Using the facts that an extract of a set for any kind of extraction (direct extracts, the direct extracts of the preceding one, etc.), the extracts of a line determine the same function as the line, it follows [using the notion of partial table] that by replacing lines in a weak table (for a permutation) by a set of extracts, we can always arrange from two weak tables in 'nice' form (right sequence of A-line ending in \(4\)) to obtain the composition; hence we have a way of representing the elements of \(G\) by finite (modulo \(A\)) artifacts — and multiplying them effectively. To check whether such an artifact represents the identity is easy: if \(G\) has a divisible W.P. — if \(A\) does.

Start: Suppose that \(A' = A\) (\(A'\) is commutator subgroup of \(A\)).

To show that \(G\) is simple: say \(a \in A\), and \(I\) in the factor group, but \(a \neq I\). Then for some finite binary sequence \(\sigma, \tau\), we have \(a \neq I\) — in fact, \(\sigma\) and \(\tau\) determine disjoint intervals — and \(\sigma \rightarrow \tau\) is an extract of a line of \(A\). Hence, if \(X \in E\), and \(X_{\sigma'}, X_{\tau'}\) are the 'similar' actions \(\frac{X}{\sigma}\) on \(\sigma\) and \(\tau\), we have \(a^{-1} X_{\sigma'} a = X_{\tau'}\).

Hence, \(a' X_{\sigma'} a = X_{\tau'}\); \(\sigma X_0 \sim X_{\tau'}\); As \(X_0 \neq X_{\tau'}\) (since \(\sigma \neq \tau\) and \(X \neq 1\)), we obtain a relation in \(E\). As \(E\) is simple, this means \(X \sim I\) for all \(X \in E\) in the factor group. The easily collapses to whole group \((\forall g, h \in A^\times, \exists p \in X, (p, p), A I = I \Rightarrow h g \sim h g \& i\). \(A^\times\) collapses to Abelian. But \(A^\times = A\) & \(A' = A\), so \(A^\times\) collapses to \(I\).

(Note: apply the 2nd Postcard to get from \(A^\times = A\), if \(A^\times\) is divisible.)
Let A, with a solvable word problem, be a group of permutations of the set T of positive integers and such that for $g, h \in T$ and $g \in A$, it is decidable whether or not $g(h) = k$. (Convention: $(g^h)(j) = h(g(j)))$.

Now let \mathcal{T} be the set of all finite sets B of ordered pairs $\langle m, g \rangle$, $m \in T$, $g \in A$, such that for all $m \in T$, $g, h \in A$, $\langle m, g \rangle, \langle m, h \rangle \in B \implies g = h$.

And let $\mathcal{A}(B)$, for $B \in \mathcal{T}$, be $\{ \langle m+1, g \rangle : \langle m, g \rangle \in B \}$. Then $\mathcal{A}(B) \in \mathcal{T}$.

Let us call an ordered pair $\langle B, m \rangle$ whose $B \in \mathcal{T}$ and $m = 0$ on $m = T$ acceptable if for every $\langle m, g \rangle \in B$ we have, for all $x \geq m$, $g(x) \equiv m \geq m$.

For $m \in T$, and $B, C \in \mathcal{T}$, let $B \circ C = \{ \langle m, g \rangle : \langle m, g \rangle \in B \in C \in A \land \langle m, h \rangle \in B \land \langle m, g \rangle \in C \land \exists k \in T, v \in A (\langle m, k \rangle \in v(B)) \}$. Then $B \circ C \in \mathcal{T}$.

Let $B[g]$ be the $\{ \langle 1, g \rangle \}$, for $g \in A$. Then $B[g] \in \mathcal{T}$.

Regular lines are of the form: $\sigma \rightarrow \tau$, where σ and τ are finite binary sequences; σ is the left sequence τ the right sequence of the line.

A line is a line of the form: $\sigma \cdot \tau, m$, where σ and τ are finite binary sequences, $m \in T$, and $B \in \mathcal{T}$; again, σ is the left sequence of τ the right sequence of the line.

For σ a finite binary sequence, let $[\sigma] = \{ B \in \mathcal{T} : \sigma \subseteq B \}$, where \subseteq is equal to the set of all binary sequences of length σ which are met eventually either 0 or 1.

The composition of lines: We define:

1. $(\sigma \rightarrow \tau) \cdot (\tau \rightarrow \rho) = (\sigma \rightarrow \rho)
2. (\sigma \rightarrow \tau) \cdot (\tau \rightarrow \rho, m) = (\sigma \rightarrow \rho, m)
3. (\sigma \rightarrow \tau, m) \cdot (\tau \rightarrow \rho) = (\sigma \rightarrow \rho, m)
4. (\sigma \rightarrow \tau, m) \cdot (\tau \rightarrow \rho, m + \omega) = (\sigma \rightarrow \rho, m + \omega)$.
weak tables

A **collection** of lines, all of whose right sequences are distinct such that the set \mathcal{P} of left sequences of the lines is such that $\mathcal{P} = \{\alpha \in \mathbb{N} : \alpha \leq n\}$ forms a partition of \mathcal{P}, and such that if $t \rightarrow t, m$ belong to \mathcal{P}, then $<t, m>$ is acceptable.

The direct extracts of a regular line $t \rightarrow t$ are the lines $t \rightarrow t$ and $t \rightarrow t'$.

The direct extracts of an A-line $\sigma \rightarrow t, m$, where $<t, m>$ is acceptable, are the lines (where $m^* = \max \{m : \exists t, m \in \mathcal{P}, \alpha \in \mathbb{N} \}$)

$$\sigma^1 \rightarrow t, m+1$$

$$\sigma^m \rightarrow t^m, m+2$$

and for $0 < m < m^*$:

$$\sigma^{m^*} \rightarrow t^{m^*}, m^* + 1$$

provided that $<m, g> \in \mathcal{P}$, $<m, h> \notin \mathcal{P}$.

