
Quizzes for Math 222

QUIZ 1. Let f(x) = 2x+ ln x, x ∈ (0,∞).

a) Explain why f has an inverse function.

b) Compute (f−1)′(2).

c) Find the range of f . Explain your answer.

Solution: a) Note that f ′(x) = 2+1/x > 0, so f is increasing, hence also one-to-one.

b) First we need to find f−1(2), i.e. we need to find a such that f(a) = 2a+ln a = 2.

We do it by experimenting with some small numbers and observing that a = 1 works

(solving the equation f(a) = 3 would be much harder and no nice answer can be

given). Recall now that

(f−1)′(2) =
1

f ′(1)
=

1

2 + 1
=

1

3
.

c) Since f is increasing and continuous on the interval (0,∞), the range of f is (a, b),

where a = limx→0+ f(x) and b = limx→∞ f(x). Recall that limx→0+ lnx = −∞,

limx→0+ 2x = 0, limx→∞ ln x = ∞, and limx→∞ 2x = ∞. It follows that

lim
x→0+

(2x+ ln x) = −∞ and lim
x→∞

(2x+ ln x) = ∞,

so the range of f is (−∞,∞).

QUIZ 2. a) Solve the equation

ln(x− 2) + ln(x+ 1) = ln 12 − ln 3

b) Differentiate the function f(x) = xln x.
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Solution: a) Note first that the left hand side is defined only for x > 2. Using the

basic properties of ln we get

ln[(x− 2)(x+ 1)] = ln
12

3
= ln 4.

Since ln is a one-to-one function, we conclude that

(x− 2)(x+ 1) = 4 i.e. x2 − x− 6 = 0.

The last equation has solutuions 3,−2 but only x = 3 satisifes the original constrain

x > 2. Thus x = 3 is the only solution.

b) We use the formula h(x)g(x) = eg(x) ln h(x). It follows that f(x) = eln
2 x. Now the

chain rule yields

f ′(x) = eln
2 x2 ln x

1

x
= 2xlnx ln x/x = 2xlnx−1 lnx.

QUIZ 3. a) Compute lim
x→∞

(

x− 1

x+ 1

)2x

.

b) Compute

∫ 1

0

exdx

e2x + 1
.

Solution: a) Since limx→∞

x−1
x+1

= 1 (this type of limits were discussed in Calc I;

you can also apply L’Hospital’s rule), the limit we need to compute is of the type

1∞. Thus we first try to compute

lim
x→∞

ln

[

(

x− 1

x+ 1

)2x
]

= lim
x→∞

2x(ln(x− 1) − ln(x+ 1))

The last limit is of the type ∞ · 0, and we transform it as follows:

lim
x→∞

2x(ln(x− 1) − ln(x+ 1)) = 2 lim
x→∞

ln(x− 1) − ln(x+ 1)
1
x

.

Now we get limit of the type 0
0
, so we can apply L’Hospital’s rule:

2 lim
x→∞

ln(x− 1) − ln(x+ 1)
1
x

= 2 lim
x→∞

1
x−1

− 1
x+1

−1
x2

= 2 lim
x→∞

−2x2

(x− 1)(x+ 1)
= 2·(−2) = −4.

(We use here the fact that

lim
x→∞

−2x2

(x− 1)(x+ 1)
= lim

x→∞

−2x2

x2 − 1
= −2
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which should be clear from what you learned in Calc I, or you could apply L’Hospital’s

rule again). Thus we computed that

lim
x→∞

ln

[

(

x− 1

x+ 1

)2x
]

= −4

and therefore

lim
x→∞

(

x− 1

x+ 1

)2x

= e−4.

b) We use substitution u = ex, du = exdx to get

∫ 1

0

exdx

e2x + 1
=

∫ e

1

du

u2 + 1
= arctan(e) − arctan(1) = arctan(e) − π

2
.

QUIZ 4. Compute:

a)

∫

ex sin 2xdx

b)

∫

tan2 x sec4 xdx.

Solution: a) We use integration by parts with f ′(x) = ex and g(x) = sin 2x, so

f(x) = ex and g′(x) = 2 cos 2x:
∫

ex sin 2xdx = ex sin 2x−
∫

2ex cos 2xdx = ex sin 2x− 2

∫

ex cos 2xdx.

