
Solutions to Exam III

Problem 1. a) Consider the parametric curve x = t2 + t+ 1, y = 4t3 + 3t2 + 2. Find
dy

dx

and
d2y

dx2
as functions of t. Find the equation of the line tangent to the curve at the point

(1, 1).

b) Sketch the curve given in polar coordinates by the equation r = θ2, θ ∈ [0, 2π]. Find

a parametric equation of this curve in Cartesian coordinates (use θ as the parameter).

Compute the length of this curve.

c) The curve x = t2 + 2, y =
1

3
t3 − t+ 2, t ∈ [0, 1] is revolved about the y-axis. Compute

the area of the resulting surface.

Solution: a) Recall that
dy

dx
=

dy
dt
dx
dt

. Since dy
dt

= 12t2 + 6t = 6t(2t+ 1) and dx
dt

= 2t+ 1, we

get
dy

dx
=

6t(2t+ 1)

2t+ 1
= 6t.

Similarly,

d2y

dx2
=
d( dy

dx
)

dx
=

d( dy

dx
)

dt
dx
dt

=
d(6t)

dt

2t+ 1
=

6

2t+ 1
.

The point (1, 1) corresponds to the parameter t = −1 (you solve the system t2+t+1 =

1, 4t3 + 3t2 + 2 = 1). Thus the slope of the tangent is the value of dy
dx

at t = −1, which is

−6. Thus the tangent line has equation y − 1 = −6(x− 1), i.e. y = −6x+ 7.

b) The point with polar coordinates (r, θ) has Cartesian coordinates x = r cos θ, y =

r sin θ. Since on our curve r = θ2, our curve in Cartesian coordinates is given by parametric

equation x = θ2 cos θ, y = θ2 sin θ. The formula for the length of a parametric curve

x = φ(θ), y = ψ(θ), θ ∈ [a, b] is given by

∫ b

a

√

φ′(θ)2 + ψ′(θ)2dθ =

∫ b

a

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ.

Since
dx

dθ
= 2θ cos θ − θ2 sin θ,

dy

dθ
= 2θ sin θ + θ2 cos θ, we have

(

dx

dθ

)2

+

(

dy

dθ

)2

= (2θ cos θ − θ2 sin θ)2 + (2θ sin θ + θ2 cos θ)2 = 4θ2 + θ4

and therefore the length of the curve is
∫ 2π

0

√
4θ2 + θ4dθ =

∫ 2π

0

θ
√

4 + θ2dθ.

Using substitution u = θ2 + 4, du = 2θdθ, we get that the length is equal to
∫ 4+4π2

4

1

2

√
udu =

1

3
((4 + 4π2)3/2 − 43/2) =

8

3
((1 + π2)3/2 − 1).
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c) Recall that the area of the surface obtained by revolving the curve x = φ(t), y = ψ(t),

t ∈ [a, b] about the y-axis is

2π

∫ b

a

φ(t)
√

φ′(t)2 + ψ′(t)2dt

(assuming that φ(t) > 0 for t ∈ [a, b]). Since
dx

dt
= 2t,

dy

dt
= t2 − 1, the surface area is

2π

∫ 1

0

(t2+2)
√

(2t)2 + (t2 − 1)2dt = 2π

∫ 1

0

(t2+2)
√

(t2 + 1)2dt = 2π

∫ 1

0

(t2+2)(t2+1)dt =

= 2π

∫ 1

0

(t4 + 3t2 + 2)dt =
32

5
π.

