopy orbits XhG are the quotient of X//G −→ BG by the basepoint section.

The homotopy fixed points XhG are the sections ΓBG(X//G). These are both easily
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proven by comparing adjoints of the “trivial G-action” and “constant bundle” functors

from ordinary spectra.

So if SpRP∞ denotes the category of parametrized spectra over RP∞ with derived map-

ping spectra, then the above diagram of THHs can be rewritten

RP∞+ ∧ THH(S)
α−→ THH(EndSpRP∞ (Σ∞+RP∞S

∞))

THH(ι)−→ THH(SpRP∞ , fin)
cα−→ F (RP∞+ , THH(S))

Here we have recognized that the S[Z/2]-module

S[Z/2] ∼= Σ∞+ Z/2 ∼= S ∨ S ' S× S

becomes Σ∞+RP∞S
∞ as a parametrized spectrum over RP∞. The endomorphisms of this

module are

(

2∏ 2∏
S)C2 'M2×2(S)C2 ∼= (

2∏ 2∨
S)C2

There are a priori lots of ways to interpret the C2-fixed points, but they all give equivalent

results because the C2-action is homotopically free. Specifically, we can take the genuine

fixed points, the homotopy orbits (via the transfer), the homotopy fixed points, and even

the naive fixed points (because the product is there and so they are nontrivial!). This

was actually fortunate because the definition is technically the naive fixed points. Anyway,

to prove our claim that everyone is right, we use Wirthmuller to rewrite our genuine C2-

spectrum as
2∨ 2∨

S ∼= Σ∞+ (C2 q C2)

and then the geometric fixed points vanish, whence all the other constructions give the same

answer. This answer is equivalent to

Σ∞+ Z/2 ∼= S[x]/(x2 − 1)

where the identity S corresponds to maps S∨ S −→ S∨ S that preserve the summands and

are identical on the two summands, while the S〈x〉 corresponds to maps which switch the

two summands but which otherwise also do the same thing to both summands.
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As we said above, this module becomes the parametrized spectrum

E = (S ∨ S)×C2 S
∞ −→ RP∞

or more simply

Σ∞+RP∞S
∞

We showed above that its endomorphism ring

ΓRP∞(EndRP∞(E))

is equivalent to S[x]/(x2 − 1), the C2-homotopy fixed points of S ∨ S. Note that the fibers

of this parametrized spectrum are all S ∨ S, so their endomorphisms are M2(S) ' S∨4. It

is not, however, a trivial bundle: the monodromy of the fiber swaps the diagonal elements

and swaps the off-diagonal elements of M2(S). The equivalence of ring spectra

S[x]/(x2 − 1)
∼−→ ΓRP∞(EndRP∞(E))

sends the first factor to the obvious fiberwise endomorphism that preserves summands, and

the second factor to the obvious fiberwise endomorphism that swaps the summands.

Now to describe coassembly, we have to choose a contravariant functor on spaces over

RP∞ to approximate by an excisive functor. Given X −→ RP∞, define

F (X) = THH(ΓX(EndRP∞(E)))

Technically this is not the same functor as

F ′(X) = THH(SRP∞ |X , fin) ' THH(Σ∞+ ΩX,fin)

but we have a map F −→ F ′, and we will describe the composite of this map with coassembly

on F ′, which is the same as coassembly on F :

F //

��

F ′

��
P1F

∼ // P1F
′
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When X = RP∞, F (X) gives me the THH of the endomorphisms of S ∨ S, which is

what we want. When X = ∗ this gives

THH(M2(S))
∼−→ THH(S) ' S

where the equivalence is the trace map, defined more precisely by the zig-zag

|THH•(M2(S))| ∼←− ‖THH•(M2(S))‖ ∼←− ‖THH•(W2(S))‖ tr
(2)
•−→ ‖THH•(S)‖

∼−→ |THH•(S)|

where W2(S) is like matrices but the product has been replaced by a sum.

This trace equivalence motivates us to find a “fiberwise trace map” on the entire functor

F which gives the above equivalence on F (∗). This can be defined in many equivalent ways:

|ΓRP∞(M̃2(S))∧n+1|

‖ΓRP∞(M̃2(S))∧n+1‖

∼

OO

interchange // ‖ΓRP∞(M̃2(S)
∧

RP∞
n+1

)‖

‖ΓRP∞(W̃2(S))∧n+1‖

∼

OO

interchange //

trace

��

‖ΓRP∞(W̃2(S)
∧

RP∞
n+1

)‖

∼
OO

interchange //

trace

��

ΓRP∞(‖W̃2(S)
∧

RP∞
n+1
‖)

trace∼
��

ΓRP∞(‖SRP∞‖)

∼
��

ΓRP∞(‖SRP∞‖)

∼
��

ΓRP∞(‖SRP∞‖)

ΓRP∞(SRP∞) F (RP∞+ ,S)

Only the trace maps really need any explanation, but they are quite simple. Each point in

W2(S) corresponds to a 2×2 matrix that has at most one nonzero entry, and an (n+1)-tuple

of such matrices has product either 0, or has one nonzero entry. We define the trace on

this point to be zero if the product of the matrices is 0 or off the main diagonal; otherwise

we map into S by smashing together the spheres in each of our (n + 1) matrices. Now we

know that the above diagram is easily extended to a diagram of functors, and every single

map gives an equivalence on the linear approximations. The bottom functors are actually

linear. Therefore coassembly on F (RP∞) is given by any route in the above diagram from
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top to bottom. The top is equivalent to

LRP∞ ' RP∞ q RP∞

and our task is now to trace the first copy of RP∞ through the coassembly map, and compare

it with the Segal conjecture equivalence:

| ∗+ ∧(Z/2)n+|

∼
��

// |ΓRP∞(M̃2(S))∧n+1|

‖ ∗+ ∧(Z/2)n+‖ // ‖ΓRP∞(M̃2(S))∧n+1‖

∼

OO

��

‖ ∗+ ∧(Z/2)n+‖ // ‖ΓRP∞(M̃2(S)
∧

RP∞
n+1

)‖

‖(En+1)+ ∧ ∗+ ∧ (Z/2)n+‖

∼

OO

// ‖ΓRP∞(W̃2(S)
∧

RP∞
n+1

)‖

∼

OO

trace

��
ΓRP∞(‖SRP∞‖)

∼
��

F (RP∞+ , S)

This diagram commutes up to homotopy. The ∗+ is set to be one of the two elements of

Z/2 so that the total product is always the identity. (In these complexes we will call the

identity element “1” and the non-identity element “x.”) So the things on the left are all

equivalent to RP∞. The space En is defined to be a space of fiberwise embeddings:

En := EmbRP∞(S∞ ×
RP∞

S∞ ×
RP∞

. . . ×
RP∞

S∞,R∞ × RP∞) ' ∗

Now we explain the horizontal maps in the above commuting diagram. The first sends

1 to the section which at each fiber is the diagonal matrix, and x goes to the off-diagonal

matrix. This also explains the second and third horizontal maps. The final horizontal map
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is a Pontryagin-Thom collapse. At simplicial level n it is

(En+1)+ ∧ ∗+ ∧ (Z/2)n+ −→ ΓRP∞(W̃2(S)
∧

RP∞
n+1

)

∼= ΓRP∞(Σ∞+RP∞(S∞1 q S∞x )
×

RP∞
n+1

)

For each of our (n + 1) slots on the right, we look at whether I have a 1 or an x in the

corresponding slot in ∗+ ∧ (Z/2)n+. From this, we pick either S∞1 or S∞x . Once the selection

is made, we now have a fiberwise product of (n+ 1) copies of S∞ on the right; we use the

chosen embedding from En+1 and I Pontryagin-Thom collapse onto a small neighborhood

of this embedding. This describes the desired section on the right. (To be precise, we must

make the suspension spectrum an ε-suspension spectrum and take the fibrant replacement

via colim kΩ
kXn+k before taking the section.)

It is now fairly clear that we can define the face maps on En+1 on the left (depending

on the string of 1s and xs) so that this is a map of semi-simplicial complexes. Specifically,

the kth face on the right pairs the kth and (k + 1)st copy (with wrap-around for the last

face) of (S∞1 q S∞x ) by

(S∞1 q S∞x )+ ∧ (S∞1 q S∞x )+ −→ (S∞1 q S∞x )+

(p1, p1) 7→ p1 when p1 ∈ S∞1
(−p1, p1) 7→ ∗

(px, px) 7→ ∗ when px ∈ S∞x
(−px, px) 7→ p1

(p1, px) 7→ ∗

(−p1, px) 7→ px

(px, p1) 7→ px

(−px, p1) 7→ ∗

(These rules come directly from matrix multiplication in W2(S):p1 −px

px −p1


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Only 1 entry in each matrix is nonzero. This gives 16 possible matrix multiplications, but

by Z/2-equivariance they are determined by the above 8.) Therefore the kth face on the

left must restrict the embedding along a diagonal S∞ −→ S∞×S∞ that sends p to (p, p) if

the (k+ 1)st slot is 1 and (−p, p) if the (k+ 1)st slot is x. (Again, this is with wrap-around

if k = n.)

Tracing through the trace, we get a map

‖(En+1)+ ∧ ∗+ ∧ (Z/2)n+‖ ∧ RP∞+ −→ Ω∞S′

which for each pair of points on the left Pontryagin-Thom collapses onto a pair of points in

R∞. So it is indeed a composite

‖(En+1)+ ∧ ∗+ ∧ (Z/2)n+‖ ∧ RP∞+ −→ RP∞ −→ Ω∞S′

where the second map is a Becker-Gottlieb transfer. To show it is the Segal conjecture

isomorphism, it now suffices to calculate this first map on π1. The second generator goes

to the generator, since as we rove over the base RP∞ the choice of which point in S∞ is

the privileged one gets switched. Similarly, we may build a closed loop in ‖(En+1)+ ∧ ∗+ ∧
(Z/2)n+‖ which projects down to the generator in |∧∗+∧ (Z/2)n+|, by picking some fiberwise

embedding

S∞ ×
RP∞

S∞ −→ R∞ × RP∞

and a homotopy to its antipode. This gives a path through simplicial level 1. Taking the

geometric realization and the diagonal, we get a path whose two endpoints coincide (the

above multiplication rules tell us to restrict along p 7→ (−p, p) at one end and p 7→ (p,−p)
at the other end). Projecting down to | ∧ ∗+ ∧ (Z/2)n+|, we obviously get a generator. But

this path also switches the choice of privileged point as we rove around it. Therefore it goes

to the generator of RP∞ and the proof is complete.

3.7.1 The general case of finite p-groups

We begin by recalling a result from [LMM82]:

Proposition 3.7.5. The composite of tom Dieck splitting and the Segal conjecture p-adic
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equivalence ∨
(H)≤G

BWH+
∼−→ SG ∼−→ ShG

is on each summand a map

BWH+ −→ Map(BG, S)

adjoint to

(BG×BWH)+ −→ Ω∞S∞

which is a tranfer along the bundle over BG×BWH whose fiber is G/H and whose G×WH-

monodromy is given by G multiplying on the left and WH multiplying on the right (turned

into a left action by inverting).

When G is abelian, this simplifies to

(B(G/H)×BG)+ −→ B(G/H)+ −→ Ω∞S∞

where the first map sends (g1 +H, g2) 7→ (g1−g2) and the second map is the G/H-transfer.

For completeness we re-prove the result from the more standard formulations of the Segal

conjecture.

