Solutions to Exam II1

d
Problem 1. a) Consider the parametric curve x = t* +t + 1, y = 4¢3 4+ 3t* + 2. Find d—y
x
2

and d—g; as functions of t. Find the equation of the line tangent to the curve at the point
x
(1,1).

b) Sketch the curve given in polar coordinates by the equation r = 6%, 6 € [0,27]. Find
a parametric equation of this curve in Cartesian coordinates (use 6 as the parameter).

Compute the length of this curve.

1
c) The curve x = t* + 2, y = gtg —t+2,t € [0,1] is revolved about the y-axis. Compute
the area of the resulting surface.
dy

d 2J
Solution: a) Recall that d—y = 4 Since % =12t + 6t = 6t(2t + 1) and % =2t + 1, we
x

5|

dy  6t(2t+1)

= 6t.
dx 2t +1
Similarly,
d(4%) d
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dz? dx dx 204+1 2t +1

dt
The point (1, 1) corresponds to the parameter t = —1 (you solve the system t2+t+1 =

1,4t% + 3t + 2 = 1). Thus the slope of the tangent is the value of % at ¢ = —1, which is
—6. Thus the tangent line has equation y — 1 = —6(z — 1), i.e. y = —6z + 7.

b) The point with polar coordinates (r,#) has Cartesian coordinates x = rcosf, y =
rsinf. Since on our curve r = 62, our curve in Cartesian coordinates is given by parametric
equation z = #?cosf, y = 0?sinf. The formula for the length of a parametric curve
x=¢(0), y=1(0), 0 € [a,b] is given by

/a IO T GO0 / b \/ (Z—?)Q + (%)Qd&

d
Since ¢ 26 cosf — H*sin 6, &Y _ 20 sin 0 + 62 cos 6, we have

do do

2 2
(Z—g) + <%) = (20cos — 62sin 0)2 + (20sin 0 + 62 cos 0)2 = 462 + 0

and therefore the length of the curve is

2 2
V462 + 64dl = / 0v'4 + 6%d6.

0 0
Using substitution u = 6% + 4, du = 20df, we get that the length is equal to

4—|—47T2 1 1 8
/4 §ﬁdu = g((4 + 47232 - 43/%) = g((l +m2)32 — 1),



c¢) Recall that the area of the surface obtained by revolving the curve x = ¢(t), y = ¥(t),
t € [a,b] about the y-axis is

b
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d d
(assuming that ¢(t) > 0 for t € [a, b]). Since d—f = 2t, d—‘z = t? — 1, the surface area is

2ﬂ/l(t2—|—2)\/(2t)2+ (t2 — 1)2dt = 27?/ (t+2)\/ (2 + 1)2dt = 27r/ (#*+2) (P +1)dt =

! 32
— 27r/ (t* + 3% + 2)dt = =
0

Problem 2. Compute the following infinite sums:
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Solution: a) Recall the formula for the sum of a geometric series: Z " =
n=0

1

—, for
1—=x

|z| < 1. Note that
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c¢) Recall the power series expansion of In(1 — x):

Oox
n(l —x) —
n

which is valid for = € [—1,1). Taking z =1 — %, we get

In(1 — ( 1—— i

n=1
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Problem 3. Determine whether the following series is absolutely convergent, condi-
tionally convergent or divergent. Explain what test you are applying and verify all the

conditions necessary to apply the test.

sEere (i) » S o S 9£G-)

n=1

Solution: a) Recall the divergence test: if lim,, . a, is not equal to 0 then the series > a,

1 1
diverges. In our case a, = (—1)" cos (—) does not tend to 0, since lim cos (—) = 1.
n n

n—oo

Thus the series diverges.

b) We compare the series to the series Z \/_ which is a p-series with p = 4/3 > 1,

hence it is convergent. We use limit comparlson test, which we can since the terms of
both series are positive:
L \/72
lim % = lim ——— = n \3/

Since the limit is a positive real number, the limit comparison test tells us that either both
o

series diverge or they both converge. Since we know that the series Z

f

other series converges as well. Since the series has positive terms, 1t converges absolutely.

c¢) The sign of the terms of our series alternates. Thus we would like to apply the alter-
1

nating series test with a, = —————. Clearly the function z+/Inz 4 1 is increasin

& " nyvinn +1 Y &

for x > 1. Thus the function ] is decreasing and therefore the sequence a,
rvVIinx +

is decreasing. Moreover, lim, ., a, = 0, so we can apply the alternating series test to
conclude that the series Y >~ (—=1)""ta, converges. To test for absolute convergence we
need to determine whether the series
e D et
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for x > 1. Thus we may a;o)oply the integral test to conclude that our series converges
dx

1 vVInzx+1
1+Int du
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converges. We have a, = f(n), where f(z) = is positive and decreasing

absolutely iff the integral converges. Using the substitution u =1+ Inx

we see that

[

Thus the integral

&0 T t dx
= — lim —— = 1lim(2v1+Int —2) = +o0
/1 zv/Inx +1 t—>oo/1 zvInx + 1 t—’oo( )
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diverges and therefore our series is not convergent absolutely. In other words, our series

is conditionally convergent.

d) We apply the root test. We have

1 2n2 . 1 2n . 1 2n B
%—1 :nh_{glo 1—% :nll_)rgo 1+% =e <1

(recall that lim <1 + 2) = e%). Since the limit is smaller than 1, the series converges
x

r—00

lim

n—oo

absolutely.

Problem 4. a) Find the radius and interval of convergence of the power series

2 1
; 3:21 5 (x — 1)". Carefully justify your answer.
b) Give the power series expansion centered at 0 for the following functions and state

radius of convergence:

DVIi—a? i d( ! ) i) /cos,(\/z)dx

H)% 1—=x

c) Use i) of part b) to compute the 6th derivative of /1 — 222 at 0.

