
Solutions to the Midterm Exam, Math 222

Problem 1. Evaluate the following integrals.

a)

∫ 4

1

e
√

x dx

Solution. Use substitution x = u2, dx = 2udu to get

∫ 4

1

e
√

x dx =

∫ 2

1

eu2u du = 2

∫ 2

1

ueu du.

(Equivalently, you can use substitution u =
√

x, du = dx/2
√

x, dx = 2udu to

arrive at the same integral). Now integrate by parts with f(u) = u, g′(u) = eu, so

f ′(u) = 1, g(u) = eu, to get

∫ 2

1

ueu du = ueu|21 −
∫ 2

1

eu du = 2e2 − e − (e2 − e) = e2.

It follows that
∫ 4

1

e
√

x dx = 2e2.

b)

∫

3x2 − x + 1

x3 + x
dx

Solution. Note that x3 +x = x(x2 +1) and x2 +1 is irreducible (it has negative dis-

criminant). The partial fraction decomposition of the rational function we integrate

has the following form:

3x2 − x + 1

x3 + x
=

A

x
+

Bx + C

x2 + 1
=

A(x2 + 1) + x(Bx + C)

x(x2 + 1)
=

(A + B)x2 + Cx + A

x3 + x
.

It follows that 3x2 − x + 1 = (A + B)x2 + Cx + A, so A + B = 3, C = −1, and

A = 1. Thus A = 1, B = 2, C = −1. Our integral is

∫

3x2 − x + 1

x3 + x
dx =

∫

dx

x
+

∫

2x − 1

x2 + 1
dx =

∫

dx

x
+

∫

2x

x2 + 1
dx−

∫

1

x2 + 1
dx =

= ln |x| + ln(x2 + 1) − arctan x + C = ln |x3 + x| − arctan x + C.

Second solution. The integral could also be evaluated as follows:

∫

3x2 − x + 1

x3 + x
dx =

∫

3x2 + 1

x3 + x
dx−

∫

x

x3 + x
dx =

∫

3x2 + 1

x3 + x
dx−

∫

1

x2 + 1
dx.
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The first integral on the right can be evaluated using the substitution u = x3 + x,

du = (3x2 + 1) dx to be ln |x3 + x| + C, and the second integral is arctan x + C.

c)

∫

1√
4x − x2

dx.

Solution. We first complete to squares:

4x − x2 = 4 − (4 − 4x + x2) = 4 − (x − 2)2.

Now we make a substitution u = x − 2, du = dx and get
∫

1√
4x − x2

dx =

∫

1
√

4 − (x − 2)2
dx =

∫

1√
4 − u2

du.

Now we make a substitution u = 2 sin t, du = 2 cos t dt,
√

4 − u2 = 2 cos t, t ∈
[−π/2, π/2], to get

∫

1√
4 − u2

du =

∫

1

2 cos t
2 cos tdt =

∫

dt = t + C.

Now sin t = u/2 so t = arcsin(u/2). As u = x − 2, we get
∫

1√
4x − x2

dx = arcsin
x − 2

2
+ C.

Remark. You could also use the formula
∫

1√
a2 − u2

du = arcsin
u

a
+ C.

Second solution. We make a substitution u =
√

4 − x, du =
−dx

2
√

4 − x
, x = 4−u2,

to get
∫

1√
4x − x2

dx =

∫

1√
x

dx√
4 − x

=

∫

1√
4 − u2

(−2) du = −2

∫

du√
4 − u2

.

As in the first solution, we have
∫

1√
4 − u2

du = arcsin(u/2) + C

so
∫

1√
4x − x2

dx = −2 arcsin
u

2
+ C = −2 arcsin

√
4 − x

2
+ C.

Remark. The answers provided by each solution seem different. The conclusion is

that we have the following identity:

arcsin
x − 2

2
= −2 arcsin

√
4 − x

2
+ C
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for some constant C and all x ∈ [0, 4]. Taking x = 0, we get −π/2 = −π + C so

C = π/2, i.e.

arcsin
x − 2

2
= −2 arcsin

√
4 − x

2
+

π

2
.

d)

∫

e−2x sin xdx

Solution. We use integration by parts with f(x) = e−2x and g′(x) = sin x, so

f ′(x) = −2e−2x and g(x) = − cos x:
∫

e−2x sin x dx = −e−2x cos x−
∫

(−2e−2x)(− cos x) dx = −e−2x cos x−2

∫

e−2x cos xdx.

