Exam III, Math 222

Problem 1. a) Let f be a function which has derivatives of all orders. Define the n-th Taylor polynomial of f centered at a and the Taylor series of f centered at a. State the definition of the n-th remainder and the Taylor's inequality for the remainder. (6 points)

- b) Find the Taylor series for $f(x) = \sin x$ centered at $\pi/2$. Use Taylor's inequality to prove that the Taylor series converges to f(x) for all x. (5 points each)
- c) Find the Taylor series expansion centered at 0 for $f(x) = x \ln(1-x^2)$. Use it to compute $f^{(9)}(0)$. (5 points each)

Problem 2. a) State the ratio and root tests. (6 points)

b) Determine whether the following series converges absolutely, converges conditionally or diverges (5 points each)

a)
$$\sum_{n=0}^{\infty} \frac{(-3)^{1+3n}}{n^n}$$
 b) $\sum_{n=0}^{\infty} \frac{n!}{e^n}$.

Problem 3. a) State the integral test and the alternating series test (6 points)

b) Determine whether the following series converges absolutely, converges conditionally or diverges (5 points each)

a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$
 b) $\sum_{n=0}^{\infty} \frac{n}{n^2 + 1}$.

Problem 4. Compute the following limits (5 points each):

a)
$$\lim_{n \to \infty} (1 - \frac{2}{n})^{3n+1}$$
 b) $\lim_{n \to \infty} \sqrt[n]{2^n + 3^n}$ c) $\lim_{n \to \infty} \frac{n2^n + 1}{3^n + 2}$

Problem 5. A curve C is given by parametric equations $x = \sin t$, $y = \cos^3 t$, $t \in [0, 2\pi]$.

a) Compute dy/dx and d^2y/dx^2 (i.e. the first and second derivatives of y as a function of x). Use it to sketch the curve (find where the curve is concave up or concave down) (5 points).

1

- b) Find all $t \in [0, 2\pi]$ for which the tangent to the curve C is horizontal (5 points).
- c) Find the area of the region bounded by the curve C (6 points).