
Solutions to Exam I

Problem 1. a) Let f(x) = x + ex.

i) Since the derivative f ′(x) = 1 + ex is clearly positive for all x, the function f

is increasing hence one-to-one. Consequently, it has an inverse function g. Since f

is continuous and limx→+∞(x + ex) = +∞, limx→−∞(x + ex) = −∞, the range of f

consists of all real numbers (by the Intermediate Value Theorem). Thus the domain

of g is R.

ii) Since f(0) = 1, we see that g(1) = 0. From the formula g′(x) = 1/f ′(g(x))

we get g′(1) = 1/f ′(0) = 1/(1 + e0) = 1/2.

iii) Since f and g are inverse functions, f(g(x)) = x for all x in the domain of g.

Thus f(g(5)) = 5 and f(g(f(g(5)))) = f(g(5)) = 5.

b) In order to find the inverse function of f(x) = etan x, x ∈ (−π/2, π/2) we want

to express x in terms of y from the equation y = etan x. By taking logarithms of

both sides we get ln y = tanx so x = arctan(ln y). Thus the inverse function of f is

g(x) = arctan(lnx).

Problem 2. a) By the main properties of logarithms, we have

log3(x + 1) + log3(5 − x) = log3[(x + 1)(5 − x)]

and 2 = log3 32. Thus our equation can be written as

log3[(x + 1)(5 − x)] = log3 32.

Since the logarithmic function is one-to-one, we conclude that (x + 1)(5 − x) = 32,

i.e. x2 − 4x + 4 = 0. Thus x = 2 is the only solution.

b) We use logarithmic differentiation: f ′ = f(ln f)′. Since

ln f(x) = ln[
√

xesin x(x2 + 1)12] = 1/2 lnx + sin x + 12 ln(x2 + 1)

we see that

(ln f(x))′ =
1

2x
+ cosx +

24x

x2 + 1

Thus,

f ′(x) =
√

xesin x(x2 + 1)12[
1

2x
+ cos x +

24x

x2 + 1
]
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Problem 3. a)The limit limx→∞(ex + x)1/(x+1) is of the indeterminate type ∞0.

We have

lim
x→∞

(ex + x)1/(x+1) = lim
x→∞

eln(ex+x)/(x+1)

Thus we need to compute limx→∞ ln(ex + x)/(x + 1), which is of the type ∞/∞.

We use L’Hospital’s rule and compute first the limit of the ratio of the derivatives

of the numerator and denominator:

lim
x→∞

(ex + 1)/(ex + x)

This is again of the form ∞/∞ (and it is rather easy to see that the limit is 1) so

we apply L’Hospital’s rule again and get

lim
x→∞

ex/(ex + 1)

It is easy to see directly that the limit is 1, but since it is of the form ∞/∞, we may

also apply L’Hospital’s rule one more time to get

lim
x→∞

ex/ex = 1

Thus the original limit limx→∞(ex + x)1/(x+1) = e1 = e.

b) Since limx→0(x
2−x) = 0 and limx→0 cosx = 1, we see that limx→0

x2
−x

cosx
= 0/1 = 0.

c) The limit limx→0
sin x−x

x3 is of the form 0/0, so we apply L’Hospital’s rule and

compute first limx→0
cosx−1

3x2 . This is again of the form 0/0, so we apply L’Hospital’s

rule again and compute limx→0
− sin x

6x
. This is again of the form 0/0, so we apply

L’Hospital’s rule one more time and compute limx→0
− cosx

6
= −1/6. Thus

lim
x→0

sinx − x

x3
= −1/6

Problem 4. a) Integrate by parts with f ′(x) = x2 and g(x) = ln(x). Thus f(x) =

x3/3 and g′(x) = 1/x, so

∫

x2 ln xdx =
(ln x)x3

3
−

∫

x3

3

1

x
dx =

(ln x)x3

3
− 1

3

∫

x2dx =
(ln x)x3

3
− x3

9
+ C

b) Substitute u = x3 + 1, du = 3x2dx to get

∫ 1

0

x2
√

x3 + 1dx =

∫ 2

1

1

3

√
udu =

2u3/2

9
|21 =

4
√

2 − 2

9
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c) 1st method We use the identity sin a cos b = (sin(a + b) + sin(a − b))/2. Thus

sin 2x cos 3x = (sin 5x + sin(−x))/2 and
∫

sin 2x cos 3xdx =

∫

sin 5x + sin(−x)

2
dx =

− cos 5x

10
+

cos x

2
+ C

2nd method We integrate by parts with f ′(x) = sin 2x and g(x) = cos 3x. Thus

f(x) = − cos 2x/2, g′(x) = −3 sin 3x and
∫

sin 2x cos 3xdx =
− cos 2x cos 3x

2
−

∫

3 cos 2x sin 3x

2
dx =

− cos 2x cos 3x

2
−3

2

∫

cos 2x sin 3xdx

We integrate by parts again with f ′(x) = cos 2x, g(x) = sin 3x. Thus f(x) =

sin 2x/2, g′(x) = 3 cos 3x and
∫

cos 2x sin 3xdx =
sin 2x sin 3x

2
−

∫

3 sin 2x cos 3x

2
dx =

sin 2x sin 3x

2
−3

2

∫

sin 2x cos 3xdx

It follows that
∫

sin 2x cos 3xdx =
− cos 2x cos 3x

2
− 3 sin 2x sin 3x

4
+

9

4

∫

sin 2x cos 3xdx

so

(1 − 9

4
)