Proof. The tom Dieck map

BWH+ −→ SG

is a transfer along the G/H-bundle

G×NH EWH −→ BWH

followed by a collapse of the total space to a point. To define the transfer, we pick a G-

representation V containing G/H, we embed the bundle into BWH × V ⊕∞, and we pick

an ε > 0 sucht that the ε-balls about the various points of G/H ↪→ V ⊕∞ in each fiber are

disjoint.
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Now the above composite is given by

BWH
(n)
+

//

��

(Ωf(n)V S
f(n)V
ε )G

��

BWH+
//

��

(colim
n

Ωf(n)V S
f(n)V
ε )G

��

(colim
n

Ωn+f(n)V S
n+f(n)V
ε )G

��

Map∗(EG+, colim
n

Ωn+f(n)V S
n+f(n)V
ε )G

Map∗(EG+, colim
n

ΩnSnε )G

∼

OO

Map∗(BG+,Ω
∞S∞ε )

where f(n) is any sufficiently large increasing function of n. The dotted line lift-up-to-

homotopy is formed by picking a G-equivariant homotopy between the two maps

BWH+ ∧ EG+ ∧ S∞ ∧ S∞V −→ S∞ε ∧ S∞Vε

(x, y, z, w) 7→ (z, w − x̃)

(x, y, z, w) 7→ (?, w)

Here x̃ is whichever lift of x to G ×NH EWH is closer to w; as long as ε < 1 such a lift

exists or it is irrelevant because the map goes to the basepoint. The group G acts normally

on y and w, as well as the second slot of the output. All other coordinates are fixed. To fill

in the (?) and pick a homotopy, we first pick a fiberwise embedding[
(G ×

NH
EWH)× EG

]
/G ↪→ R∞ ×BWH ×BG
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Not only does such a map exist, but the space of all possible choices for g is weakly con-

tractible. Then take g to be the composite

(G ×
NH

EWH)× EG −→
[
(G ×

NH
EWH)× EG

]
/G ↪→ R∞ ×BWH ×BG π1−→ R∞

and take our homotopy to be

(x, y, z, w, t) 7→ (z − (sin t)g(x̃, y), w − (cos t)x̃)

Here again the map is well-defined because, though there may be multiple values of (cos t)x̃

that are within ε of w, in that case only one of those values of x̃ gives a value of (sin t)g(x̃, y)

that is within ε of z. It is also straightforward to check it is equivariant. The end of the

homotopy is

(x, y, z, w) 7→ (z − g(x̃, y), w)

and then we can restrict to Map∗(BG+,Ω
∞S∞) by forgetting the w coordinate:

(x, y, z) 7→ z − g(x̃, y)

Therefore the composite is as above.

Now we need to describe how to pair assembly and coassembly together for A-theory

and THH. This involves a few more steps than before:

∨
(H)≤G

BWH+ ∧K(S)
α−→

∨
(H)≤G

K(Σ∞+ WH)

K(ι)−→
∨

(H)≤G

K(Σ∞+ WH,fin)

K(trivial action)−→ K(Σ∞+ NH,fin)

K(G×NH−)−→ K(Σ∞+ G,fin)

cα−→ F (BG+,K(S))
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Put another way, for each conjugacy class of H ≤ G we follow the diagram

A(BG)
K(ι) // ∀(BG)

cα // F (BG+, ∀(∗))

A(BNH)
K(ι) //

×NHG

OO

∀(BNH)

×NHG

OO

BWH+ ∧A(∗) α // A(BWH)
K(ι) // ∀(BWH)

pullback

OO

There is no obvious map A(BWH) −→ A(BNH) making this commute; pullback doesn’t

work because BNH −→ BWH has fiber BH, which is not finite. In both of these diagrams,

we may replace K-theory with THH.

Next, we’ll model the above maps of Waldhausen categories by using parametrized

spectra. They all come about by simple pullback f∗ and pushforward f! functors. We

use the two-sided bar construction to construct the following maps of covering spaces over

BWH, BNH, and BG underlying these functors:

WH

��

WH

��

=oo = //WH

��

// G/H

��
B(∗,WH,WH)

��

B(∗, NH,WH)

��

pullback
oo ∼

pullback
// B(∗, G,G/H)

��

∼
pushforward

// B(∗, G,G/H)

��
B(∗,WH, ∗) B(∗, NH, ∗)oo ∼ // B(∗, G,G/NH) // B(∗, G, ∗)

BWH BNH BNH ′ BG

By abuse of notation, we will refer to the bundle of fiberwise stable endomorphisms of

the first three bundles by M̃WH(S), and for the last bundle M̃G/H(S). These have clear

analogs W̃WH(S) and W̃G/H(S), defined by replacing the products with sums. There is a

homomorphism from WH into every one of these fiberwise endomorphism spectra, simply

because all of our covering spaces above have a right WH-action which commutes with all

the maps. Finally, as before we have

ΓBWH(M̃WH) 'MWH(S)hWH ' Σ∞+ WH
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coming from the WH-action we discussed above.

We build the following maps of Waldhausen categories:

Exfin(BWH) −→ Exfin(BWH)
g∗−→ Exfin(BNH)

g∗←−
∼
Exfin(BNH ′)

g!−→ Exfin(BG)

These maps are all enhanced exact functors of enhanced Waldhausen categories, so they

induce maps on K-theory and THH that commute with the cyclotomic trace. The arrows

denoted ∼ have the approximation property, so they induce an equivalence on K-theory

and THH.

The THH of these categories is defined in two stages: first we form a spectral enrichment

CS(x, y) = {C(x,Σny)}∞n=0

These are naturally orthogonal spectra; by neglect of structure they are symmetric spectra.

Then we form THH by the Hochschild-Mitchell cyclic nerve. We don’t care about the

cyclotomic structure here, so we will simply take the ordinary cyclic nerve and just make

sure the terms are cofibrant spectra. This has a natural weak equivalence into the Hochchild-

Mitchell nerve.

Now the covering spaces we defined above become objects in these Waldhausen categories

which agree under the given maps:

Exfin(BWH) −→ Exfin(BWH)
g∗−→ Exfin(BNH)

g∗←−
∼
Exfin(BNH ′)

g!−→ Exfin(BG)

Our spaces over these bases are all covering spaces, therefore h-fibrant. They become f -

cofibrant when a disjoint basepoint section is added. This gives a privileged choice of object

in each of the above Waldhausen categories, which are taken to each other by the chosen

maps.

In the following diagram, the right-hand column is obtained by applying the cyclic

nerve to the above maps of Waldhausen categories. The middle column is what we get by
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restricting the cyclic nerve to the endomorphisms of our one privileged object.

|B•(∗,WH, ∗)| WH-action // |N cyc
• ΓBWH(M̃WH(S))| // |N cyc

• Exfin(BWH)S |

��
|B•(∗,WH, ∗)| WH-action // |N cyc

• ΓBWH(M̃WH(S))|

pullback

��

// |N cyc
• Exfin(BWH)S |

pullback

��
|B•(∗,WH, ∗)| WH-action // |N cyc

• ΓBNH(M̃WH(S))| // |N cyc
• Exfin(BNH)S |

|B•(∗,WH, ∗)| WH-action // |N cyc
• ΓBNH′(M̃WH(S))|

∼ pullback

OO

pushforward

��

// |N cyc
• Exfin(BNH ′)S |

∼ pullback

OO

pushforward

��
|B•(∗,WH, ∗)| WH-action // |N cyc

• ΓBG(M̃G/H(S))| // |N cyc
• Exfin(BG)S |

Notice that our parametrized spectra are not made fibrant before taking sections! Spectrum

level n is literally the sections of the n-fold fiberwise reduced supension of a space.

We claim that the top composite is equivalent to the assembly map of the functor

X 7→ |N cyc
• Exfin(X)S | ' |N cyc

• Rffin(X)S |

on spaces X −→ BWH, evaluated at X = BWH. To see that the above map is indeed

assembly, we use

ΓBWH(M̃WH) 'MWH(S)hWH ' Σ∞+ WH

to rewrite the map as the composite

|B•WH| ↪→ |N cyc
• Σ∞+ WH| ∼−→ |N cyc

• ΓBWH(M̃WH(S))|

where the first map of bar complexes

X = |B•WH|, LX ' |N cyc
• WH|

is at level n

(g1, . . . , gn) 7→ (g−1
n . . . g−1

1 ; g1, . . . , gn)

and it is a standard fact that this models the inclusion of constant loops X −→ LX, which
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is visibly the assembly map for the functor F (X) = Σ∞+ LX.

Now we turn to coassembly. The bottom map of the above diagram extends to a natural

transformation of homotopy functors

F (X) = |N cyc
• ΓX(M̃G/H(S))| −→ |N cyc

• Exfin(X)S | = G(X)

for CW-complexes X −→ BG up to homotopy equivalence. When X = ∗ we get

F (∗) = |N cyc
• MG/H(S)| = |N cyc

• Exfin(∗)S(G/H+, G/H+)| −→ |N cyc
• Exfin(∗)S | = G(∗)

We will now show that

• This map F (∗) −→ G(∗) is an equivalence, so the natural transformation F −→ G

gives an equivalence of linear approximations P1F
∼−→ P1G.

• We can build a zig-zag of homotopy functors F
∼←− F ′ −→ F ′′

∼←− . . . −→ F (n) which

all induce equivalences on linear approximations P1F
(i).

• The last functor F (n) in our zig-zag is linear, therefore the composite

BWH ∧ S −→ F (BG) −→ G(BG) −→ P1G(BG)

is isomorphic in the homotopy category to the composite

BWH ∧ S −→ F (BG)
∼←− F ′(BG) −→ . . . −→ F (n)(BG)

For the first bullet point, we use the Morita-invariance statement from the Blumberg

Mandell paper. For the second bullet point, we realize that the equivalence we just discussed

is the top map in a homotopy-commuting square

|N cyc
• MG/H(S)| // |N cyc

• Exfin(∗)S |

|N cyc
• WG/H(S)|

∼

OO

trace∼
��

|N cyc
• Exfin(∗)S(∗+, ∗+)|

∼

OO

|N cyc
• S| oo

∼= // S
��
∼=

OO
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To define F ′ and F ′′ we build maps of parametrized spectra that do

MG/H(S)
∼←−WG/H(S) −→ S on each fiber:

|B•(∗,WH, ∗)| WH-action // |N cyc
• ΓBG(M̃G/H(S))|

‖B•(∗,WH, ∗)‖ WH-action //

∼

OO

‖N cyc
• ΓBG(M̃G/H(S))‖

∼
OO

interchange

��

‖ΓBG(N cyc
• M̃G/H(S))‖

Γ(R)

��

‖ΓBG(RN cyc
• M̃G/H(S))‖

small spheres∼
��

‖B•(∗,WH, ∗)‖WH-action// ‖ΓBG(RN cyc
• M̃G/H(S′))‖

‖E• ×B•(∗,WH, ∗)‖ Φ //

∼

OO

‖ΓBG(RN cyc
• W̃G/H(S′))‖

∼
OO

trace
��

‖ΓBG(RS′)‖ ∼ // F (BG+, RS′)

We will explain the extra notation and the commutativity of the lowermost square, but

before we do that, notice that this fulfills both the second and third bullet point of our

above list. The right-hand column gives our zig-zag of homotopy functors (replace ΓBG

with ΓX) over G, which

Now for the new notation. First, R denotes the fibrant replacement of (fiberwise)

ordinary spectra given by

REn = colim
k

Ωk
BEn+k

In general we only want to do this when the levels of our spectra are already fibrations over

B.