Now we apply integration by parts to

∫

ex cos 2xdx with f ′(x) = ex and g(x) =

cos 2x, so f(x) = ex and g′(x) = −2 sin 2x:
∫

ex cos 2xdx = ex cos 2x−
∫

(−2)ex sin 2xdx = ex cos 2x+ 2

∫

ex sin 2xdx.

It follows that
∫

ex sin 2xdx = ex sin 2x− 2ex cos 2x− 4

∫

ex sin 2xdx

i.e.

5

∫

ex sin 2xdx = ex sin 2x− 2ex cos 2x+ C.

Thus
∫

ex sin 2xdx =
1

5
ex sin 2x− 2

5
ex cos 2x+ C.
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b) We use the identity sec2 x = 1 + tan2 x as follows:
∫

tan2 x sec4 xdx =

∫

tan2 x sec2 x sec2 xdx =

∫

tan2 x(1 + tan2 x) sec2 xdx.

Now we subsitute u = tanx, du = sec2 xdx to get
∫

tan2 x sec4 xdx =

∫

u2(1 + u2)du =

∫

(u2 + u4)du =

∫

u2du+

∫

u4du =

=
u3

3
+
u5

5
+ C =

tan3 x

3
+

tan5 x

5
+ C.

QUIZ 5. Compute the following integrals:

a)

∫ 1

0

dx

(1 + x2)2
b)

∫ 1/2

0

√
1 − 4x2dx

Solution: a) We use the substitution x = tanu, dx = sec2 udu:

∫ 1

0

dx

(1 + x2)2
=

∫ π/4

0

sec2 udu

(1 + tan2u)2
=

∫ π/4

0

sec2 udu

sec4 u
=

∫ π/4

0

cos2 udu.

Now we use the identity cos2 u = (cos 2u+ 1)/2 to get

∫ π/4

0

cos2 udu =

∫ π/4

0

cos 2u+ 1

2
du = (

sin 2u

4
+
u

2
)|π/4

0 =
1

4
+
π

8
.

b) We use the substitution x =
sin u

2
, dx =

cosudu

2
:

∫ 1/2

0

√
1 − 4x2dx =

∫ π/2

0

√

1 − sin2 u
cosudu

2
=

1

2

∫ π/2

0

cos2 udu.

Now we use the identity cos2 u = (cos 2u+ 1)/2 to get

∫ π/2

0

cos2 udu =

∫ π/2

0

cos 2u+ 1

2
du = (

sin 2u

4
+
u

2
)|π/2

0 =
π

4
.

QUIZ 6. a) Write the form of the partial fraction decomposition of the rational

function

f(x) =
x2 + 2

(x2 − 3x+ 3)(x2 + x+ 1)2
.

b) Compute the integral
∫

x+ 2

(x2 + 4x+ 5)2
dx.
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Solution: a) Since the numerator has degree smaller that the denominator, there

is no need for long division here. We need to decompose the denominator into

product of linear factors and quadratic factors which do not have real roots. Note

that x2 + x + 1 has no real roots (its discrimant is −1, which is negative). On the

other hand, x2 − 3x+ 2 = (x− 1)(x− 2). Thus we have

f(x) =
x2 + 2

(x− 1)(x− 2)(x2 + x+ 1)2
=

A

x− 1
+

B

x− 2
+
C1x+D1

x2 + x+ 1
+

C2x+D2

(x2 + x+ 1)2
.

b) We first complete to square the denominator:

x2 + 4x+ 5 = x2 + 2 · x · 2 + 22 − 22 + 5 = (x+ 2)2 + 1.

We substitute u = x+ 2 to get
∫

x+ 2

(x2 + 4x+ 5)2
dx =

∫

u

(u2 + 1)2
dx.

Now substitute w = u2 + 1, dw = 2udu to get
∫

x+ 2

(x2 + 4x+ 5)2
dx =

∫ 1
2

w2
dw =

−1

2w
+C =

−1

2(u2 + 1)
+C =

−1

2((x+ 2)2 + 1)
+C.

Note: one could substitute u = x2 + 4x+ 5 and do the computations in one step.

QUIZ 7. a) Determine whether the following integral converges or diverges
∫

∞

1

1√
x2 − x

dx.

b) Compute

lim
n→∞

√
n4 + n3 + 1

n2 + 1
.

