Exam II, Math 222

Problem 1. a) Is the integral $\int_{1}^{\infty} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} dx$ convergent or divergent? Justify your answer (5 points).

b) Evaluate each of the following integrals or show that it diverges (5 points each).

(i)
$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx$$
 (ii)
$$\int_{-2}^{3} \frac{dx}{x^4}$$

Problem 2. a) (5 points) Find the length of the curve $y = \frac{x^3}{6} + \frac{1}{2x}$, $1 \le x \le 2$.

- b) (5 **points**) Find the area of the surface obtained by rotating the curve $x^2 + y^2 = 1$, $0 \le x \le 1$ about the x-axis.
- c) (5 **points**) Find the area of the surface obtained by rotating the curve $y = 1 x^2$, $0 \le x \le 1$ about the y-axis. Discuss the two methods you can use here.

Problem 3. a) (5 points) Use Euler's method with step size 1 to estimate y(3), where y(x) is the solution of the differential equation y' = x + 2y, y(0) = 1.

- b) (5 **points**) Solve the differential equation $y' = 2 + 2x^2 + y + x^2y$.
- c) (5 points) A bacteria culture starts with 1000 bacteria and the growth rate is proportional to the number of bacteria. After 2 hours the population is 9000.
 - i) find an expression for the number of bacteria after t hours;
 - ii) find the number of bacteria after 3 hours;
 - iii) how long does it take for the number of bacteria to double?

Problem 4. Compute the following limits (5 points each):

a)
$$\lim_{n \to \infty} (1 + \frac{2}{n})^{3n-1}$$
 b) $\lim_{n \to \infty} \sqrt[n]{2^n n^2 + n}$ c) $\lim_{n \to \infty} \frac{2^n + 3}{3^n + 2}$

Problem 5. a) Determine whether each series converges or diverges. Explain the reason for your answer. If the series converges, find the sum (5 points each).

a)
$$\sum_{n=0}^{\infty} \frac{3^{n+1}}{\pi^n}$$
 b) $\sum_{n=0}^{\infty} \frac{n^2 - 1}{n^2 + 3n - 1}$ c) $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$

b) (5 **points**) Find all x for which the series $\sum_{n=0}^{\infty} 2^{n+1} x^n$ converges.

Problem 6. (Optional, you may earn 12 extra points) The sequence (a_n) is defined by $a_1 = 1$, $a_{n+1} = \sqrt[3]{3a_n + 2}$. Prove that this sequence converges and find its limit.

1