Next, we define En to be the space of fiberwise embeddings

En ⊂ EmbBG(B(∗, G,G/H)
×
BG

n+1
,R∞ ×BG)×Map(BG, (0, 1])n+1
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consisting of only those embeddings e and choices of positive reals (ε0, . . . , εn) with the

following properties. On each fiber F −→ B(∗, G,G/H) −→ BG, the embedding e must

extend to a map

R〈F 〉⊕n+1 ↪→ R∞

which is a composite of scaling by a positive real number ri in each of the R〈F 〉-coordinates,

followed by an orthogonal map. Here we include F×n+1 ↪→ R〈F 〉⊕n+1 by sums of basis

vectors,

(x0, . . . , xn) −→ [x0]⊕ . . .⊕ [xn]

Put another way, it is the (n+ 1)-fold Cartesian product of the map F −→ R〈F 〉 that takes

each point to its corresponding basis vector. Notice that R〈F 〉 is a WH-representation

under the usual action on the basis vectors. Finally, the reals (ε0, . . . , εn) must be chosen

so that the (n+ 1)-fold product of discs with these radii gives a polydisc about each point

of Fn+1 in R〈F 〉⊕n+1, and all these polydiscs are disjoint.

Notice that En is contractible. We will use these spaces to thicken ‖B•(∗,WH, ∗)‖, with

the aim of building a map which strictly commutes with faces. This is the same technique

used by Cohen in [Coh04] to build strictly associative multiplications on Thom spectra.

Next we use S′ to denote the “small spheres” spectrum which at level n is

S′n = Rn × (0, 1]/{(x, ε) : ‖x‖ ≥ ε}

The multiplication on S′ is by concatenation of coordinates, and taking the minimum of the

two values of ε. Under this convention, the collapse map S −→ S′ sending x 7→ (x, 1) is a map

of strictly associative unital ring spectra. Even better, the smash S′ ∧ S′ is homeomorphic

to

S′′ = S[2], S′′n = Rn × (0, 1]× (0, 1]/{(x, ε1, ε2) : ‖x‖ ≥ min(ε1, ε2)}

and so on for higher smash powers. In the above diagram, we do this construction in the

obvious fiberwise way. It is worth pointing out that when we build W̃G/H(S′) we think of

our matrix entries as maps S −→ S′, so that the fibers are homeomorphic to

WG/H(S′) ∼=
(G/H)2∨

S′
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and similarly the fibers of W̃G/H(S′)
∧
BG

n+1
are

WG/H(S′)∧n+1 ∼=
(G/H)2(n+1)∨

S[n+1]

Next we define a map Φ of semi-simplicial spectra which on level n is the composite

(En)+ ∧ ∗+ ∧ (WH)n+ −→ ΓBG

(
R

(
S[n+1]
BG ∧

BG
(WH ×B(∗, G,G/H))

×
BG

n+1

+BG

))

−→ ΓBG

(
RW̃G/H(S′)

∧
BG

n+1
)

The first map is easy: a point in the left-hand side gives us (n+ 1) elements of WH of the

form

(w−1
n . . . w−1

2 w−1
1 ), w1, w2, . . . , wn

and we use them to select the (n + 1) elements of WH on the right; then the remaining

map is a Pontryagin-Thom collapse onto the discrete set of points given by the embedding

in En:

v 7→ (v − e(x0, . . . , xn), x0, . . . , xn)

The R outside the N cyc gives us the sphere coordinates needed to make this collapse map

canonically and explicitly; the εis give us the coordinates in S[n+1], though only their mini-

mum matters when giving the sphere coordinate. In total, the first map of our composite

is

(e, ε0, . . . , εn, w
−1
n . . . w−1

1 , w1, . . . , wn)

−→
[
(v, x) 7→ (v − e(x0, . . . , xn), (w−1

n . . . w−1
1 , x0), . . . , (wn, xn))

]
The second map is also straightforward: it comes from the map of fiberwise spectra

Σ∞+BG(WH ×B(∗, G,G/H)) −→ Σ∞+BG

(
B(∗, G,G/H) ×

BG
B(∗, G,G/H)

)
= W̃G/H(S)

(w, x) 7→ (w · x, x)

where w · x := xw−1 is the right action of WH on B(∗, G,G/H) turned into a left action
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by inversion. The total composite Φ is now

(e, ε0, . . . , εn, w
−1
n . . . w−1

1 , w1, . . . , wn)

−→
[
(v, x) 7→ (v − e(x0, . . . , xn), (w−1

n . . . w−1
1 · x0, x0), . . . , (wn · xn, xn))

]
where (x0, . . . , xn) is the unique point in the fiber such that

v − e(x0, . . . , xn) < min(ε0, . . . , εn).

Next we describe the kth face map

dk : (En)+ ∧ ∗+ ∧ (WH)n+ −→ (En−1)+ ∧ ∗+ ∧ (WH)n−1
+

(e, ε0, . . . , εn, w
−1
n . . . w−1

1 , w1, . . . , wn) 7→

(e ◦∆k,wk+1
, ε0, . . . ,min(εk, εk+1), . . . , εn, w

−1
n . . . w−1

1 , w1, . . . , wkwk+1, . . . , wn)

∆k,w : B(∗, G,G/H)
×
BG

n
−→ B(∗, G,G/H)

×
BG

n+1

(. . . , xk−1, xk, xk+1, . . .) 7→ (. . . , xk−1, w · xk, xk, xk+1, . . .)

It’s straightforward to check these face maps are associative and so define a semi-simplicial

space. We carefully constructed En above so that the properties we required of the embed-

ding would be preserved under restricting to a diagonal in this way. (∆k,w is a composition

of a scaling in one of the n coordinates and an orthogonal map. The new scaling factor

r′k is derived from the old ones by
√
r2
k + r2

k+1.) We did not simply take the space of all

embeddings, because the orthogonality assumptions are needed below to make the square

above Φ commute up to explicit homotopy.

Finally, our definition of Φ respects the face maps because of how matrices in WG/H(S)

multiply: the multiplication is on each fiber just a map of wedges of spheres

∨
S −→

∨
S

which either preserves each sphere or collapses it to 0, based on whether our two adjacent

matrices (with one nonzero entry each) can multiply to give something nonzero. Post-

composing a transfer with such a collapse map gives another transfer, in which we have

struck out some of the points from our embedded (G/H)n+1, leaving behind an embedded

(G/H)n. The points that remain are those whose kth and (k + 1)st coordinates are of the
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form

(. . . , wk+1 · x, x, . . .) 7→ (. . . , (wkwk+1 · x,wk+1 · x), (wk+1 · x, x), . . .)

∈ Σ∞+BG(B(∗, G,G/H) ×
BG

B(∗, G,G/H))
×
BG

n+1

But this is exactly the image of ∆k,wk+1
, so our map of semi-simplicial spectra does indeed

commute with faces.

Now we will show that the square above Φ commutes up to homotopy. The main idea,

and the motivation behind the above definition of Φ, is that the fiberwise pretransfer

SBG −→ Σ∞+BGEG
∼=

G∨
S̃

lifts the diagonal map S −→
∏G S̃ up to homotopy. The homotopy collapses our embedding

down to the origin, since in the product, the neighborhoods of the various points are allowed

to overlap.

Now let’s make this idea precise in our setting. Consider the square from the master

diagram

‖B•(∗,WH, ∗)‖WH-action// ‖ΓBG(RN cyc
• M̃G/H(S′))‖

‖E• ×B•(∗,WH, ∗)‖ Φ //

∼

OO

‖ΓBG(RN cyc
• W̃G/H(S′))‖

∼
OO

Observe that the composite along the bottom is given by

(En)+ ∧ ∗+ ∧ (WH)n+

Φ−→ ΓBG

(
R

(
S[n+1]
BG ∧

BG
(WH ×B(∗, G,G/H))

×
BG

n+1

+BG

))
−→ ΓBG

(
R

(
S[n+1]
BG ∧

BG
MapBG (B(∗, G,G/H), B(∗, G,G/H)+BG)

∧
BG

n+1
))

−→ ΓBG

(
R

(
MapBG

(
B(∗, G,G/H),S′BG ∧

BG
B(∗, G,G/H)+BG

) ∧
BG

n+1
))

Our map of bundles is, on each fiber, an (n+ 1)-fold smash of

S′ ∧ (WH ×G/H)+ −→ S′ ∧Map∗(G/H+, G/H+) −→ Map∗(G/H+, S′ ∧G/H+)

(v, ε, w, g) 7→ [g 7→ (v, ε, w · g), all others 7→ ∗]
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In other words, each pair (w, g) goes to the partially-defined map G/H −→ G/H defined

only on g by (g 7→ w · g).

In total, the composite is

(e, (εi)
n
i=0, w

−1
n . . . w−1

1 , w1, . . . , wn)

7→
[
(v, x) 7→ (v − e(x0, . . . , xn), (εi)

n
i=0, (x0 7→ w−1

n . . . w−1
1 · x0), . . . , (xn 7→ wn · xn))

]
7→ [(v, x) 7→ (ρx, ṽ) ∧ (x0 7→ (v0 − e0(x0), ε0, w0 · x0)) ∧ . . .]

Here ρx ∈ O(N), N >> |G/H|n+1, is any orthogonal map taking the first |G/H|n+1

coordinates of RN to the image of R〈F 〉⊕n+1 under e|x. Pulling back v ∈ R∞ along ρx, we get

coordinates (v0, v1, . . . , vn, ṽ). Though ρx is not unique, its behavior on the first |G/H|n+1

coordinates is unique and so are v0 through vn. (It may also be chosen in a way that varies

continuously with x.) The non-uniqueness changes the leftovers ṽ, though this gives the

same point in the smash product of orthogonal spectra. As before, (x0, . . . , xn) is a point

in the fiber over x; it is for now the unique point in the fiber such that v − e(x0, . . . , xn) <

min(ε0, . . . , εn), but it will soon be non-unique and the above partially-defined maps will

become fully-defined maps. Define the homotopy Φt to take the above input to

[(v, x) 7→ (ρ, ṽ) ∧ (x0 7→ (v0 − te0(x0), (1− t) + tε0, w0 · x0)) ∧ . . .]

When t = 1 this gives the same as before. When t = 0 it simplifies to

[(v, x) 7→ (ρ, ṽ) ∧ (x0 7→ (v0, 1, w0 · x0)) ∧ . . .]

which is the same in the smash product of orthogonal spectra as

[(v, x) 7→ (id, v) ∧ (x0 7→ (∗, 1, w0 · x0)) ∧ . . .]

which is exactly the top route of our square, the WH-action. Of course, this is a homotopy

on each simplicial level; it agrees with the face maps and so passes to a homotopy on the

thick geometric realization.