Solution: a) Note that the integral is improper at both ends. Thus we need to

study convergence of the integrals
∫

∞

2

1√
x2 − x

dx and

∫ 2

1

1√
x2 − x

dx.

Intuitively, for large x the quantity 1/
√
x2 − x is comparable to 1/x. This suggests

that the first integral should behave like
∫

∞

2
1
x
dx which diverges. To get a precise

argument, note that
1√

x2 − x
>

1

x
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for all x > 2. Since
∫

∞

2
1
x
dx diverges, the integral

∫

∞

2

1√
x2 − x

dx

also diverges by comparison test. It follows that the original integral
∫

∞

1

1√
x2 − x

dx

diverges.

Remark. It is natural to ask whether
∫ 2

1

1√
x2 − x

dx

converges or diverges. Note that
1√

x2 − x
and

1√
x− 1

are comparable when x tends

to 1. Since
∫

1√
x− 1

dx = 2
√
x− 1 + C

we see that

lim
t→1+

∫ 2

t

1√
x− 1

dx = lim
t→1+

(2
√

2 − 1 − 2
√
t− 1) = 2

converges. Note now that

1√
x2 − x

=
1

√

x(x− 1)
≤ 1√

x− 1

for x > 1. Thus the integral
∫ 2

1

1√
x2 − x

dx

converges by comparison test.

b) We have

√
n4 + n3 + 1

n2 + 1
=

√

n4(1 + 1
n

+ 1
n4 )

n2(1 + 1
n2 )

=

√

1 + 1
n

+ 1
n4

1 + 1
n2

.

Thus

lim
n→∞

√
n4 + n3 + 1

n2 + 1
= lim

n→∞

√

1 + 1
n

+ 1
n4

1 + 1
n2

=
1

1
= 1.
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QUIZ 8. a) Is the series
∞
∑

n=1

arctann convergent? Explain your answer.

b) Compute
∞
∑

n=1

22n+1

5n
.

Solution: a) Since lim
n→∞

arctann = π/2 6= 0, the series
∞
∑

n=1

arctann diverges by the

divergence test.

b) The series is reduced to a geometric series as folows:

∞
∑

n=1

22n+1

5n
=

∞
∑

n=1

2 · 4n

5n
= 2

∞
∑

n=1

(

4

5

)n

= 2 · 4

5

∞
∑

n=0

(

4

5

)n

=
8

5

1

1 − 4
5

= 8.

QUIZ 9. Use appropriate test to determine convergence/divergence of

a)
∞
∑

n=1

1

n(1 + (lnn)2)

b)
∞
∑

n=1

√
n+ 1

n2 + n− 1
.

Solution: a) Let an =
1

n(1 + (lnn)2)
. Thus an = f(n), where f(x) =

1

x(1 + (lnx)2)
.

Note that the function f is positive and continuous. Moreover, since both x and

ln x are increasing functions of x, the function x(1 + (ln x)2) is increasing and con-

sequently f(x) is decreasing. Alterantively, note that

f ′(x) =
−1 − (ln x)2 − 2 lnx

x2(1 + (lnx)2)2
< 0.

Therefore we may apply the integral test and see that our series converges iff the

integral

∫

∞

1

1

x(1 + (ln x)2)
dx converges. Note that the substituiton u = ln x, du =

dx/x yields
∫

1

x(1 + (lnx)2)
dx =

∫

1

1 + u2
du = arctanu+ C = arctan ln x+ C.

7



Consequently,

∫

∞

1

1

x(1 + (ln x)2)
dx = lim

t→∞

∫ t

1

1

x(1 + (ln x)2)
dx = lim

t→∞

arctan ln t = π/2.

We see that the integral

∫

∞

1

1

x(1 + (lnx)2)
dx converges and therefore so does the

series
∞
∑

n=1

1

n(1 + (lnn)2)

b) It is intuitively clear that an =

√
n+ 1

n2 + n− 1
behaves very similarly to bn =

√
n

n2
=

1

n3/2
. We try then the limit comparison test for an and bn:

lim
n→∞

an

bn
= lim

n→∞

(
√
n+ 1√
n

n2

n2 + n− 1

)

= lim
n→∞

(

√

n+ 1

n

n2

n2 + n− 1

)

= 1.

