Solutions to Exam 11

Problem 1. a) In order to determine whether the integral dz is convergent
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or divergent we use comparison test. Note that /1 + /x > 1 for all z. It follows that
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Recall now that the integral / —pdm converges for p > 1 and diverges for p < 1. In
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our case p = 1/2 < 1, so the integral / de diverges, and so does the integral
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dx by the comparison test.

b) For (i) note first that using integration by parts we can compute an anti-derivative of
Inz/z?. In fact, taking f'(z) = 1/z? and g(z) = Inz we have f(z) = —1/z, ¢'(z) = 1/x

and
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For (ii) note that the function 1/z* has discontinuity at z = 0. Thus
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Now —1/(32?) is an anti-derivative of 1/z* so
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since both limy_,o =2 = 0 and limy_,o 3 = 0.

and the last limit clearly does not exist. Thus our integral diverges. Note: similarly one

O dx
proves that / —; diverges.
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Problem 2. a) The length of the curve y = % + %, 1 < x < 2is given by the following

integral:

Note now that
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Since %2— = 1/4, we can write 1 = 4ac2 957 50
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b) The curve z> + y?> = 1, 0 < z < 1 is a half-circle with radius 1 and center (0,0).
By rotating this curve about the r—axis we obtain half of a sphere of radius 1. We

may write y = v/1 — 22 (we restrict only to the part of the curve above the z—axis) so
y' = —x/+/1 — 2. The surface area is given by

27r/ \/1—1'2\/ 22dx—27r/ \/1—1’2\/ 2dﬂt:—27r dx—27r

As a corollary, the area of a sphere of radius 1 is 47, and more generally the area of a

sphere of radius r is 4772

c¢) There are 2 formulas which may be used to solve this problem. First formula states

that the area is equal to
1
27r/ zy/1+ (—2z)%dx.
0

In order to state the second formula we first need to find the inverse function of f(x) =

1—2% If y =1 — 2% then z = ++/1 — y, and since we are interested in positive z, we see

that the inverse function is g(y) = v/1 —y. We have ¢'(y) = —1/(2¢/1 —y), f(0) =1 and
f(1) = 0 so the second formula for the surface area is

27r/ v1— \/1+ 2dy—27r/ {1—-y+ dy—27r/ \/—y+ dy

The integrals in both formulas are rather easy to compute. In the first formula substitute

w = 1+ 422, in the second formula substitute w = 5/4 — y. A simple computation tels

us that the surface area in question equals 7(5v/5 — 1)/6.

Problem 3. a) We have f(z,y) = = + 2y. Euler’s method with step size d starts at the
initial value yo = y(zo) and constructs a sequence of numbers recursively by the formula
Ynt1 = Yn + f(xo + nd,y,)d. In our case 2o = 0, yo = 1, d = 1 and we are interested in
ys. Wehavey; =142 =3,y =3+7 =10 and y3 = 10+ 22 = 32, so the approximation
to y(3) is 32.

Remark. One can verify easily that y(x) = —x/2 — 1/4 + 5¢%® /4 is the solution to our
differential equation. We see that y(3) = (5 — 7)/4 which is much larger than 32.
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b) Note that 2 + 222 + y + 2%y = (y + 2)(z* + 1). So our differential equation is y' =
(y + 2)(2? + 1), which is a separable equation. There is a constant solution y = —2, and
if y # —2 then y'/(y + 2) = z® + 1.Thus
dy / 2
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Equivalently, we may write
23
y+2==4Ces ™

but the £ can be absorbed by the constant so finally

23
y(z) = Ces ™ — 2,

c) Let b(t) be the number of bacteria after t hours. The problem tells us that b(t) satisfies
a differential equation b'(t) = kb(t) for some constant k. We know that the solutions to
this equation are given by the formula b(t) = Ce** for some constant C. We need to find
C and k. We know that 5(0) = 1000 which tells us that C = 1000. Thus b(t) = 1000e*".
We also know that b(2) = 9000, so 9000 = 1000e?*, i.e. e?* = 9. Taking logarithms of
both sides yields 2k = In9 = 21n 3, so k = In3. Thus b(t) = 1000e*"® = 1000 - 3*. This
answers i). To answer ii) we just compute b(3) = 1000 - 3% = 27000. Finally, in iii) we
look for ¢ such that 2000 = b(t), i.e. 2000 = 1000 - 3", so 3* =3 and t =In2/1In3.

Problem 4. a) Note that
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Alternatively, one can write

(1 + E)Bn—l _ enln(l—l—%)
n

and then use L’Hospitele’s rule to compute
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b) Note that 2" < 2"n? + n < 2n22" for every n. Taking n—th roots gives
2 < V22 £ < V2220 = V2(/m)2-2 ().

Recall that lim, o v/2 = 1 and lim,_,o {/n = 1, so both the most left and most right
sides of () tend to 2. By squeeze theorem, lim,_,o, ¥/2"n2 +n = 2.
c)
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Note that 2" /3™ = (2/3)™ which tends to 0, since |2/3| < 1. Also 3/3™ and 1/3" tend to

0, so the numerator tends to 0 and the denominator tends to 1 as claimed.

=0/1=0

Alternatively, compute lim,_, ;Z—i;’ using L’Hospitale’s rule.

Problem 5. a) We have
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The last sum is the geometric series with » = 3/, so it converges (since |r| < 1) to

1/(1—r),ie.
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b) Note that >~>7  2"*t1gm = 23> (2z)". The sum is a geometric series with r = 2z, so
it converges iff |2z| < 1, i.e. iff |z| < 1/2.

Problem 6. First we assume that lim, ,., a, = g exists. Passing to the limit in the

recursive formula a,,; = /3a, + 2 we get that ¢ = ¥/3g+2. Thus ¢g°> — 3g — 2 = 0,
ie. (g—2)(g+1)?=0,s0g =2or g=—1. But looking at the sequence we see that

it is always positive, so ¢ = 2. This is not a precise argument, just a prediction,
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a precise justification will follow below. We predict now that a,, is increasing and
bounded above by 2 (this in particular will justify our last claim about a,, being positive).

So we want to prove that a,.; > a, for all n. If not, then there is smallest m such
that a,,+1 < a,,. Note that m > 1, since a; < a2. Using the recursive formula, we may

write

V3am +2 < {/3am-_1+2
so taking third powers of both sides gives
3, +2 < 3a,-1+2
ie.
30, < 30;,-1

and

A < Qmp—1.

This however contradicts our assumption about minimality of m. A contradiction shows
that indeed a,,1 > a, for all n.

Now we want to prove that a,, < 2 for all n. If not, then there is smallest m such that
a,, > 2. Note that m > 1, since a; < 2. Since a,, = ¥/3a,,_1 + 2, we have

\3/ 3am_1 + 2 Z 2

SO
3am_1+2>22=38
1.e.
3am—1 Z 6
which means that
Am—1 Z 2.

Again, this contradicts our assumption about minimality of m. A contradiction shows
that indeed a,, < 2 for all n.

We showed that a, is increasing and bounded above. This implies that a, > 0 for all
n and that a, converges (by the monotone convergence theorem). Now our consideration

at the beginning shows that lim,,_,., a, = 2