This finishes commutativity of the master diagram. Every map either

• is an equivalence
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• comes from one of our original maps of Waldhausen categories (i.e. the pullback and

pushforward maps)

• gives an equivalence on linear approximations for the functor that replaces the “BG”

with X (i.e. the interchange and fiberwise trace maps)

Therefore our maps of Waldhausen categories, when paired with assembly and coassembly,

result in the composite

‖E• ×B•(∗,WH, ∗)‖ Φ−→ ‖ΓBG(RN cyc
• W̃G/H(S′))‖ trace−→ ‖ΓBG(RS′)‖ ∼−→ F (BG+, RS′)

We’re almost there! This is adjoint to a transfer

‖E• ×B•(∗,WH, ∗)‖ ×BG −→ Ω∞S′

and we just need to check that the G/H-bundle we are transferring along has the correct

G×WH-monodromy. The bundle is built by taking

B(∗, G,G/H))
×
BG

n+1

��
∆n × En ×Bn(∗,WH, ∗)×BG

and restricting to those points of the form

(w1 . . . wn · x̃, . . . , wn−1wn · x̃, wn · x̃, x̃)

��
(t, e, ε, w1, . . . , wn, x)

, (x̃ ∈ B(∗, G,G/H)) 7→ (x ∈ BG)

This gives a set of size |G/H| over every point of the base, respecting the face maps that

glue simplices together, so that they glue together to a G/H-bundle. To calculate the mon-

odromy under G, we restrict to simplicial level 0. The closed loop in π1(BG) corresponding

to g ∈ G reshuffles the fiber of B(∗, G,G/H) by the G-action, as expected. To calculate

the monodromy under WH, we look at simplicial level 1. Let e be a fiberwise embedding

B(∗, G,G/H))
×
BG

2
−→ R∞ ×BG
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and let et be a homotopy from e to e◦(w ·−) for some fixed w ∈WH. Ignoring the choice of

ε because it is irrelevant, we pick a closed loop through ‖E•×B•(∗,WH, ∗)‖ which traverses

simplicial level 1 by

(et, ε, w
−1, w, ∗ ∈ BG)

The 0th face is

(e0 ◦∆0,w, ε, 1, ∗)

and the 1st face is

(e1 ◦∆1,w−1 , ε, 1, ∗)

These agree because

e0(∆0,w(y)) = e(w · y, y)

e1(∆1,w−1(y)) = e(w · (y, w−1 · y))

= e(w · y, y)

So we get a closed loop. It is clear that we can define the monodromy along this loop using

the homotopy et. This gives the expected action of WH on the fiber, and the proof is

complete.

3.7.2 Lifting the theorem to TC

We would like to also prove that the composite along this top row is an equivalence:

RP∞+ ∧ TC(∗) α //

��

TC(RP∞)
TC(ι) //

��

TC(P ′(Σ∞+ Z/2))
cα //

��

F (RP∞+ , TC(∗))

��
RP∞+ ∧ THH(S)

α // THH(Σ∞+ Z/2)
THH(ι)// THH(P ′(Σ∞+ Z/2))

cα // F (RP∞+ , THH(S))

Although the left-hand map on the top row is easily checked to be split, we cannot verify

and indeed suspect it is not the case that the right-hand map is split after p-completion.
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This arises from the fact that F (RP∞+ , THH(S)) is not a cyclotomic spectrum:

F (RP∞+ , THH(S))C2 ∼= F (RP∞+ , THH(S)C2)

' F (RP∞+ , S ∨ Σ∞+ RP∞)

' F (RP∞+ , S) ∨ F (RP∞+ ,Σ∞+ RP∞)

which by work of May et al. on stable maps between classifying spaces cannot fit into a

cofiber sequence with F (RP∞+ , THH(S))hC2 and F (RP∞+ , THH(S)).

One may define a notion of universal approximation of the pre-cyclotomic spectrum

F (RP∞+ , THH(S)) by a cyclotomic spectrum T , essentially because homotopy colimits com-

mute with geometric fixed points and the change-of-group isomorphism. We conjecture that

the resulting map

THH(P ′(Σ∞+ Z/2)) −→ T

is split surjective as a map of cyclotomic spectra, which implies that it gives a split surjection

on TC.



Appendix A

A treatment of twisted Poincaré

duality

This appendix represents work done in 2011 on giving a geometrically flavored write-up of

twisted Poincaré duality. We prove Poincaré duality for a noncompact manifold M with

boundary, with coefficients given by a parametrized spectrum over M . The equivalence is

given by a scanning map and the method of proof is by “local to global,” both ideas that are

known around this time but difficult to find explicitly in the literature. In the process, we

carefully define the notion of cohomology of M with compact supports when the coefficients

are taken in spectra. We remark on some pathologies that can arise if one is too careless

with the way this space is defined.

182
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A.1 Definitions and statement of the theorem

We begin with definitions and notation. By “spaces” we always mean k-spaces.

Definition A.1.1. • We will usually take the n-sphere Sn to be the one-point compact-

ification of Rn. The suspension ΣnX is defined to be Sn ∧X. Fix a homeomorphism

(0, 1) −→ R; we will sometimes use this homeomorphism to identify (0, 1)n with Rn,

and by extension In/∂In with Sn.

• We say that E is a retractive space or ex-space over B if there are two maps B
s−→

E
p−→ B giving B as a retract of E. Equivalently, we think of E as a space over B

with a chosen section. This is a parametrized notion of a based space, since every

fiber Eb = p−1(b) has a basepoint given by s(b). We need a few related concepts:

– Write E/B as shorthand for E/s(B). This is simply a based space, no longer

parametrized over B. In the notation of [MS06] this space is denoted r!E.

– Let ΓB(E) be the space of sections of the map p, with basepoint s. Again, this is

no longer parametrized over B. In the notation of [MS06] this space is denoted

r∗E.

– Given a section B
σ−→ E, we say σ vanishes at b ∈ B if σ(b) = s(b). The support

of σ is then defined to be the closure of the complement of the vanishing set.

If B is locally compact Hausdorff, then let ΓcB(E) be the set of sections with

compact support in B, topologized as a subspace of ΓK(E ∪s(B) K), where K is

any compactification of B.

– For any two ex-spaces X and Y over B, there is a notion of fiberwise product

X ×B Y and fiberwise smash X ∧B Y . The definitions are straightforward as

long as we describe what happens on each fiber:

(X ×B Y )b ∼= Xb × Yb

(X ∧B Y )b ∼= Xb ∧ Yb

– The fiberwise suspension Σn
BE is defined to be the fiberwise smash product (Sn×

B) ∧B E. We will also write it as ΣnE if no confusion will arise. If ξ −→ B is

a vector bundle, its one-point compactification is denoted Bξ, and its fiberwise
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one-point compactification is denoted Sξ. The twisted suspension of E −→ B

by ξ is

ΣξE = Sξ ∧B E

• A parametrized prespectrum E −→ B is a sequence of ex-spaces En −→ B, together

with maps ΣBEn −→ En+1 from the fiberwise suspension of each space into the next.

• Our theorem below will not be true if we do not assume some sort of uniform behavior

in E. We therefore say that a parametrized prespectrum E −→ B is nice if each

projection En −→ B is a Hurewicz fibration, and in addition each ΣBEn −→ En+1 is

a cofibration in the fiberwise sense. That is, there is a fiberwise retract of En+1 × I
onto ΣBEn × I ∪ En+1 × {0}. This implies that every level En is an ex-fibration as

defined in the next section.

• Given a parametrized prespectrum E −→ B, we have four ways to create ordinary

prespectra:

– Take the fibers Eb.

– Take the quotient E/B.

– Take the space of sections ΓB(E), or compactly supported sections ΓcB(E).

Just apply one of these constructions to each of the levels En. This gives a sequence

of based spaces {Xn}. Then the fiberwise structure maps ΣBEn −→ En+1 give non-

fiberwise structure maps ΣXn −→ Xn+1.

• Following [CK09], we define homology prespectrum of B with coefficients in E to be

H•(B;E) = E/B

This can be naturally extended to homology of parametrized spaces or spectra over

B. Similarly, define cohomology and cohomology with compact supports as

H•(B;E) = ΓB(E) H•c (B;E) = ΓcB(E)

Remark. The prespectrum H•(B;E) contains more information than the usual homology
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groups H∗(B). In particular, if we take E = HZ × B to be a trivial fibered Eilenberg-

Maclane spectrum, then

πq(H•(B;E)) ∼= πq(B+ ∧HZ) ∼= Hq(B;Z)

Similarly for cohomology:

π−q(H
•(B;E)) ∼= π−q(Map∗(B+, HZ)) ∼= [B+,K(Z, q)] ∼= Hq(B;Z)

Each bundle of groups with fiber Z gives a twisted Eilenberg-Maclane spectrum E. The

homotopy groups of H•(B;E) and H•(B;E) give the usual notion of twisted homology and

cohomology, because they satisfy the same axioms. Philosophically, these prespectra are

an intermediary between B and H∗(B), so they play the same role that the chains C∗(B)

play in singular homology. This framework is strictly more powerful than the more classical

framework for twisted homology and cohomology, since the classical framework only allows

flat bundles, whereas ours has no such restriction.

Definition A.1.2. • Let M be a closed m-manifold. Let e : M ↪→ Rn be an embedding

with normal bundle νn. Define the parametrized prespectrum S−TM −→M as follows.

When p < n, S−TMp = M , which in each fiber is just a single point. When p = n,

S−TMp is the fiberwise one-point compactification of the normal bundle νn. When

p > n, embed Rn into Rp as the last n coordinates, then take S−TMp to be the fiberwise

one-point compactification of the normal bundle νp ∼= Rp−n⊕ νn. The structure maps

ΣMS
−TM
p −→ S−TMp+1 come from the canonical map R ⊕ νp

∼=−→ νp+1. The notation

S−TM suggests that each fiber is a sphere; if we quotient out by the basepoint section,

we get the usual Thom prespectrum Σ−nΣ∞Mνn .

• For each sufficiently small ε ∈ (0, 1), let S−TMε be the ε-disc bundle of the normal

bundle of M , quotiented out fiberwise by its boundary. There is an obvious map

S−TM −→ S−TMε , and on each fiber this map is a level homotopy equivalence of pre-

spectra. We can also use the exponential map to identify S−TMε with the ε-tubular

neighborhood of M , quotiented out by its boundary. To deal with noncompact mani-

folds, we also allow continuous functions ε : M −→ (0, 1), and construct S−TMε in the

obvious way.

• If M has a choice of metric we let S(TM) denote the unit sphere bundle of the tangent
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bundle of M .

Since H•(M) and H•(M) capture more information than the usual homology and coho-

mology of M , it is natural to ask whether they have a relationship that generalizes Poincaré

duality. This is our main theorem:

Theorem A.1.3 (Twisted Poincaré Duality). Let M be any (smooth, second-countable)

manifold with no boundary. If E is a parametrized prespectrum over M which is nice in the

sense outlined above, then there is a (weak) stable homotopy equivalence of prespectra

H•(M ; Σ−TME) ' H•c (M ;E)

(S−TM ∧M E)/M ' ΓcM (E)

The equivalence is a zig-zag of π∗-isomorphisms, so it corresponds to an actual map in the

stable homotopy category of prespectra as described in [MMSS01].

Remark. This result is not new; it appears in [CK09] and is proven in ( [MS06], Ch. 18).

Our proof here is relatively self-contained and follows the notation of [CK09]. It appears that

this proof is significantly different in at least two ways. First, we work with cohomology

with compact supports, which allows us to closely follow the classical proof of Poincaré

duality, and easily extends the known result to noncompact manifolds. Second, we use an

explicit formula for the Alexander map Mν ∧M+ −→ Sn, which is well-suited for proving

multiplicative versions of Poincaré duality relating intersection products in homology to cup

products in cohomology.

Remark. The theorem does not assume that M is oriented or even orientable; this comes

at the cost of the Σ−TM on the left-hand side. To get rid of that term, we must choose an

“orientation” of M with respect to E. The theorem does not assume that M is compact,

though if it is then the right-hand side is equal to H•(M ;E).