Since
∑

bn =
∑ 1

n3/2
converges, the series

∑

an converges by the limit comparison

test.

QUIZ 10. Consider the power series
∞
∑

n=1

n(x+ 1)n

4n
.

a) Find the radius of convergence of this power series.

b) Find the interval of convergence of this power series.

Justify your answer with appropriate tests.

Solution: a) We use the following result from class:

Theorem 1. Let

∞
∑

n=1

cn(x− a)n be a power series with radius of convergence R.

1. If the limit lim
n→∞

|cn+1|
|cn|

= L exists or it is ∞ then R = 1/L;

2. If the limit lim
n→∞

n

√

|cn| = L exists or it is ∞ then R = 1/L;

(Note that it means that if L = 0 then R = ∞ and if L = ∞ then R = 0)

In our case we have cn = n/4n, so

lim
n→∞

n

√

|cn| = lim
n→∞

n

√

n

4n
= lim

n→∞

n

√
n

4
=

1

4
.
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Alternatively,

lim
n→∞

|cn+1|
|cn|

= lim
n→∞

n+1
4n+1

n
4n

= lim
n→∞

n+ 1

4n
=

1

4
.

Thus the radius of convergence R = 4.

b) The power series is centered at a = −1. Thus the interval of conergence has

end points a − R = −1 − 4 = −5 and a + R = −1 + 4 = 3. We need to test the

convergence of the power series for x = −5 and x = 3. For x = −5 we get

∞
∑

n=1

n(−5 + 1)n

4n
=

∞
∑

n=1

n(−4)n

4n
=

∞
∑

n=1

(−1)nn.

Since an = (−1)nn does not converge to 0, the series
∑

∞

n=1(−1)nn diverges by the

divergence test, so our power series diverges for x = −5.

For x = 3 we get
∞
∑

n=1

n(3 + 1)n

4n
=

∞
∑

n=1

n4n

4n
=

∞
∑

n=1

n.

Since an = n does not converge to 0, the series
∑

∞

n=1 n diverges by the divergence

test, so our power series diverges for x = 3.

It follows that the interval of convergence is (−5, 3).

QUIZ 11. a) Find a power series expansion at a = 0 of the function f(x) =
x

x2 + 16
.

b) Find the taylor series at a = 1 of the function f(x) = x4 − 4x3 + 9x2 − 9x+ 5.

Solution: a) Note that

f(x) =
x

x2 + 16
=

x

16
· 1

1 + x2

16

.

Recall now that

1

1 + x
= 1 − x+ x2 − x3 + ... =

∞
∑

n=0

(−1)nxn

which converges for x ∈ (−1, 1). Substituting x2/16 for x we get

1

1 + x2

16

=
∞
∑

n=0

(−1)n

(

x2

16

)n

=
∞
∑

n=0

(−1)n

16n
x2n.

Thus

f(x) =
x

x2 + 16
=

x

16

∞
∑

n=0

(−1)n

16n
x2n =

∞
∑

n=0

(−1)n

16n+1
x2n+1.
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Note that this converges for x such that −1 < x2/16 < 1, i.e. −4 < x < 4.

Remark. Using this expansion we can get derivatives of all orders of f at 0. In

fact, recall that if f(x) =
∑

∞

n=0 cn(x− a)n then

cn =
f (n)(a)

n!
,

so

f (n)(a) = n!cn.

Thus, for example, in our case we have f (11)(0) = 11! times the coefficient at x11 =

11! (−1)5

166 .

b) Recall that the Taylor series T (f, a)(x) of a function f at a is the power series

∞
∑

n=0

f (n)(a)

n!
(x− a)n,

where f (n)(a) is the n-th derivative of f at a. Thus we need to compute the deriva-

tives of f at a = 1.

f (0)(x) = x4 − 4x3 + 9x2 − 9x+ 5, f (0)(1) = 2;

f (1)(x) = 4x3 − 12x2 + 18x− 9, f (1)(1) = 1;

f (2)(x) = 12x2 − 24x+ 18, f (2)(1) = 6;

f (3)(x) = 24x− 24, f (3)(1) = 0;

f (4)(x) = 24, f (4)(1) = 24;

f (5)(x) = 0, so f (n)(1) = 0 for all n ≥ 5.