Solution: a) We use the ratio test method to compute the radius of convergence. We

have 2(n+1)+1
. 3(n+1)212 . 2n+3 3n2+2
lim = ———~ = lim

n—oo 3277:2—:_12 o n—oo 277, + ]. 372,2 + 677/ _'_ 5 -

It follows that the radius of convergence R = 1/1 = 1. The power series in centered at 1,
so the interval of convergence has left end at 1 — R = 1—1 = 0 and right and at 1+ R = 2.

To test convergence at the left end we look at the series when x = 0, i.e. the series
—~ 2n+1 2n +1
E L(—1)”. The sign of the terms of this series alternates. Consider a,, = o

3n? + 2 3n? 4+ 2

n=1
We claim that this sequence is decreasing. This means that a, > a,.1, i.e.

2n+1 - 2n+3
3n?24+2° 3n24+6n+5

which is equivalent to (2n + 1)(3n* + 6n + 5) > (2n + 3)(3n% + 2), i.e. 6n® + 15n? +
16n +5 > 6n3 +9n? +4n + 6, i.e. In® + 12n > 1, which is clearly true . Alternatively,

2 1 4—-6
compute the derivative of f(z) = %, which is f'(x) = ﬁ <0 for z > 1.
T x

This means that the function is decreasing for x > 1 and therefore the sequence a, =

f(n) is decreasing. Clearly, lim, ., a, = 0. By the alternating series test, the series
o

Z 2n—|—1( 1)" converges
—(— verges.
“— 3n® +2 &

To test convergence at the right end we look at the series when x = 2, i.e. the series
o0

2n+1 . .. . : .

E ERCEDE which has positive terms. We compare it to the harmonic series. We use
n

1



limit comparison test:

2n+1 9
2n°+n 2

. 3n242
lim 1+ = lim 5 — 3
n—oo = n—oo 3n° + 2 3

Since the limit exists and it is positive, the limit comparison test tells us that the series

 2n+1 1
Z s and Z — either both converge or both diverge. Since the harmonic series
— 3n? + 2 n—l

2 1
diverges, the series Z " + ) diverges as well.

It follows that the 1nterval of convergence is [0, 2).

b) For i) we need the binomial series:
= (u
1 v = "
(o =% (n)x
n=0
When u = 1/2 this series has radius of convergence 1. Substitute —2z2 for z to get
> /1 > /1
v1—2z2=(1- 2x2)1/2 = Z (2) (—22)" = Z <2) (—2) ™",

n n

This series converges for 222 < 1, i.e. for |z| < v/2/2, so the radius of convergence is
V2/2.

For ii) recall that

= Z x" and the radius of convergence is 1. Differentiation
n=0

d - n
%(1—35) dxzx an :ZOn+1):E

The radius of convergence remains the same under differentiation, so the series has radius

— X

yields

of convergence 1.

For iii) we need to recall the power series expansion of cos x:

o0 2n
. T
cosx = E (—1) )
n=0

which converges for all z. Substitute \/x for = to get

cos\/T = Z(—

which converges for all x (note that the right hand side makes sense also for negative ).

Integrating we get

/COS(\/E)CZZL’Z/(%( )< )>dx—0+z m

Since the radius of convergence remains the same under integration, the series convergence

for all z.



c¢) Recall that if a function is given by a power series, then the power series coincides with
the Taylor series. Thus, for f(z) = V1 — 222 we get

) =3 0= 5 ()

n=0 ’ n=0

2n) (o 1
It follows that f(™(0) = 0 for odd n and / n( ) = (2)(—2)”. Taking n = 3, we get

(6) 1
f(6)(?) — (;) (—2)*. Recall that

Thus |
1 —6!
©) )y =6 —.(=2)3 = — = —_360.

Problem 5. a) Find the Taylor series for f(z) = sinx centered at 7/2. Use Taylor’s

inequality to prove that the Taylor series converges to f(x) for all x.

b) Find the degree 3 Taylor polynomial centered at w/4 for f(z) = Incosx.

Solution: a) The Taylor series of a function f centered at /2 is the series

T2 = P (o5

When f(z) = sinz, the derivatives of f are sinz, cosx, —sinz, —cosz, sinz, ... . Since
sin(r/2) = 1 and cos(7/2) = 0, we see that f((r/2) = 0 for n odd and f®"(7/2) =
(—1)"™. Tt follows that

T(sin, w/2)(x Z

n=0

2n
ar(-3)"
Since |f™(z)| < 1 for all n and all z, Taylor’s inequality tells us that for any = we have
‘J] o N+1
| sinx — TN(Sin, 7T/2)(ZE>| S (]Vij—l)'
When N tends to infinity, the right hand side tends to 0 and therefore the series

-3

o0

T(sin, w/2)(x Z

converges to sinx for every value of x.

b) Recall that the degree 3 Taylor polynomial for a function f, centered at /4, is

T5(f,m/4)(x Zf (m/4) (x—%)n:

= fn/0)+ Fn/) (o= 5) + f”(;/‘” ( _ %)2 + %ﬂ/@ (2 - %)3

r



When f(z) = Incosz, then f(r/4) = In(v/2/2) = (—1n2)/2. Furthermore,
f'(z) = —tanz and f'(7/4) = —1,

f"(x) = —sec*(z) and f"(7/4) = -2,
f"(z) = —2sec?(r) tanz and f’(7/4) = —4.

Thus

Ts(Incos, m/4)(x) = —12n2 — <x— %) - (x— %)2 - % <x— %)3