Corollary A.1.4 (Atiyah Duality). If M is compact then the Alexander map gives a stable

homotopy equivalence of prespectra Σ−nMνn ' F (M+,S).

Proof. Take E = S×M in main theorem. Tracing the map through, it is given by

Mνn ∧M+ −→ S′n

(z, y) 7→ (exp(z)− e(y), ε)
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when ‖z‖ ≤ ε, and is constant for ‖z‖ ≥ ε. This is the Alexander map as described

in [Coh04].

Remark. Since M+ and Mν are finite CW complexes, the two spectra Σ∞M+ and M−TM

are strongly dualizable. So the simple form of Atiyah duality given above implies that

Σ∞M+ ' F (M−TM ,S). It also implies that if h is any prespectrum, then M−TM ∧ h '
F (M+, h). This also follows from the main theorem by taking E = M × h.

Definition A.1.5. • Each prespectrum h defines a (reduced) homology and cohomol-

ogy theory on based spaces:

h̃q(X) = πq(X ∧ h)

h̃q(X) = π−q(Map∗(X,h)) = [X,h]q

We get unreduced homology theories adding a disjoint basepoint to an unbased space,

and using the above definition.

• An E-orientation of an n-dimensional real vector bundle ξ −→ M is a choice of

isomorphism of parametrized spectra ΣξE −→ ΣnE.

• An h-orientation is an E-orientation where E = h×M .

We leave it to the reader that each HZ-orientation of the normal bundle ν corresponds

to an orientation of the manifold M .

Corollary A.1.6 (Oriented Poincaré Duality). An h-orientation of the normal bundle of

M yields an isomorphism

hm−q(M)
∼=−→ hq(M)

Corollary A.1.7 (Classical Poincaré Duality). If M is oriented,

Hm−q(M ;Z)
∼=−→ Hq(M ;Z)

If M not necessarily oriented,

Hm−q(M ;Z/2)
∼=−→ Hq(M ;Z/2)
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A.2 Excision lemmas for parametrized spaces

In this section we dig a bit deeper into the point-set topology of the spectra E/B, ΓB(E),

and ΓcB(E) and prove that they have the correct excisive behavior, so that we can prove

Poincaré duality by an inductive argument along the open subsets of M . In particular, we

have to be careful with our choice of how to topologize the sections with compact supports

ΓcB(E). The obvious subspace topology ΓcB(E) ⊂ ΓB(E) has pathological behavior when

B is not compact, because one may “push” nontrivial sections of E off the boundary of B

and make them disappear in a continuous way.

We also adopt some additional definitions for parametrized spaces following [MS06],

Def. 8.1.1:

Definition A.2.1. • E is well-sectioned if it satisfies the parametrized homotopy ex-

tension property over B: A map E −→ X over B and a homotopy over B of that

map on s(B) extends to a homotopy over B of the map on E. Equivalently, there is

a retraction of E × I onto the mapping cylinder of s, E ∪B (B × I), that agrees with

the map into B.

• E is well-fibered if it satisfies the parametrized homotopy lifting property over B: Any

family of paths K −→ BI equipped with a family of lifts of the starting point K −→ E

extends to a family of lifts K −→ EI , subject to the additional constraint that a lift

starting in s(B) must extend to the canonical lift that stays in s(B). Equivalently,

there is a path-lifting function E ×B BI −→ EI over B and under BI .

• E is an ex-fibration if it is well-sectioned and well-fibered.

From [MS06] section 8.3, every space is h-equivalent to an ex-fibration. (An

h-equivalence is a non-fiberwise homotopy equivalence, i.e. a map E −→ X over B with

reverse X −→ E not over B whose compositions are homotopic to the identity.)

Next we elaborate a bit on our definition of “cohomology with compact supports” from

the previous section. If B is locally compact Hausdorff, let ΓcB(E) be the set of sections

over B with compact support. As usual, the support is the closure of the complement of

the vanishing set. To topologize ΓcB(E), we let K be any compact Hausdorff space equipped

with an open inclusion i : B ↪→ K. (Note that the usual one-point compactification is one

valid choice for K, since B is Hausdorff and so its compact subsets are closed.) Let E ∪BK
be the pushout of B

s−→ E along i. Then every section of E over B with compact support
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extends by zero to a section of E ∪B K over K. This extended section is continuous on

K because it is continuous on B and the complement of its support in B, both of which

are open sets that cover K. Moreover, the support of this new section in K is equal to its

original support in B. Going the other way, any section over K whose support is contained

in B comes from a section over B with compact support. So give ΓK(E∪BK) the compact-

open topology, and identify ΓcB(E) with the subset of all sections whose support in K is

actually contained in B; give it the compactly-generated subspace topology. (Note that

we take the subspace topology, then apply k. Since the subspace is not open or closed, if

we applied k first and then took the subspace topology, we would need to apply k again;

however this gratuitous use of k would still result in the same topology.)

Finally, if B is locally compact Hausdorff and A is a closed subspace then define

Γc(B,A)(E) to be the subspace of ΓcB(E) consisting of (compactly supported) sections that

vanish on A.

Lemma A.2.2. The topology defined on ΓcB(E) does not depend on the choice of K.

Proof. It suffices to show the subspace topology coming from ΓK(E∪BK) does not depend

on K, before we apply k. So let K1 and K2 be two Hausdorff compactifications of B. In

the topology coming from K1, a basic open set has the form

W (K,U) ∩ ΓcB(E)

where K ⊂ K1 is compact and U ⊂ E ∪B K1 is open. This is equal to the basic open set

coming from K2

W (K ∩B,U ∩ E) ∩ ΓcB(E)

where the closure of K ∩B is taken in K2. (Note that this closure contains no points in B

other than K ∩ B. Note also that we need the maps B −→ K1 and B −→ K2 to be open

inclusions to conclude that U ∩E is open.) An element either set is a section B −→ E with

compact support contained in B, sending K ∩ B into U ∩ E. By symmetry, every basic

open set coming from K2 is equal to a basic open set coming from K1, so the two topologies

coincide.

Proposition A.2.3. Each open inclusion f : A −→ B (of locally compact Hausdorff spaces)

induces a continuous “extension by zero” map ΓcA(f∗E) −→ ΓcB(E).
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Proof. Let B −→ K be an open inclusion of B into a compact Hausdorff space; by the last

lemma, we can compose this with A −→ B to get an open inclusion A −→ K giving the

right topology on ΓcA(f∗E). Note that f∗E −→ E is an open inclusion. Before applying k,

a basic open set in ΓcB(E) is

W (C,U) ∩ ΓcB(E)

where C ⊂ K is compact and U ⊂ E ∪B K is open. Therefore U ∩E and U ∩K are open.

Then U ∩ f∗E is an open subset of f∗E, so (U ∩ f∗E) ∪ (U ∩ K) is an open subset of

f∗E ∪A K. So the preimage of this basic open set in ΓcA(f∗E) is the basic open set

W (C, (U ∩ f∗E) ∪ (U ∩K)) ∩ ΓcA(f∗E)

and the constructed map is continuous.

Proposition A.2.4. If B is compact Hausdorff, E is well-fibered, and A ↪→ B is a closed

subspace with a mapping cylinder neighborhood, then ΓcB−A(E|B−A) −→ Γ(B,A)(E) is a

homotopy equivalence.

Proof. Note that the map is the above “extension by zero” map ΓcB−A(E|B−A) −→ ΓcB(E),

which happens to land in the subspace Γc(B,A)(E). We know that B contains a mapping

cylinder neighborhood N = C × [0, 1), where C × 0 is collapsed to A. Take the rescaling

map

C × [0, 1] −→ C × [1/2, 1] ⊂ C × [0, 1]

This is clearly homotopic to the identity. Over this homotopy, we can define a (basepoint-

section-preserving) homotopy Ht : E|C×[0,1] −→ E|C×[0,1]. So H0 is the identity, and H1

sends a point over (c, t) to a point over (c, (1 + t)/2). Now given a section g : B −→ E that

vanishes at A, create a new section g̃ that agrees with g outside N = C × [0, 1), and on

C × [0, 1] it is given by

g̃(c, t) 7→

 s(c, t) t ≤ 1/2

H1(g(c, 2t− 1)) t ≥ 1/2

This is clearly continuous and homotopic to g in a natural way. Moreover, it has compact

support away from A, the set where t = 0. This gives the desired homotopy equivalence.

Proposition A.2.5. If E is well-sectioned, then Eb, E/B, and ΓcB(E) are all well-based
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(nondegenerate basepoints). If B is compact then ΓB(E) is well-based as well.

Proof. The retract E × I −→ E ∪ (B × I) restricts to a retract Eb × I −→ Eb ∪ (∗ × I),

which is the condition that Eb be well-based. It also descends to a retract (E/B) × I −→
(E/B) ∪ (B/B × I), which is the condition that E/B be well-based.

For ΓB(E) the argument is more involved. Let i be the composite

E × I −→ (E × 0) ∪ (B × I) −→ I

and let j be the composite

E × I −→ (E × 0) ∪ (B × I) −→ E

Then define the self-map

ΓB(E)× I −→ ΓB(E)× I

(f, t) 7→ [j(f, t),min
b∈B

i(f(b), t)]

Note that j(f, t) is a section of E −→ B because j is a map over B. Also, note that

the second coordinate is not in general continuous or even well-defined; we alleviate this

problem by assuming that B is compact, or by restricting to sections with compact support.

When minb∈B i(f(b), t) is positive, the j(f, t) is a constant section; therefore this map factors

through the subspace (ΓB(E)× 0) ∪ (∗ × I). This gives the desired retraction

ΓB(E)× I −→ ΓB(E) ∪ (∗ × I)

so ΓB(E) has a nondegenerate basepoint when B is compact.

If B is locally compact Hausdorff and K is a compactification of B, then i and j extend

continuously to E ∪B K, giving a retraction

ΓK(E ∪B K)× I −→ ΓK(E ∪B K) ∪ (∗ × I)

Note that if f vanishes at b, then j(f, t) also vanishes at b. So if f has compact support,

then j(f, t) has support that is closed and contained in the support of f , therefore compact

as well. So the above retraction restricts to a retraction

ΓcB(E)× I −→ ΓcB(E) ∪ (∗ × I)
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so ΓcB(E) has a nondegenerate basepoint for all (locally-compact Hausdorff) B.

Proposition A.2.6. If E is well-sectioned, and U1 ⊂ U2 ⊂ . . . is a sequence of inclusions

of open sets in B with union U ⊂ B, then (E|U )/B is a homotopy colimit of (E|Ui)/B. If

in addition B is locally compact Hausdorff then ΓcU (E) is a homotopy colimit of ΓcUi(E).

Proof. Clearly the colimit of a sequence of open inclusions of ordinary spaces gives a homo-

topy colimit, as compactness of Sk forces

πk(U) ∼= colim nπk(Un)

For the parametrized version, (E|Ui)/B is not quite an open subspace of (E|U )/B. To fix

this, let i be the composite

E × I −→ (E × 0) ∪ (B × I) −→ I

Then V = i−1((0, 1])∩ (E×1) ⊂ E is an open subspace of E, containing B, with a fiberwise

deformation retraction onto B provided by j:

E × I −→ (E × 0) ∪ (B × I) −→ E

Clearly then (E|Ui ∪V )/B is a sequence of open subspaces of E/B with union (E|U ∪V )/B,

so (E|U ∪V )/B is a homotopy colimit of (E|Ui∪V )/B. To get back to our original sequence

of spaces, use the retract on E × I to establish a homotopy inverse to the inclusion maps

(E|Ui ∪ V )/B ←↩ j(E|Ui × 1)/B ↪→ (E|Ui)/B

Therefore these inclusions are homotopy equivalences, so (E|Ui)/B ↪→ (E|Ui ∪ V )/B is a

weak equivalence. Therefore (E|U )/B is a homotopy colimit of (E|Ui)/B.