Thus

T (f, 1)(x) =
∞
∑

n=0

f (n)(1)

n!
(x−1)n = 2+1(x−1)+

6

2!
(x−1)2+

0

3!
(x−1)3+

24

4!
(x−4)4 =

= 2 + (x− 1) + 3(x− 1)2 + (x− 1)4.

QUIZ 12. a) Compute the arc-length function of the curve y = arcsinx+
√

1 − x2

with starting point (0, 1).
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b) Find the Taylor series of the function f(x) =
1√

1 − x
centered at 0 (i.e. the

Maclaurin series). What is the radius of convergence of this series?

Solution: a) Recall that the length of the curve y = f(x) between points (a, f(a))

and (b, f(b)), a ≤ b is given by

∫ b

a

√

1 + [f ′(t)]2dt.

The arc-length function computes the length of the curve y = f(x) between the

starting point and the point (x, f(x)) as a function of x. In our case f(x) = arcsinx+
√

1 − x2 so

f ′(x) =
1√

1 − x2
+

1

2
√

1 − x2
(−2x) =

1 − x√
1 − x2

,

and that the arc length function is

l(x) =

∫ x

0

√

1 +

[

1 − t√
1 − t2

]2

dt =

∫ x

0

√

1 +
1 − t

1 + t
dt =

∫ x

0

√

2

1 + t
dt =

√
2

∫ x

0

1√
1 + t

dt.

Note that
∫

1√
1 + t

dt = 2
√

1 + t+ C.

Thus

l(x) =
√

2

∫ x

0

1√
1 + t

dt = 2
√

2(
√

1 + x− 1).

Remark. Note that the above formula holds for x ≥ 0. If x < 0, then the above

formula yields negative numbers, and the actual length is the negative of the formula

above.

b) Recall the binomial series:

(1 + x)s =
∞
∑

n=0

(

s

n

)

xn,

where

(

s

n

)

=
s(s− 1)(s− 2)...(s− (n− 1))

n!
(recall that, in particular,

(

s

0

)

= 1

and

(

s

1

)

= s for any s). The binomial series has radius of converge 1 if s is not a

non-negative integer and when s = 0, 1, 2, ... is a non-negative integer then the series

converges for all x (it becomes a polynomial of degree s in this case). If s ≤ −1
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then the series has interval of convergence (−1, 1), if −1 < s < 0 then the interval

of convergence is (−1, 1] and for s ≥ 0 the series converges for both x = −1 and

x = 1.

In our problem we have

1√
1 − x

= (1 + (−x))−1/2 =
∞
∑

n=0

(

−1
2

n

)

(−x)n =
∞
∑

n=0

(−1)n

(

−1
2

n

)

xn.

The binomial coefficients can be transformed into a nicer form as follows

(

−1
2

n

)

=
−1
2

(−1
2
− 1)...(−1

2
− (n− 1))

n!
= (−1)n

1
2

3
2

5
2
...2(n−1)+1

2

n!
= (−1)n 1 · 3 · 5 · ... · (2n− 1)

2nn!
.

Thus

1√
1 − x

=
∞
∑

n=0

(−1)n

(

−1
2

n

)

xn =
∞
∑

n=0

(−1)n(−1)n 1 · 3 · 5 · ... · (2n− 1)

2nn!
xn =

=
∞
∑

n=0

1 · 3 · 5 · ... · (2n− 1)

2nn!
xn = 1 +

1

2
x+

1 · 3
22 · 2!

x2 +
1 · 3 · 5
23 · 3!

x3 +
1 · 3 · 5 · 7

24 · 4!
x4 + ...

From the properties of the binomial series, the series has radius of convergence R = 1

(and interval of convergence [−1, 1)).

QUIZ 13. a) Find the area of the surface obtained by rotating the curve y =
x2

4
− ln x

2
, 1 ≤ x ≤ 2 about the y-axis.

b) Find the equation of the line tangent to the curve x = 3t2 + 1, y = 2t3 + 1 at the

point (4, 3). What is the length of this curve between points corresponding to t = 0

and t = 1?

Solution: Let us recall some basic facts about parametric curves. Let x = φ(t),

y = ψ(t), t ∈ [a, b] be a parametric curve.

