Exam I, Math 222

October 10, 2002

Problem 1. a) Let $f(x) = x + e^x$.

- i) Prove that f has an inverse function g and find the domain of g (5 points).
- ii) Compute q(1) and q'(1) (5 points).
- iii) What is f(g(f(g(5))))? (4 points)
- b) (5 points) Find the inverse function of $f(x) = e^{\tan x}$, $x \in (-\pi/2, \pi/2)$.

Problem 2. a) (5 points) Solve the equation

$$\log_3(x+1) + \log_3(5-x) = 2$$

b) (5 points) Find the derivative of the function

$$f(x) = \sqrt{x}e^{\sin x}(x^2 + 1)^{12}$$

Problem 3. Compute the following limits (5 points each):

a)
$$\lim_{x \to \infty} (e^x + x)^{1/(x+1)}$$
 b) $\lim_{x \to 0} \frac{x^2 - x}{\cos x}$ c) $\lim_{x \to 0} \frac{\sin x - x}{x^3}$

b)
$$\lim_{x\to 0} \frac{x^2-x}{\cos x}$$

c)
$$\lim_{x\to 0} \frac{\sin x - x}{x^3}$$

Problem 4. Compute the following integrals (5 points each):

a)
$$\int x^2 \ln x dx$$

a)
$$\int x^2 \ln x dx$$
 b) $\int_0^1 x^2 \sqrt{x^3 + 1} dx$ c) $\int \sin 2x \cos 3x dx$

c)
$$\int \sin 2x \cos 3x dx$$

$$\mathrm{d}) \int \frac{dx}{\sqrt{(1+x^2)^5}}$$

$$e) \int \frac{dx}{x^2 - 6x + 13}$$

d)
$$\int \frac{dx}{\sqrt{(1+x^2)^5}}$$
 e) $\int \frac{dx}{x^2-6x+13}$ f) $\int \frac{x^5-4}{x^3-x^2-x-2}dx$

Problem 5. (6 points) Write out (BUT DO NOT ADD UP) the Midpoint's Rule sum with n=8 for $\int_0^4 e^{2x} dx$. How large should be n so that the error of the Midpoint's Rule approximation of this integral is less than 10^{-4} ?

1