For the sections, as usual, we pick a compactification K of B. Define Γ̃cUi(E) to be

the sections of E ∪B K over K which have compact “support” in Ui, where a section

“vanishes” if it lands in the open subspace V ∪B K. Clearly there is an inclusion map

ΓcUi(E) ⊂ Γ̃cUi(E), and the above techniques show that this map is a weak equivalence. So

it suffices to check that Γ̃cU (E) is a homotopy colimit of Γ̃cUi(E). This will follow if we can

show that Γ̃cUi(E) ⊂ Γ̃cU (E) is an open subspace.

Take a point in this subspace; that’s a section of E∪BK which lands in V ∪BK outside
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of a compact set C ⊂ Ui. Since B is locally compact Hausdorff, standard point-set topology

tells us that we can find an open set O ⊂ Ui containing C such that O ⊂ Ui. Then consider

W (K−O, V ∪BK), the basic open subset of Γ̃cU (E) of all sections that send the complement

of O into V . This open subset contains our original point because C ⊂ O, and is contained

in the subspace Γ̃cUi(E) because any section that vanishes outside O has compact support

in O ⊂ Ui. Therefore Γ̃cUi(E) ⊂ Γ̃cU (E) is an open subspace and we are done.

Proposition A.2.7. Let X be a metric space containing two open sets U and V , and let

E be an ex-space over X. Then this square is based co-Cartesian

(E|U )/X // (E|U∪V )/X

(E|U∩V )/X

OO

// (E|V )/X

OO

and this square is Cartesian:

ΓU (E) oo ΓU∪V (E)

ΓU∩V (E)
��

oo ΓV (E)
��

If X is locally compact Hausdorff and E is well-sectioned, this square is also Cartesian:

ΓcU (E) // ΓcU∪V (E)

ΓcU∩V (E)

OO

// ΓcV (E)

OO

Proof. Construct a continuous function φ : U ∪ V −→ [0, 1] that is 0 on U − V and 1 on

V −U . For example, we can define φ on U ∩V by φ(x) = d(x,U−V )
d(x,V−U) , rescaled from (0,∞) to

(0, 1).

For the first square, the based homotopy pushout is the the reduced double mapping

cylinder (E|U ∨ (E|U∩V ∧ I+) ∨ E|V )/X, which maps into the final space (E|U∪V )/X by

forgetting the cylinder coordinate and using an inclusion map. We map (E|U∪V )/X back

into the mapping cylinder, using φ as the cylinder coordinate. This is a homotopy equiva-

lence because the composition of these two maps in one direction is equal to the identity,
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and in the other direction we can easily give a explicit homotopy to the identity. So the

first square is based homotopy co-Cartesian.

For the second square, the homotopy pullback consists of sections over U and V that

agree on U ∩ V up to a chosen homotopy. Given a section over U ∪ V , we restrict to U and

to V , and use the constant homotopy. Going backwards, we can take two sections over U

and V and patch them together over U ∩ V using φ and the given homotopy between the

sections on U ∩ V , yielding a continuous section on U ∪ V . Again, these are clear based

homotopy inverses, so the second square is homotopy Cartesian.

For the third square, the homotopy pullback consists of compactly-supported sections

over U and V and a chosen homotopy between them over U ∪ V . Given a section over

U ∩ V , we push forward to U and V and use the constant homotopy. Going backwards,

suppose we have a homotopy of sections h(t, x) : I × U ∪ V −→ E such that

• For each time t, x 7→ h(t, x) has compact support in U ∪ V

• h(0, x) has support contained in V

• h(1, x) has support contained in U

Since E is well-sectioned, we can use i and j from a previous lemma:

i : E × I −→ E ∪ (B × I) −→ I

j : E × I −→ E ∪ (B × I) −→ E

Then we create this section over U ∩ V :

f(x) =


s(x) φ(x) ≤ 1/4

j(h(2(φ(x)− 1/4), x), 1) 1/4 ≤ φ(x) ≤ 3/4

s(x) φ(x) ≥ 3/4

It’s easy to create explicit homotopies making this an inverse homotopy equivalence:

H1(x, u) =


s(x) φ(x) ≤ u/4

j(h(((4− 2u)/4)φ(x)− u/4, x), u) u/4 ≤ φ(x) ≤ (4− u)/4

s(x) φ(x) ≥ (4− u)/4
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H2((x, t), u) =


s(x) φ(x) ≤ u/4

j(h(2u(φ(x)− 1/4) + (1− u)t, x), u) u/4 ≤ φ(x) ≤ (4− u)/4

s(x) φ(x) ≥ (4− u)/4

so long as we can guarantee that any section of the form

g(x) = j(h(c1φ(x) + c2, x), c3), c3 > 0

actually has compact support contained in U∪V . To prove that g has compact support, first

note that ΓcU∪V (E) is topologized so that h(t, x) must extend by 0 continuously to I ×K,

where K is a compact Hausdorff space including U ∪ V . If we consider i and j as functions

on E × {c3}, then i is zero whenever j is nonvanishing, hence i(h(...), c3) is zero whenever

g = j(h(...), c3) is nonvanishing. Now i extends continuously to (E × {c3}) ∪B×{c3} K by

c3 6= 0, so i(h(...), c3) is a continuous function K −→ [0, 1] that is constant and nonzero on

K−(U ∪V ), and 0 anywhere g vanishes. Therefore the support of g in K is contained in the

inverse image of 0, which is entirely in U∪V . Therefore the support of g in U∪V is compact.

So our homotopy equivalence is well-defined, and the third square is Cartesian.

A.3 Proof of the theorem

Before we dive into the proof, here is an outline of the main argument. Motivated by [Coh04],

we use the explicit formula for the Alexander map

α : Rn/(Rn − tubeε(M)) ∧M+ −→ Rn/(Rn − ballε(0))

α(x, y) = x− e(y)

which we expect to give a π∗-isomorphism of prespectra

Σ∞Rn/(Rn − tubeε(M)) −→ Map∗(M+,Σ
∞Rn/(Rn − ballε(0)))

We use the exponential map to relate the spectrum on the left to S−TM , and we use a

homotopy equivalence to relate the spectrum on the right to Map∗(M+,S). The bundle of

prespectra E comes along for the ride, and we arrive at a well-defined map

α : (S−TM ∧M E)/M ' ΓM (E)
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We prove that α is a π∗-isomorphism in three steps.

First, we define a restriction α|U for each open subset U ⊂ M . This requires taking

sections over U with compact support, denoted ΓcU (E). We must change α by a homotopy

for the map to still be defined in this case. Second, we prove α|U is a π∗-isomorphism when

U is just a ball. In this case, the map becomes

Σ−mS ∧ Ex −→ ΩmΣm(Σ−mS ∧ Ex)

We might expect that this map is the unit of the adjunction between Σm and Ωm; this is

very nearly the case, and it is enough to demonstrate that the map is a π∗-isomorphism.

Third, we use the excision lemmas from the last section to “glue together” the isomorphisms

from the second step, and show that α is a π∗-isomorphism on all of M . This parallels the

use of the Mayer-Vietoris sequence in the usual proof of Poincaré duality:

. . . // Hk
c (U ∩ V )

(1,−1) //
OO

��

Hk
c (U)⊕Hk

c (V ) //
OO

��

Hk
c (U ∪ V )
OO

��

// . . .

. . . // Hn−k(U ∩ V )
(1,−1)// Hn−k(U)⊕Hn−k(V ) // Hn−k(U ∪ V ) // . . .

Proof. Throughout we will use ordinary prespectra and handicrafted smash products; see

§7, 8, 9, 11 of [MMSS01] for some useful basic properties of these objects. Define the “small

spheres spectrum” S′ to be

S′n = (Rn × (0, 1))/{(x, ε) : ‖x‖ ≥ ε}

The map S1 ∧ S′n −→ S′n+1 is just the quotient of the usual map R × Rn × (0, 1)
∼=−→

Rn+1 × (0, 1) that concatenates coordinates. The multiplication maps are also defined by

concatenating coordinates in Rn, while the value of ε in the product is the minimum of the

εs in the two factors. This defines an orthogonal commutative ring spectrum S′. For each

ε ∈ (0, 1), there is a map of orthogonal ring spectra S −→ S′ by x 7→ (x, ε). This map is a

level homotopy equivalence. It follows that

ΓM (S ∧M E) −→ ΓM (S′ ∧M E)

is also a level homotopy equivalence. (A homotopy inverse S′n −→ Sn induces a homotopy
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inverse of the above map at level n.) It’s also straightforward to show that

ΓM (S ∧M E) −→ ΓM (E)

is a stable homotopy equivalence. (Here we are taking handicrafted smash products of

prespectra, so the map is not automatically an isomorphism. We prove that it’s a stable

homotopy equivalence using the same argument that when X is a prespectrum, S∧X −→ X

is a stable homotopy equivalence. We simply compare the colimit systems that define the

homotopy groups on each side.)

Therefore it suffices to construct a π∗-isomorphism

α : (S−TM ∧M E)/M
∼−→ ΓM (S′ ∧M E)

for then the final map is the zig-zag

(S−TM ∧M E)/M
∼−→ ΓM (S′ ∧M E)

∼←− ΓM (S ∧M E)
∼−→ ΓM (E)

Choose a proper embedding e : M ↪→ Rn. Choose a continuous function ε : M −→ (0, 1)

such that a closed ε-neighborhood of e(M) ⊂ Rn is a tubular neighborhood, every 2ε-ball

in M is geodesically convex (using the metric induced by e : M ↪→ Rn). Let ψ be a local

connection on E, by which we mean any lift in the square

E ×M S(TM)× {0} //

��

E

��
E ×M S(TM)× [0, 2ε)

t7→exp(t) //

ψ

55

M

Such a ψ exists, by inductively showing that a lift exists in this square

ΣMEn−1 ×M S(TM)× [0, 2ε) ∪ En ×M S(TM)× {0} //

��

E

��
En ×M S(TM)× [0, 2ε)

t7→exp(t) //

22

M

This lift exists because the right-hand vertical is a Hurewicz fibration and the left-hand

vertical is a DR-pair. This fact and the excision lemmas above are the two places where we

really use the assumption that E −→ B is nice as defined in the first section.
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Given an open proper subset U ⊂M and a point x ∈ U , let B be the open ball of radius
1
2d(x,M −U). Let δU (x) to be the distance in Rn from e(M −B) to the slice of the tubular

neighborhood over x. (If U = M then set δM (x) = +∞.) Then δU (x) is just a little bit

less than 1
2d(x,M −U), but could be much less at a point where the embedding of M turns

sharply. Still, it is continuous:

Lemma A.3.1. Given an open proper subset U ⊂ M with compact closure and a point

x ∈ U , let Bx ⊂M be the open ball of radius 1
2d(x,M−U). Let Dx be the slice of the closed

ε tubular neighborhood over x. Let δU (x) to be the distance in Rn from e(M − Bx) to Dx.

Then δU (x) is a continuous positive function for x ∈ U .

Proof. Since U is compact, there is an upper bound on the second derivative of every unit-

speed geodesic through U . Given ε′ > 0, use this bound to fix δ > 0 such that d(x, y) < δ

implies that the furthest two points of the slice over x and the slice over y is less than 1
3ε
′.