Problem 2. Compute the following infinite sums:

a)
∞
∑

n=2

(−2

3

)n−1

b)
∞
∑

n=1

(

1

nen
− 1

(n+ 1)en+1

)

c)
∞
∑

n=1

(1 − 1
e
)n

n

Solution: a) Recall the formula for the sum of a geometric series:
∞
∑

n=0

xn =
1

1 − x
, for

|x| < 1. Note that

∞
∑

n=2

(−2

3

)n−1

=
−2

3
+

(−2

3

)2

+

(−2

3

)3

+ ... =
−2

3
[1 +

−2

3
+

(−2

3

)2

+

(−2

3

)3

+ ...] =

=
−2

3

∞
∑

n=0

(−2

3

)n

=
−2

3

1

1 − (−2
3

)
=

−2

5
.

b) This is an example of the so called telescoping. The n-th partial sum of the series is:

sN =
N
∑

n=1

(

1

nen
− 1

(n+ 1)en+1

)

=

=

(

1

e
− 1

2e2

)

+

(

1

2e2
− 1

3e3

)

+

(

1

3e3
− 1

4e4

)

+...+

(

1

NeN
− 1

(N + 1)eN+1

)

=
1

e
− 1

(N + 1)eN+1
.

It follows that

∞
∑

n=1

(

1

nen
− 1

(n+ 1)en+1

)

= lim
N→∞

sN = lim
N→∞

(

1

e
− 1

(N + 1)eN+1

)

=
1

e
.

c) Recall the power series expansion of ln(1 − x):

ln(1 − x) = −
∞
∑

n=1

xn

n

which is valid for x ∈ [−1, 1). Taking x = 1 − 1
e
, we get

ln(1 − (1 − 1

e
)) = −

∞
∑

n=1

(1 − 1
e
)n

n
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i.e.
∞
∑

n=1

(1 − 1
e
)n

n
= − ln

(

1

e

)

= 1.

Problem 3. Determine whether the following series is absolutely convergent, condi-

tionally convergent or divergent. Explain what test you are applying and verify all the

conditions necessary to apply the test.

a)
∞
∑

n=1

(−1)n cos

(

1

n

)

b)
∞
∑

n=1

1
3
√
n4 − n2 + 1

c)
∞
∑

n=1

(−1)n−1

n
√

lnn+ 1
d)

∞
∑

n=1

(

1

2n
− 1

)2n2

Solution: a) Recall the divergence test: if limn→∞ an is not equal to 0 then the series
∑

an

diverges. In our case an = (−1)n cos

(

1

n

)

does not tend to 0, since lim
n→∞

cos

(

1

n

)

= 1.

Thus the series diverges.

b) We compare the series to the series
∞
∑

n=1

1
3
√
n4

, which is a p-series with p = 4/3 > 1,

hence it is convergent. We use limit comparison test, which we can since the terms of

both series are positive:

lim
n→∞

1
3
√

n4

1
3
√

n4−n2+1

= lim
n→∞

3
√
n4 − n2 + 1

3
√
n4

= lim
n→∞

3

√

1 − 1

n2
+

1

n4
= 1.

Since the limit is a positive real number, the limit comparison test tells us that either both

series diverge or they both converge. Since we know that the series

∞
∑

n=1

1
3
√
n4

converges, the

other series converges as well. Since the series has positive terms, it converges absolutely.

c) The sign of the terms of our series alternates. Thus we would like to apply the alter-

nating series test with an =
1

n
√

lnn+ 1
. Clearly the function x

√
lnx+ 1 is increasing

for x ≥ 1. Thus the function
1

x
√

lnx+ 1
is decreasing and therefore the sequence an

is decreasing. Moreover, limn→∞ an = 0, so we can apply the alternating series test to

conclude that the series
∑∞

n=1(−1)n−1an converges. To test for absolute convergence we

need to determine whether the series
∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

n
√

lnn+ 1

∣

∣

∣

∣

=
∞
∑

n=1

1

n
√

lnn+ 1

converges. We have an = f(n), where f(x) =
1

x
√

ln x+ 1
is positive and decreasing

for x ≥ 1. Thus we may apply the integral test to conclude that our series converges

absolutely iff the integral

∫ ∞

1

dx

x
√

ln x+ 1
converges. Using the substitution u = 1 + lnx

we see that
∫ t

1

dx

x
√

ln x+ 1
=

∫ 1+ln t

1

du√
u

= 2
√

1 + ln t− 2.

