## Quizzes for Math 222

**QUIZ 1.** Let  $f(x) = 2x + \ln x, x \in (0, \infty)$ .

- a) Explain why f has an inverse function.
- b) Compute  $(f^{-1})'(2)$ .
- c) Find the range of f. Explain your answer.

QUIZ 2. a) Solve the equation

$$\ln(x+6) + \ln(x-3) = \ln 5 + \ln 2$$

- b) Differentiate the function  $f(x) = x^{\sin x}$ .
- **QUIZ 3.** a) Compute  $\lim_{x\to\infty} (\frac{x}{x+1})^x$ .
- b) Compute  $\int \frac{dx}{4x^2+1}$ .

QUIZ 4. Compute:

- a)  $\int e^{2x} \sin x dx$
- b)  $\int_0^{\pi/4} \tan^2 x \sec^4 x dx$ .

QUIZ 6. Find the area of the surface obtained by revolving the curve

$$y = \frac{e^x + e^{-x}}{2}, \quad 0 \le x \le \ln 2$$

about the y-axis. What is the length of this curve?

QUIZ 7. a) Find the solution to the differential equation

$$y' = \frac{x+1}{xy}, \quad x > 0$$

which satisfies y(1) = -4.

b) Let y(x) be the solution to  $y' = x^2 + y^2$ , y(0) = 0. Find approximation to y(3) using Euler's method with step size 1 (i.e. n = 3). Can you find the actual solution?

**QUIZ 8.** a) Compute  $\sum_{n=0}^{\infty} (\frac{1}{3})^{3n+2}$  or prove that it diverges.

- b) A convergent sequence  $a_n$  satisfies the recurrence relation  $1 + a_n a_{n+1} = 2a_{n+2}$ . Find  $\lim_{n\to\infty} a_n$ .
- c) Compute  $\lim_{n\to\infty} \sqrt[n]{n^2+3^n}$ .

**QUIZ 9.** a) Is the series  $\sum_{n=1}^{\infty} ne^{-n}$  convergent or divergent? Justify your answer.

b) Find all x for which the series  $\sum_{n=0}^{\infty} \frac{1+x^n}{2^n}$  converges.

QUIZ 10. Use appropriate test to determine whether the following infinite series converges absolutely, converges conditionally or diverges:

a) 
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$
 b)  $\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$  c)  $\sum_{n=1}^{\infty} \frac{n-1}{n^n}$ 

**QUIZ 11** a) Find the Taylor series expansion around a = 1 of the function  $f(x) = x^4 - 4x^3 + 9x^2 - 9x + 5$ .

b) Find a power series expansion centered at 0 for  $1/(1+x)^2$ .

**QUIZ 12** Find the length of the curve  $x = e^t + e^{-t}$ , y = 5 - 2t,  $0 \le t \le 3$ . Set up, but do not evaluate, the integral which expresses the area of the surface obtained by rotating the curve about the x-axis.