If d(x, y) is smaller than 1
3ε
′, then Bx and By have radii differing by less than 1

3ε
′. So if we

take a point w ∈M −By and v ∈ Dy such that ‖w − v‖ = δU (y), then w is within 2
3ε
′ of a

point w′ ∈ M − Bx, and v is within 1
3ε
′ of a point in Dx, so δU (x) < δU (y) + ε′. Similarly,

δU (y) < δU (x) + ε′. Therefore ‖δU (x) − δU (y)‖ < ε′ when d(x, y) < min(1
3ε
′, δ). Therefore

δU is continuous.

Now given an open subset U ⊂M (possibly all of M), define the Alexander map

αp,q|U : (Sνp ∧M Eq)/M |U −→ ΓcU (S′p ∧M Eq)

α(zx, wx) =

 {y 7→ ((exp(zx)− e(y),min(δU (x), ε)), ψx→y(wx))} ‖zx‖ < ε

zero section ‖zx‖ ≥ ε

Here the notation ψx→y suggests that we choose the unique geodesic connecting x to y

within the ball of radius 2ε(x) about x, and use the direction specified by that geodesic

and ψ to map the fiber of Eq over x to the fiber of Eq over y. Note that if y is at least
1
2d(x,M − U) away from x, and ‖zx‖ < ε, then ‖ exp(zx) − e(y)‖ will be at least δU (x),

and so y will be sent to the basepoint. So the image of (zx, wx) under αp,q|U is a section

supported in a closed ball about of radius 1
2d(x,M − U) about x ∈ U . This justifies the

claim that the image of αp,q|U is sections with compact support in U . Similarly, if y is at

least 2ε(x) away from x then the map goes to the basepoint, so it is unnecessary to define
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ψx→y(wx). Note that when U = M the map becomes

αp,q : (Sνp ∧M Eq)/M −→ ΓM (S′p ∧M Eq)

α(zx, wx) =

 {y 7→ ((exp(zx)− e(y), ε, ψx→y(wx))} ‖zx‖ < ε

zero section ‖zx‖ ≥ ε

It’s easy to check that the suspension Σαp,q|U agrees with both αp+1,q|U and αp,q+1|U .

Therefore the αp,q|U determine a map of external smash products

(S−TM ⊗M E)/M |U −→ ΓcU (S′ ⊗M E)

and therefore they give a map α|U between the smash products of parametrized prespectra

α|U : (S−TM ∧M E)/M |U −→ ΓcU (S′ ∧M E)

so long as we pick the same sequence of values of (p, q) to construct the handicrafted smash

product on the left side and on the right side.

Our goal is to prove that α|U is a π∗-isomorphism for every open subset U ⊂ M , in

particular the subset U = M . We start with α|U where U ⊂ M is homeomorphic to an

open ball Bm. Form a isotopy of e to a map that sends U to the unit ball Bm ⊂ Rm ⊂
(Rp−m⊕Rm). Make ε sufficiently small that at every point in the isotopy, the ε-neighborhood

of the image of M is a tubular neighborhood. This yields a homotopic map αp,q|U , whose

definition simplifies to

(((Bp−m
ε /∂Bp−m)×Bm) ∧Bm Eq)/Bm −→ ΓcBm((S′p ×Bm) ∧Bm Eq)

(z, x, wx) 7→ {y 7→ ((z, x− y),min(δU (x), ε), ψx→y(wx))}

The bundle Eq is homotopically trivial over U ∼= Bm; using the connection ψ to identify

the fibers to the fiber Fq over 0 ∈ Bm we get the homotopy equivalent map

(((Bp−m
ε /∂Bp−m)×Bm) ∧Bm (Fq ×Bm))/Bm −→ Map(Bm/∂,S′p ∧ Fq)

((Bp−m
ε /∂Bp−m ∧ Fq)×Bm)/Bm −→ Map(Bm/∂,S′p ∧ Fq)
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(z, w, x) 7→ {y 7→ ((z, x− y),min(δU (x), ε), w)}

These homotopy equivalences agree with suspension of the p or q factors, so α|U is a π∗-

isomorphism if this map is as well.

These maps involve spheres of the form B/∂B for some ball B. Consider instead the

much simpler map involving ordinary spheres (one-point compactifications of Rn)

α : Sp−m ∧ Fq −→ Ωm(Sp ∧ Fq)

(z, w) 7→ {y 7→ ((z,−y), w)}

We claim that the following commutes up to homotopy, and the vertical maps are homotopy

equivalences agreeing with suspension of the p and q factors up to homotopy.

Sp−m ∧ Fq α //

into the fiber over 0
��

Ωm(Sp ∧ Fq)

precompose with ρ

��
((Bp−m

ε /∂Bp−m ∧ Fq)×Bm)/Bm α|U //Map(Bm/∂,S′p ∧ Fq)

where ρ is a homeomorphism of the open ball into Rm that preserves orientation. In fact,

the image of (z, w) under the two branches is

{y 7→ ((z,−y),min(1/2, ε), w)} {y 7→ ((z,−ρ(y)), 1/2, w)} (y ∈ Bm)

and these maps are clearly homotopic through maps that send ∂Bm to the basepoint.

Therefore we just need to show that the greatly simplified map α is a π∗-isomorphism.

It looks very much like the unit of the adjunction:

µm : Sp−m ∧ Fq −→ ΩmΣm(Sp−m ∧ Fq)

(z, w) 7→ {y 7→ (y, (z, w))}

In fact, the induced maps on π∗ differ by multiplication by (−1)m. Since the unit of the

adjunction is a π∗-isomorphism ( [MMSS01] 7.4(i′)), our map α is a π∗-isomorphism as well.

Therefore α|U is a π∗-isomorphism for U ∼= Bm.

Now that we have done the case of a small ball in M , we need to glue these results

together to get the same result for larger sets. By Prop A.2.7, every pair of open sets
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U, V ⊂M , gives two Cartesian squares (homotopy pullback squares) of prespectra

(S−TM ∧M E)/M |U // (S−TM ∧M E)/M |U∪V

(S−TM ∧M E)/M |U∩V

OO

// (S−TM ∧M E)/M |V

OO

ΓcU (S′ ∧M E) // ΓcU∪V (S′ ∧M E)

ΓcU∩V (S′ ∧M E)

OO

// ΓcV (S′ ∧M E)

OO

The four maps α|U∩V , α|U , α|V , and α|U∪V give a map between these two Cartesian squares.

There is however a small technicality: the maps α|... commute except for the ε coordinate.

Clearly the space of choices for this coordinate is contractible. Therefore we can replace

either of these two squares with a weakly equivalent square, and α will define a strictly

commuting map of squares. Specifically, we could replace each space in the first square

with the homotopy colimit of everything over that vertex. Or, we could replace each space

in the second square with the homotopy limit of everything under that vertex.

Once α defines a strictly commuting map between Cartesian squares, we conclude that

if three of the maps α|U∩V , α|U , α|V , and α|U∪V are equivalences, so is the fourth. This

will give us the power to prove the theorem for compact manifolds. For the noncompact

case we also need Prop A.2.6, which guarantees that if U1 ⊂ U2 ⊂ U3 ⊂ . . . ⊂
⋃
i Ui = U

is a sequence of inclusions of open sets with colimit U , and αUi is an isomorphism for all i,

then we get a commuting diagram in the stable homotopy category

H•c (U1;E) // H•c (U2;E) // . . . H•c (U ;E)

H•(U1; Σ−TME)

α|U1

OO

// H•(U2; Σ−TME)

α|U2

OO

// . . . H•(U ; Σ−TME)

α|U

OO

The spectra at the right are equivalent to the homotopy colimit of the spectra on the left.

Therefore αU induces isomorphisms on the homotopy groups.

Now we can finish the proof using a standard argument. Call an open subset U ⊂ M

“good” if αU is a π∗-isomorphism of prespectra. The above tells us that if U , V , and U ∩V
are good, then U ∪V is good. Also, if U is a union of an increasing sequence U1 ⊂ U2 ⊂ . . .
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and each Ui is good, then U is good.

Our first goal is to show that each coordinate chart U −→ Rm is a good open subset

of M . Fix one such chart; then we can cover its image by countably many open balls

B1, B2, . . .. From before, each of these balls is good, and in fact each convex open subset of

U is good. For each pair of convex open subsets, their intersection is convex open, so their

union is good too. Inductively, if every (n − 1)-fold union of convex subsets is good, and

we are given n open convex subsets Ui1 , . . . , Uin , then the union of the first (n − 1) sets is

good, Uin is good, and the intersection isn−1⋃
j=1

Uij

 ∩ Uin =
n−1⋃
j=1

(Uij ∩ Uin)

a union of (n− 1) open convex subsets. So the union of these n subsets is good. Therefore

any finite union of convex subsets of U is good.

Now define Vn =
⋃n
j=1Bj . Clearly V1 is good. Inductively, if Vn−1 is good, then

Bn ∩ Vn−1 is a union of (n− 1) convex open subsets, which is good by the above induction,

so Vn is good. Taking a sequential colimit, we get that U = colim nVn is good. So every

coordinate chart of M is good. Finally, we cover M by countably many coordinate charts.

Every nonempty intersection of coordinate charts is a coordinate chart, so again we can

use the same technique to show that any finite union of coordinate charts is good. Taking

the sequential colimit again, M is good. Therefore αM gives a stable homotopy equivalence

H•(M ; Σ−TME) ' H•c (M ;E).

A.4 Functoriality

Here are two naturality statements for the isomorphism we just proved. The above proof

easily yields this:

Corollary A.4.1 (Functoriality of Poincaré Duality, I). If N ⊂M is an open submanifold,

the Poincaré duality equivalence for M and N fit into a commuting diagram

H•(M ; Σ−TME)
' // H•c (M ;E)

H•(N ; Σ−TNE)
' //

ι

OO

H•c (N ;E)

ι

OO
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in the stable homotopy category of prespectra.

Now consider a sequence of proper embeddings of manifolds N
f
↪→ M

e
↪→ Rn. Pick a

continuous function ε : M −→ (0, 1) such that the ε-neighborhood of M in Rn is a tubular

neighborhood, and the ε|N -neighborhood of N in M is a tubular neighborhood. (If N and

M are compact, we can take ε to be constant.) Define

f∗ : H•c (M ;E) −→ H•c (N ; f∗E)

ΓcM (E) −→ ΓcN (f∗E)

by pulling back each section a : M −→ Eq to a ◦ f : N −→ Eq, which gives a section

a ◦ f : N −→ f∗Eq. Here it is essential that f is proper; otherwise the pullback will not

have compact support in general. On the homology side, define the zig-zag map

f∗ : H•(M ; Σ−TME) −→ H•(N ; Σ−TNf∗E)

(S−TMp ∧M Eq)/M
∼−→ (S−TMε,p ∧M Eq)/M

−→ (S−TNε,p ∧N f∗Eq)/N
∼←− (S−TNp ∧N f∗Eq)/N

Using the exponential map, we identify S−TMε,p with the ε-tubular neighborhood of M
0⊕e−→

Rp−n ⊕ Rn, and S−TNε,p with the ε-tubular neighborhood of N
f−→ M

0⊕e−→ Rp−n ⊕ Rn. Let

π : tubeε(f(N)) −→ N be the projection from each point in the ε-tubular neighborhood of

f(N) to the closest point in N . Then the middle map is given by the formula

(S−TMε,p ∧M Eq)/M −→ (S−TNε,p ∧N f∗Eq)/N

(zx, wx) −→ (zπ(x), ψx→π(x)(wx))

x ∈M zx ∈ Rp wx ∈ Eq

when x is within ε(π(x)) of f(N). The other points are sent to the basepoint.