Thus the integral
∫ ∞

1

dx

x
√

ln x+ 1
= lim

t→∞

∫ t

1

dx

x
√

ln x+ 1
= lim

t→∞
(2
√

1 + ln t− 2) = +∞
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diverges and therefore our series is not convergent absolutely. In other words, our series

is conditionally convergent.

d) We apply the root test. We have

lim
n→∞

n

√

√

√

√

∣

∣

∣

∣

∣

(

1

2n
− 1

)2n2
∣

∣

∣

∣

∣

= lim
n→∞

(

1 − 1

2n

)2n

= lim
n→∞

(

1 +
−1

2n

)2n

= e−1 < 1

(recall that lim
x→∞

(

1 +
a

x

)x

= ea). Since the limit is smaller than 1, the series converges

absolutely.

Problem 4. a) Find the radius and interval of convergence of the power series
∞
∑

n=1

2n+ 1

3n2 + 2
(x− 1)n. Carefully justify your answer.

b) Give the power series expansion centered at 0 for the following functions and state

radius of convergence:

i)
√

1 − 2x2 ii)
d

dx

(

1

1 − x

)

iii)

∫

cos(
√
x)dx

c) Use i) of part b) to compute the 6th derivative of
√

1 − 2x2 at 0.

Solution: a) We use the ratio test method to compute the radius of convergence. We

have

lim
n→∞

2(n+1)+1
3(n+1)2+2

2n+1
3n2+2

= lim
n→∞

2n+ 3

2n+ 1

3n2 + 2

3n2 + 6n+ 5
= 1.

It follows that the radius of convergence R = 1/1 = 1. The power series in centered at 1,

so the interval of convergence has left end at 1−R = 1−1 = 0 and right and at 1+R = 2.

To test convergence at the left end we look at the series when x = 0, i.e. the series
∞
∑

n=1

2n+ 1

3n2 + 2
(−1)n. The sign of the terms of this series alternates. Consider an =

2n+ 1

3n2 + 2
.

We claim that this sequence is decreasing. This means that an > an+1, i.e.

2n+ 1

3n2 + 2
>

2n+ 3

3n2 + 6n+ 5

which is equivalent to (2n + 1)(3n2 + 6n + 5) > (2n + 3)(3n2 + 2), i.e. 6n3 + 15n2 +

16n + 5 > 6n3 + 9n2 + 4n + 6, i.e. 9n2 + 12n > 1, which is clearly true . Alternatively,

compute the derivative of f(x) =
2x+ 1

3x2 + 2
, which is f ′(x) =

4 − 6x

(3x2 + 2)2
< 0 for x ≥ 1.

This means that the function is decreasing for x ≥ 1 and therefore the sequence an =

f(n) is decreasing. Clearly, limn→∞ an = 0. By the alternating series test, the series
∞
∑

n=1

2n+ 1

3n2 + 2
(−1)n converges.

To test convergence at the right end we look at the series when x = 2, i.e. the series
∞
∑

n=1

2n+ 1

3n2 + 2
, which has positive terms. We compare it to the harmonic series. We use
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limit comparison test:

lim
n→∞

2n+1
3n2+2

1
n

= lim
n→∞

2n2 + n

3n2 + 2
=

2

3
.

Since the limit exists and it is positive, the limit comparison test tells us that the series
∞
∑

n=1

2n+ 1

3n2 + 2
and

∞
∑

n=1

1

n
either both converge or both diverge. Since the harmonic series

diverges, the series
∞
∑

n=1

2n+ 1

3n2 + 2
diverges as well.

It follows that the interval of convergence is [0, 2).

b) For i) we need the binomial series:

(1 + x)u =
∞
∑

n=0

(

u

n

)

xn.

When u = 1/2 this series has radius of convergence 1. Substitute −2x2 for x to get

√
1 − 2x2 = (1 − 2x2)1/2 =

∞
∑

n=0

(

1
2

n

)

(−2x2)n =

∞
∑

n=0

(

1
2

n

)

(−2)nx2n.

This series converges for 2x2 < 1, i.e. for |x| <
√

2/2, so the radius of convergence is
√

2/2.