1. the derivative of y as a function of x at a point corresponding to a parameter

t is equal to
ψ′(t)

φ′(t)
(provided φ′(t) 6= 0). In particular, the tangent line to

the curve at a point corresponding to a parameter t has slope
ψ′(t)

φ′(t)
, provided

φ′(t) 6= 0. If φ′(t) = 0 and ψ′(t) 6= 0 then the tangent is vertical.
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2. the length of the curve between points corresponding to t = a and t = b is

∫ b

a

√

φ′(t)2 + ψ′(t)2dt

(assuming that there are no overlaps; in general the integral expresses the

distance traveled along the curve).

3. the area of the surface obtained by revolving the curve about the x-axis is

2π

∫ b

a

ψ(t)
√

φ′(t)2 + ψ′(t)2dt

(assuming that ψ(t) > 0 for t ∈ [a, b]).

4. the area of the surface obtained by revolving the curve about the y-axis is

2π

∫ b

a

φ(t)
√

φ′(t)2 + ψ′(t)2dt

(assuming that φ(t) > 0 for t ∈ [a, b]).

5. the graph of a function y = f(x), x ∈ [a, b] can be considered as a special case

of a parametric curve with x = t, y = f(t), i.e. φ(t) = t, ψ(t) = f(t), so the

above formulas can be applied in this case and yield the formulas we derived

earlier for graphs of functions.

Now we can solve our problem.

a) We use the formula in 4. above. Note that in this case φ(t) = t and ψ(t) = t2

4
− ln t

2
.

Thus φ′(t) = 1 and ψ′(t) = t
2
− 1

2t
. Note that

1 + ψ′(t)2 = 1 + (
t

2
− 1

2t
)2 = (

t

2
+

1

2t
)2.

Thus the surface area is equal to

2π

∫ 2

1

t

√

(
t

2
+

1

2t
)2dt = 2π

∫ 2

1

t(
t

2
+

1

2t
)dt = π

∫ 2

1

(t2 + 1)dt =
10π

3
.

b) Note that φ(t) = 3t2 + 1, ψ(t) = 2t3 + 1 so φ′(t) = 6t, ψ′(t) = 6t2. The point

(4, 3) corresponds to the parameter t = 1. Thus the slope of the tangent at the point
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(4, 3) is
ψ′(1)

φ′(1)
= 1. Thus the tangent line at (4, 3) has equation y − 3 = 1 · (x− 4),

i.e. y = x− 1.

The lenght of the curve is computed using 2:

length =

∫ 1

0

√

(6t)2 + (6t2)2dt =

∫ 1

0

√

(6t)2(t2 + 1)dt =

∫ 1

0

6t
√
t2 + 1dt.

Using the substitution u = t2 + 1, du = 2tdt, we get

length =

∫ 2

1

3
√
udu = 2(23/2 − 1) = 4

√
2 − 2.

QUIZ 14 a) Find the area of the region enclosed by the curve r = 4 + 3 sin θ.

b) Find a function y(x) sych that y′ = 2(y2 + 1)x and y(0) = 1.

Solution: a) The area A of a polar region 0 ≤ r ≤ f(θ), θ ∈ [a, b] is given by the

formula
1

2

∫ b

a

f2dθ.

In our case a = 0, b = 2π, f(θ) = 4 + 3 sin θ, so the area is equal to

1

2

∫ 2π

0

(4 + 3 sin θ)2dθ =
1

2

∫ 2π

0

(16 + 24 sin θ + 9 sin2 θ)dθ =

=

∫ 2π

0

8dθ+

∫ 2π

0

12 sin θdθ+
9

2

∫ 2π

0

1 − cos 2θ

2
dθ = 16π+0+

9

4

∫ 2π

0

dθ−9

4

∫ 2π

0

cos 2θdθ =

= 16π +
9

2
π − 0 =

41π

2
.

b) This is a separable differential equation. The separation of variables yields

dy/(y2 + 1) = 2xdx, so
∫

dy

y2 + 1
=

∫

2xdx

i.e.

arctan y = x2 + C.

It follows that y(x) = tan(x2 + C). The condition y(0) = 1 implies that tanC = 1

and we may take C = π/4. Thus y(x) = tan(x2 + π/4).
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