Theorem A.4.2 (Functoriality of Poincaré Duality, II). If f : N ↪→ M is a proper em-

bedding of manifolds, the Poincaré duality equivalence for M and N fit into a commuting



APPENDIX A. A TREATMENT OF TWISTED POINCARÉ DUALITY 204

diagram

H•(M ; Σ−TME)
' //

f∗

��

H•c (M ;E)

f∗

��
H•(N ; Σ−TNf∗E)

' // H•c (N ; f∗E)

in the stable homotopy category of prespectra.

Proof. We need to show that f∗ commutes with each of these components of the Poincaré

duality isomorphism:

(S−TM ∧M E)/M
∼−→ (S−TMε ∧M E)/M

α−→ ΓcM (S′ ∧M E)
∼←− ΓcM (S ∧M E)

∼−→ ΓcM (E)

But f∗ commutes with the first map by definition, and it is easy to see that f∗ commutes

with the last two maps. For the second map, we just need to show that the following square

commutes:

(S−TMε,p ∧M Eq)/M

f∗

��

αp,q // ΓcM (S′p ∧M Eq)

f∗

��
(S−TNε,p ∧N f∗Eq)/N

αp,q // ΓcN (S′p ∧N f∗Eq)

In formulas, the bottom branch is

(zx, wx) −→ (zπ(x), ψx→π(x)wx) −→ {y 7→ ((z − e(y), ε(x), ψx→π(x)→y(wx))}

which is homotopic to the top branch

(zx, wx) −→ {y 7→ ((z − e(y), ε(x), ψx→y(wx))}

using the fact that any two choices of ψ (defined only on tubeε(f(N))) are homotopic:

(Eq ×M S(TM)× [0, 1]× {0, 1}) ∪ (Eq ×M S(TM)× {0} × [0, 1])
ψ1,ψ2 //

��

Eq

��
Eq ×M S(TM)× [0, 1]× [0, 1]

exp //

homotopy

22

M

Remark. The map f∗ on the homology side is an “umkehr map” in the sense of [CK09].
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If M and N are compact and oriented, and if we take E = M ×HZ and take the homotopy

groups of both sides, we get the classical commuting diagram

Hdim(M)−q(M)
∼= //

f!
��

Hq(M)

f∗

��
Hdim(N)−q(N)

∼= // Hq(N)

The shriek map f! takes a chain represented by an oriented manifold transverse to N and

intersects it with N . If we take f to be the diagonal map ∆ : M ↪→ M × M , we get

an ingredient in the proof that classical Poincaré duality takes the intersection product on

homology to the cup product on cohomology:

Hm−p(M)⊗Hm−q(M)
∼= //

×
��

Hp(M)⊗Hq(M)

×
��

H2m−p−q(M ×M)
∼= //

∆!

��

Hp+q(M ×M)

∆∗

��
Hm−p−q(M)

∼= // Hp+q(M)

A.5 The relative version

Definition A.5.1. • Given a vector bundle ν −→M and a subspace A ⊂M we define

the relative Thom space (M,A)ν to be the quotient of the usual Thom space Mν by

the subspace of all points lying in some fiber over A.

• For any subspace B ⊂M we define Γ(M,B)(E) to be the subspace of ΓM (E) consisting

of sections which vanish on B, and similarly for the sections with compact support

Γc(M,B)(E).

• Let E be a nice parametrized prespectrum over M and let A be a subspace of M .

In the spirit of [CK09] we define the relative homology prespectrum of (M,A) with

coefficients in E to be

H•(M,A;E) = E/(M ∪ E|A)
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Similarly, given a subspace B define relative cohomology and relative cohomology with

compact supports as

H•(M,B;E) = Γ(M,B)(E) H•c (M,B;E) = Γc(M,B)(E)

Now suppose M is a possibly noncompact manifold with boundary ∂M . Let e :

(M,∂M) ↪→ (Rn≥0,Rn−1) be an embedding with normal bundle νn; then we can define

S−TM as in the first section.

Theorem A.5.2 (Twisted Lefschetz Duality). If E −→M is a nice parametrized prespec-

trum then there is a stable homotopy equivalence of prespectra

H•(M,∂M ; Σ−TME) ' H•c (M ;E)

(S−TM ∧M E)/(M ∪ (S−TM ∧M E)|∂M ) ' ΓcM (E)

The equivalence is a zig-zag of π∗-isomorphisms, so it corresponds to an actual map in the

stable homotopy category.

Proof. This is almost the same as the absolute case, except that our map α|U needs to

be further modified so as to vanish on the boundary ∂M . We assume our embedding

e : (M,∂M) ↪→ (Rn≥0,Rn−1) sends a collar of ∂M to ∂M × [0, 1], and define a self-homotopy

of this collar neighborhood from the identity to the map that stretches [0, 1] to [−1, 1].

Then in the definition of α|U we apply this stretched map to exp(zx) before subtracting

e(y). This new map α|U is clearly homotopic to the original one, so it has all the same

properties, but in addition it now vanishes when x ∈ ∂M and so descends to a map on the

quotient

(S−TM ∧M E)/(M ∪ (S−TM ∧M E)|∂M )

Now the induction runs as before, only there is one more base case to check. If U is an

open half-ball intersecting the boundary of M , we check that α|U is a map defined between

two contractible spectra, so it is trivially a stable equivalence. The same inductive argument

finishes the proof.

Corollary A.5.3 (Twisted Relative Poincaré Duality). If M is a compact n-manifold whose

boundary ∂M is expressed as a union of two (n−1)-manifolds A and B along their common
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boundary A ∩B, there is a stable homotopy equivalence

H•(M,A; Σ−TME) ' H•(M,B;E)

Proof. Simply apply the previous theorem to the noncompact manifold M − B and apply

Prop A.2.4 to conclude that

H•c (M −B;E) ' H•(M,B;E)
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rems, Arxiv preprint arXiv:0806.1540 (2008).

[HHR09] M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the non-existence of elements

of Kervaire invariant one, arXiv preprint arXiv:0908.3724 (2009).



BIBLIOGRAPHY 212

[Hov99] M. Hovey, Model categories, Mathematical Surveys and Monographs, no. 63,

American Mathematical Society, 1999.

[Jon87] J. D. S. Jones, Cyclic homology and equivariant homology, Inventiones mathe-

maticae 87 (1987), no. 2, 403–423.

[LMM82] G. Lewis, J. P. May, and J. McClure, Classifying G-spaces and the Segal con-

jecture, Current Trends in Algebraic Topology, CMS Conference Proc. 2, 1982,

pp. 165–179.

[LMSM86] L. G. Lewis, J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable

homotopy theory, vol. 1213, Springer-Verlag Berlin-New York, 1986.

[Mad95] I. Madsen, Algebraic K-theory and traces, Current Developments in Mathemat-

ics, International Press, 1995.

[May75] J. P. May, Classifying spaces and fibrations, Memoirs of the American Mathe-

matical Society, no. 155, American Mathematical Society, 1975.

[McC01] R. McCarthy, Dual calculus for functors to spectra, Contemporary Mathematics

271 (2001), 183–216.

[McD75] D. McDuff, Configuration spaces of positive and negative particles, Topology 14

(1975), no. 1, 91–107.

[MM02] M. A. Mandell and J. P. May, Equivariant orthogonal spectra and S-modules,

Memoirs of the American Mathematical Society, no. 755, American Mathemat-

ical Society, 2002.

[MMSS01] M. A. Mandell, J. P. May, S. Schwede, and B. Shipley, Model categories of

diagram spectra, Proceedings of the London Mathematical Society 82 (2001),

no. 02, 441–512.

[Mor09] J. Morava, A theory of base motives, arXiv preprint arXiv:0908.3124 (2009).

[MS06] J. P. May and J. Sigurdsson, Parametrized homotopy theory, Mathematical Sur-

veys and Monographs, vol. 132, American Mathematical Society, 2006.

[Pir00] T. Pirashvili, Dold-Kan type theorem for Γ-groups, Mathematische Annalen 318

(2000), no. 2, 277–298.



BIBLIOGRAPHY 213

[Sch09] C. Schlichtkrull, The cyclotomic trace for symmetric ring spectra, Arxiv preprint

arXiv:0903.3495 (2009).

[Shu06] M. Shulman, Homotopy limits and colimits and enriched homotopy theory, Arxiv

preprint math/0610194 (2006).

[Str09] N. P. Strickland, The category of CGWH spaces, Unpublished, notes (2009).

[Wal85] F. Waldhausen, Algebraic K-theory of spaces, Algebraic and geometric topology,

Springer, 1985, pp. 318–419.

[Wei99] M. Weiss, Embeddings from the point of view of immersion theory: Part I, Arxiv

preprint math/9905202 (1999).

[Wil00] B. Williams, Bivariant Riemann Roch theorems, Contemporary Mathematics

258 (2000), 377–393.

[WW93] M. Weiss and B. Williams, Assembly, Novikov conjectures, index theorems and

rigidity 2 (1993), 332–352.


	Abstract
	Acknowledgments
	Introduction
	Gauge groups, string topology, and homotopy calculus
	Algebraic K-theory of spaces and THH
	Background on K-theory and the cyclotomic trace

	A tower from gauge groups to string topology
	Introduction
	Excisive Functors
	The Tower of Approximations of a Mapping Space
	Cell Complexes of Diagrams
	Proof that the Tower is Correct
	The Layers

	Examples and Calculations
	Gauge Groups and Thom Spectra
	String Topology

	First Construction of Pn F
	Higher Brown Representability

	Properties of Homotopy Limits
	Second Construction of Pn F: The Higher Coassembly Map
	Pn F for Unbased Spaces over B
	Pn F for Based Spaces
	Difficulties with Retractive Spaces over B

	Spectra and Cross Effects
	An Equivalence Between [Gnop, Sp] and [Mnop, Sp]
	Pn F for Retractive Spaces over B into Spectra


	Coassembly and duality in THH
	Cyclic spaces and cocyclic spaces
	The category  and the natural circle action.
	Skeleta and latching objects.
	Fixed points and subdivision.
	Cocyclic spaces.

	Orthogonal G-spectra and equivariant smash powers
	Basic definitions, model structures, and fixed points.
	The Hill-Hopkins-Ravenel norm isomorphism.
	A rigidity theorem for geometric fixed points

	Cyclic spectra, cocyclic spectra, and the cyclic bar construction
	Cyclic spectra.
	Cocyclic spectra.
	The cyclic bar construction.

	Mapping and dualizing cyclotomic spectra
	A general framework for dualizing cyclotomic structures.
	The cyclotomic dual of THH(DX+) is + LX.

	A stable splitting of THH(D+ X)
	Proof of the splitting
	Dualization and examples
	Multiplicative structure

	The calculation of TC(DS1+) and its linear approximation
	TC(DS1+)
	Comparison with TC(+ S1)
	Coassembly on THH(D+ X) and TC(D+ X)

	THH of finite spectra with a G-action
	The general case of finite p-groups
	Lifting the theorem to TC


	A treatment of twisted Poincaré duality
	Definitions and statement of the theorem
	Excision lemmas for parametrized spaces
	Proof of the theorem
	Functoriality
	The relative version

	Bibliography

