- (1) (15 Points) Parametric equations for a curve are $x=t^2+e^t$ and $y=t-\sin(t)$ for $0 \le t \le 1$.
 - (a) Setup the integral for the length of that curve, but DO NOT EVALUATE OR SIMPLIFY THAT INTEGRAL.
 - (b) Set up the integral for the surface area obtained by rotating that curve around the y-axis, but DO NOT EVALUATE OR SIMPLIFY THAT INTEGRAL.
 - (c) Find the equation of the tangent line to that curve at t = 0.
- (2) (10 Points) Write the Taylor polynomial $T_3(x)$ of degree 3 for the function $f(x) = x^6$ centered at a = -2.
- (3) (10 Points) Find an explicit solution y = f(x) for the differential equation $\frac{dy}{dx} = \frac{(x^2)(y^2+1)}{2y}$ with initial condition that y = 2 when x = 0.
- (4) (10 Points) If possible, write each of the following series as a reduced fraction.
 - (a) $\sum_{n=2}^{\infty} \left(\frac{-1}{4}\right)^n$
 - (b) 0.2272727...
- (5) (15 Points) Find the interval of convergence for each of the following power series.
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^n (2x+5)^n}{n \ 4^n}$
 - (b) $\sum_{n=1}^{\infty} \frac{n^3 x^n}{n!}$
- (6) (15 Points) Determine whether each of the following series is absolutely convergent, conditionally convergent, or divergent. Explain all details of the tests you are applying.
 - (a) $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n\pi}$
 - (b) $\sum_{n=1}^{\infty} (-1)^n \frac{10 2n^2}{10^{25} + 7n^2}$
- (7) (20 Points) The polar equation $r = 1 + 2\cos^2(\theta)$ determines a curve for $0 \le \theta \le 2\pi$.
 - (a) Sketch that curve on the graph paper below.
 - (b) Setup an integral for the area enclosed by that curve just for $0 \le \theta \le \pi/2$, but DO NOT EVALUATE OR SIMPLIFY IT.

(8) (30 Points) Find each of the following, if possible.

(a)
$$\int_{\sqrt{3}}^{\infty} \frac{1}{1+x^2} dx$$

(b)
$$\lim_{x \to 0} \frac{x \sin(x)}{1 - \cos(x)}$$

(c)
$$\lim_{x \to 0} \frac{x^4 e^x}{\cos(x) - 1 + x^2/2}$$

(9) (30 Points) Evaluate the following integrals.

(a)
$$\int \sin^3(x) \sqrt{\cos(x)} dx$$

(b)
$$\int (4x^3 + 2x) \ln(x^2 + 1) dx$$

(c) Find
$$\int x^3 \sqrt{1-9x^2} dx$$

(10) (10 Points) Suppose the alternating series $\sum_{k=2}^{\infty} \frac{(-1)^k}{3 + \log_{10}(k)}$ converges to S and write the

 N^{th} partial sum as $S_N = \sum_{k=2}^N \frac{(-1)^k}{3 + \log_{10}(k)}$. What is the smallest value of N such that you can be sure $|S - S_N| < \frac{1}{9}$?

- (11) (15 Points)
 - (a) Use the integral test to show that the positive series $\sum_{k=2}^{\infty} \frac{1}{k (\ln k)^2}$ converges.
 - (b) If it converges to S and S_N denotes the N^{th} partial sum, use the integral remainder estimate to give an upper bound on $S-S_N$. Find the least N such that $S-S_N \leq \frac{1}{5}$.
- (12) (20 Points) Write each of the following functions as a power series, and give its radius of convergence. Write your answer using summation notation or write at least the first four nonzero terms of the infinite series.
 - (a) $\sin(x)$
 - (b) $e^{(x^3)}$
 - (c) $\ln(1-3x)$
 - (d) $\arctan(x^2)$