For ii) recall that
1

1 − x
=

∞
∑

n=0

xn and the radius of convergence is 1. Differentiation

yields
d

dx

(

1

1 − x

)

=
d

dx

∞
∑

n=0

xn =
∞
∑

n=1

nxn−1 =
∞
∑

n=0

(n+ 1)xn.

The radius of convergence remains the same under differentiation, so the series has radius

of convergence 1.

For iii) we need to recall the power series expansion of cosx:

cosx =
∞
∑

n=0

(−1)n x2n

(2n)!

which converges for all x. Substitute
√
x for x to get

cos
√
x =

∞
∑

n=0

(−1)n xn

(2n)!

which converges for all x (note that the right hand side makes sense also for negative x).

Integrating we get

∫

cos(
√
x)dx =

∫

(

∞
∑

n=0

(−1)n xn

(2n)!

)

dx = C +
∞
∑

n=0

(−1)n xn+1

(n+ 1)(2n)!
.

Since the radius of convergence remains the same under integration, the series convergence

for all x.
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c) Recall that if a function is given by a power series, then the power series coincides with

the Taylor series. Thus, for f(x) =
√

1 − 2x2 we get

f(x) =
∞
∑

n=0

f (n)(0)

n!
xn =

∞
∑

n=0

(

1
2

n

)

(−2)nx2n.

It follows that f (n)(0) = 0 for odd n and
f (2n)(0)

(2n)!
=

(

1
2

n

)

(−2)n. Taking n = 3, we get

f (6)(0)

(6)!
=

(

1
2

3

)

(−2)3. Recall that

(

1
2

3

)

=
1
2
(1

2
− 1)(1

2
− 2)

3!
=

1

16
.

Thus

f (6)(0) = 6! · 1

16
· (−2)3 =

−6!

2
= −360.

Problem 5. a) Find the Taylor series for f(x) = sin x centered at π/2. Use Taylor’s

inequality to prove that the Taylor series converges to f(x) for all x.

b) Find the degree 3 Taylor polynomial centered at π/4 for f(x) = ln cosx.

Solution: a) The Taylor series of a function f centered at π/2 is the series

T (f, π/2)(x) =
∞
∑

n=0

f (n)(π/2)

n!

(

x− π

2

)n

.

When f(x) = sin x, the derivatives of f are sin x, cosx, − sin x, − cosx, sin x, ... . Since

sin(π/2) = 1 and cos(π/2) = 0, we see that f (n)(π/2) = 0 for n odd and f (2n)(π/2) =

(−1)n. It follows that

T (sin, π/2)(x) =

∞
∑

n=0

(−1)n

(2n)!

(

x− π

2

)2n

.

Since |f (n)(x)| ≤ 1 for all n and all x, Taylor’s inequality tells us that for any x we have

| sin x− TN (sin, π/2)(x)| ≤
∣

∣x− π
2

∣

∣

N+1

(N + 1)!
.

When N tends to infinity, the right hand side tends to 0 and therefore the series

T (sin, π/2)(x) =
∞
∑

n=0

(−1)n

(2n)!

(

x− π

2

)2n

converges to sin x for every value of x.

b) Recall that the degree 3 Taylor polynomial for a function f , centered at π/4, is

T3(f, π/4)(x) =
3
∑

n=0

f (n)(π/4)

n!

(

x− π

4

)n

=

= f(π/4) + f ′(π/4)
(

x− π

4

)

+
f ′′(π/4)

2

(

x− π

4

)2

+
f ′′′(π/4)

6

(

x− π

4

)3

.
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When f(x) = ln cosx, then f(π/4) = ln(
√

2/2) = (− ln 2)/2. Furthermore,

f ′(x) = − tanx and f ′(π/4) = −1,

f ′′(x) = − sec2(x) and f ′′(π/4) = −2,

f ′′′(x) = −2 sec2(x) tanx and f ′′(π/4) = −4.

Thus

T3(ln cos, π/4)(x) =
− ln 2

2
−
(

x− π

4

)

−
(

x− π

4

)2

− 2

3

(

x− π

4

)3

.
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