∫

sin 2x cos 3xdx =
− cos 2x cos 3x

2
− 3 sin 2x sin 3x

4
+ C

i.e.
∫

sin 2x cos 3xdx =
2 cos 2x cos 3x

5
+

3 sin 2x sin 3x

5
+ C

Remark. Note that the answers given by the first and the second methods seem to

be different. But they must be the same, which means that we proved an identity

of the form

− cos 5x

10
+

cos x

2
+ C =

2 cos 2x cos 3x

5
+

3 sin 2x sin 3x

5

for some constant C. Evaluating at x = 0 shows that in fact C = 0. Can you prove

this identity directly?

d) We use trigonometric substitution x = tan t, dx = sec2 tdt, so

∫

dx
√

(1 + x2)5
=

∫

sec2 tdt√
sec10 t

=

∫

dt

sec3 t
=

∫

cos3 tdt

Now we use the fact that cos3 t = cos2 t cos t = (1 − sin2 t) cos t and we substitute

w = sin t, dw = cos tdt so

∫

cos3 tdt =

∫

(1 − w2)dw = w − w3

3
+ C = sin t − sin3 t

3
+ C
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Now recall that x = tan t. Thus x cos t = sin t and x2 cos2 t = sin2 t. Using the

fact that cos2 t = 1 − sin2 t we see that x2 − x2 sin2 t = sin2 t, which gives sin2 t =

x2/(1 + x2) and sin t = x/
√

1 + x2 (be careful about signs here, since we are taking

square roots). Alternatively, use the right triangle method to compute sin t in terms

of x. Thus the final answer is
∫

dx
√

(1 + x2)5
=

x√
1 + x2

− x3

3(x2 + 1)
√

1 + x2
+ C

e) We first complete to squares the quadratic polynomial in the denominator:

x2 − 6x + 13 = x2 − 2 · 3 · x + 32 + 4 = (x − 3)2 + 22

Then we make a substitution 2w = x − 3, dx = 2dw to get
∫

dx

x2 − 6x + 13
=

∫

2dw

4w2 + 4
=

1

2

∫

dw

w2 + 1
=

arctanw

2
+C =

arctan(x − 3)/2

2
+C

f) Since the degree of the numerator is not smaller that the degree of the denomina-

tor, we divide first x5 − 4 by x3 − x2 − x− 2. The result of the division is x2 + x + 2

and the remainder is 5x2 + 4x. Thus
∫

x5 − 4

x3 − x2 − x − 2
=

∫

(x2+x+2)dx+

∫

5x2 + 4x

x3 − x2 − x − 2
dx =

x3

3
+

x2

2
+2x+

∫

5x2 + 4x

x3 − x2 − x − 2
dx

Now we observe that 2 is a root of x3−x2−x−2, so x3−x2−x−2 = (x−2)(x2+x+1).

The polynomial x2 + x + 1 has no real root so it can not be decomposed further. It

is time to find the partial fractions decomposition:

5x2 + 4x

x3 − x2 − x − 2
=

A

x − 2
+

Bx + C

x2 + x + 1
=

(A + B)x2 + (A − 2B + C)x + A − 2C

x3 − x2 − x − 2

Thus A+B = 5, A−2B +C = 4 and A−2C = 0, i.e. A = 2C, B = 5−A = 5−2C

and 2C − 2(5 − 2C) + C = 4. This gives C = 2, B = 1 and A = 4 so

5x2 + 4x

x3 − x2 − x − 2
=

4

x − 2
+

x + 2

x2 + x + 1

and
∫

5x2 + 4x

x3 − x2 − x − 2
dx =

∫

4

x − 2
dx+

∫

x + 2

x2 + x + 1
dx = 4 ln(x−2)+

∫

x + 2

x2 + x + 1
dx

In order to compute
∫

x+2
x2+x+1

dx we complete the denominator to squares: x2+x+1 =

(x + 1/2)2 + 3/4. We make a substitution x + 1/2 =
√

3w/2, dx = dw
√

3/2 so

x =
√

3w/2 − 1/2 and
∫

x + 2

x2 + x + 1
dx =

∫

√
3w/2 + 3/2

3/4w2 + 3/4

√
3

2
dw =

2
√

3

3
(

√
3

2

∫

wdw

w2 + 1
+

3

2

∫

dw

w2 + 1
) =

4



=
2
√

3

3
(

√
3

4
ln(w2 + 1) +

3

2
arctanw) + C =

ln(w2 + 1)

2
+
√

3 arctanw + C =

=
ln(4(x2 + x + 1)/3)

2
+
√

3 arctan
2x + 1√

3
+ C

The final answer is then

∫

x5 − 4

x3 − x2 − x − 2
=

x3

3
+

x2

2
+2x+4 ln(x−2)+

ln(4(x2 + x + 1)/3)

2
+
√

3 arctan
2x + 1√

3
+C

Problem 5. The Midpoint’s Rule sum with n = 8 for
∫ 4

0
e2xdx is 4

8
(e1/2 + e3/2 +

e5/2 + ... + e15/2). Recall that the error in the Midpoint’s Rule approximation is not

larger than B(b − a)3/24n2, where B is a bound for |f ′′(x)| on [a, b]. In our case,

a = 0, b = 4, f = e2x. Thus f ′′(x) = 4e2x. This is an increasing, positive function,

so |f ′′(x)| ≤ 4e8 for all x ∈ [0, 4]. In other words, we may take B = 4e8. Thus any

n which satisfies

4e8 43

24n2
≤ 10−4

would satisfy our requirement. Solving for n gives n ≥ 800e4/
√

6. Taking any n

such that n ≥ 800e4/
√

6 in the Midpoint Rule gives approximation to
∫ 4

0
e2xdx with

error smaller than 10−4.

5