An extract of a line is a line obtained as the last in a series of direct extracts, starting from the given line.

Lemma A: If \mathcal{P} is a finite binary sequence terminating in t, and σ is an A-line extending σ', then if $\sigma \rightarrow t, m$ is an A-line and $<t, m>$ is acceptable, there is some line which is an extract of the line whose left sequence is σ'; moreover, there is only one such line.

Given two weak tables such that t is the right sequence of the terminal row, \mathcal{P}_1 extends to an A-line, and an extension of a left sequence of the second, \mathcal{P}_2, we define the composition $\mathcal{P}_1 \circ \mathcal{P}_2$ as follows: We replace each line of \mathcal{P}_2 by as follows.

The following line in the line $\sigma \rightarrow t$ or $\sigma \rightarrow t, m$ is replaced, where t' is the unique (by the partition property of the left sequences of \mathcal{P}) left sequence containing t occurs in a \mathcal{P}_2 line (denoted t'). The line $\mathcal{P}_1 \circ \mathcal{P}_2$ is obtained from \mathcal{P}_1 by the following operation: The \mathcal{P}_1 line with $t' \rightarrow t^* \rightarrow \mathcal{P}_2$ is replaced by the composition of the \mathcal{P}_1 line with $t' \rightarrow \mathcal{P}_2$, \mathcal{P}_2 being the binary sequence such that $t = t'$.

If instead $t' \rightarrow t^* \rightarrow \mathcal{P}_2$ is the unique line of \mathcal{P}_1 with t' as its left sequence, the \mathcal{P}_1 line is replaced by the composition of the \mathcal{P}_1 line with the unique line, guaranteed by Lemma A, which is an extract of $t' \rightarrow t^* \rightarrow \mathcal{P}_2$ and has t' as its left sequence (as t' extends t^* and t ends in t').
Every \(\beta \in \mathcal{K} \) has the form \(\langle 1, g \rangle^{m} \langle 0 \rangle^{n} \langle 1 \rangle^{\ell} \) for some \(\ell, g \in \mathbb{Z} \) and \(m, n \in \mathbb{N} \). Let \(\mathcal{J} \) be its index.

The function defined by the line \(\sigma \rightarrow \tau \) is that function \(\chi \) with domain \([0] \) such that \(\chi(\sigma^{\beta}) = \tau^{\beta} \) for all \(\beta \in \mathcal{K} \).

The function defined by the line \(\sigma \rightarrow \tau \), where \(\langle \beta, m \rangle \) is acceptable, is that function \(\chi \) with domain \([0] \) such that:

1. If \(\beta \) has parity \(-m\), \(\sigma(\beta) = 0 \), and \(\langle m, g \rangle \in \mathcal{J} \):
 \[\chi(\sigma^{\beta}) = \tau^{\langle 1 \rangle^{g(\ell+m)-m} \langle 0 \rangle^{g(\ell)} \langle 0 \rangle \langle 1 \rangle^{\ell} \beta} \text{.} \]
 Here \(\beta = \langle 1 \rangle^{g-m} \langle 0 \rangle^{k} \beta' \) and \(k > m \), hence \(g(\ell) + m > m \), \(\langle 0 \rangle \beta' \) being acceptable.

2. If \(\beta \) does not have parity \(-m\) for any \(\langle m, g \rangle \in \mathcal{J} \):
 \[\chi(\sigma^{\beta}) = \tau^{\langle 0 \rangle^{m} \langle 1 \rangle^{\ell} \beta} \text{.} \]

The function defined by a weak table \(\Pi \) is that function \(\chi \) with domain \(\mathcal{K} \) (as the left sequences of the lines of \(\Pi \) will intervals forming a partition of \(\mathcal{K} \)), which is the union of the functions defined by the lines.

A partial table is a set of regular lines and \(\lambda \)-lines \(\sigma \rightarrow \tau, m \) (such that \(\langle 0, m \rangle \) is acceptable) such that all the left sequences are distinct and incompatible; the function defined by the partial table is the union of the line function.

For \(g \in A \) let \(g^{*} \in \mathcal{K} \) be the function defined as follows:

\[g^{*}(\langle 1 \rangle^{g} \langle 0 \rangle^{m} \langle 0 \rangle^{n} \langle 1 \rangle^{\ell} \beta) = \langle 1 \rangle^{g(m)} \langle 0 \rangle^{g(n)} \langle 0 \rangle^{g(\ell)} \langle 0 \rangle \langle 1 \rangle^{\ell} \beta \text{ for } m \in \mathbb{Z}, \beta \in \mathcal{K}. \]

\[g^{*}(\beta) = \beta \text{ otherwise.} \]

Then \(g^{*} \) is a permutation since \(g \) is.

Follows \(A^{*} = \langle g^{*} ; g \in A \rangle \), and \(C' \) is the group of permutations of \(\mathcal{K} \) which are defined by weak tables with only regular lines (thus, to give permutations, it is necessary and sufficient that the right sequences also form yield intervals which partition \(\mathcal{K} \), the into right sequences all being distinct). Let \(G \) be the group generated by \(A^{*} \cup C' \) (\(C' \) is finitely generated).

Let \(G_{0} \) be the group of all permutations of \(\mathcal{K} \) such that, for every \(\beta \in \mathcal{K} \), there is some finite sequence \(\sigma \) such that \(\beta = \sigma^{\beta} \) and \(\pi(\sigma^{\beta}) = \tau^{\beta} \) for some finite sequence \(\tau \), for all \(\beta \in \mathcal{K} \).