Now we apply integration by parts to

∫

e−2x cos x dx with f(x) = e−2x and g′(x) =

cos x, so f ′(x) = −2e−2x and g(x) = sin x:
∫

e−2x cos xdx = e−2x sin x −
∫

(−2e2x) sin x dx = e−2x sin x + 2

∫

e−2x sin x dx.

It follows that
∫

e−2x sin x dx = −e−2x cos x − 2e−2x sin x − 4

∫

e−2x sin x dx

i.e.

5

∫

e−2x sin x dx = −e−2x cos x − 2e−2x sin x + C.

Thus
∫

e−2x sin xdx = −1

5
e−2x cos x − 2

5
e−2x sin x + C.

Second solution. We use integration by parts with f ′(x) = e−2x and g(x) = sin x,

so f(x) = −1

2
e−2x and g′(x) = cos x :

∫

e−2x sin x dx = −1

2
e−2x sin x−

∫

(−1

2
e−2x) cos x dx = −1

2
e−2x sin x+

1

2

∫

e−2x cos x dx.

Now we apply integration by parts to

∫

e−2x cos x dx with f ′(x) = e−2x and g(x) =

cos x, so f(x) = −1

2
e−2x and g′(x) = − sin x:

∫

e−2x cos x dx = −1

2
e−2x cos x−

∫

(−1

2
e2x)(− sin x) dx = −1

2
e−2x cos x−1

2

∫

e−2x sin x dx.

It follows that
∫

e−2x sin x dx = −1

2
e−2x sin x − 1

4
e−2x cos x − 1

4

∫

e−2x sin x dx
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i.e.
5

4

∫

e−2x sin x dx = −1

2
e−2x sin x − 1

4
e−2x cos x + C.

Thus
∫

e−2x sin xdx = −2

5
e−2x sin x − 1

5
e−2x cos x + C.

Question. What would happen if we applied the method from the first solution to

the second integration by parts in the second solution?

Problem 2. Circle the correct form for the partial fraction decomposition of the

rational function
x5 − x3 + 1

(x2 − x − 2)2(x2 + x + 2)
:

a)
Ax + B

x2 − x − 2
+

Cx + D

(x2 − x − 2)2
+

Ex + F

x2 + x + 2

c)
A

x − 2
+

B

(x − 2)2
+

C

x + 1
+

D

(x + 1)2
+

Ex + F

x2 + x + 2

e)
A

x2 − x − 2
+

B

(x2 − x − 2)2
+

C

x2 + x + 2

b)
Ax + B

(x2 − x − 2)2
+

Cx + D

x2 + x + 2

d)
A

x − 2
+

B

x + 1
+

Cx + D

x2 + x + 2

f)
A

(x − 2)2
+

B

(x + 1)2
+

Cx + D

x2 + x + 2
.

Solution. Note that the discriminant of x2 + x + 2 is 1 − 4 · 2 = −7 < 0, which

is negative so this polynomial is irreducible. On the other hand, x2 − x − 2 has

positive discriminant 1 + 4 · 2 = 9 and the polynomial factors into linear factors

x2 − x − 2 = (x − 2)(x + 1). Thus the denominator factors into irreducibles as

(x−2)2(x+1)2(x2+x+2), so the correct form for the partial fraction decomposition

is c):

x5 − x3 + 1

(x2 − x − 2)2(x2 + x + 2)
=

A

x − 2
+

B

(x − 2)2
+

C

x + 1
+

D

(x + 1)2
+

Ex + F

x2 + x + 2
.

Problem 3. a) Does

∫ ∞

0

2x

1 + x4
dx converge or diverge? Why? Evaluate it if it

converges.

Solution. The convergence of the integral can be easily established using the com-

parison test, as
2x

1 + x4
<

2x

x4
=

2

x3
. This however is unnecessary, as we can actually

compute the integral. First we use the substitution u = x2, du = 2x dx to get
∫

2x

1 + x4
dx =

∫

du

1 + u2
= arctan u + C = arctan x2 + C.
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Thus
∫ ∞

0

2x

1 + x4
dx = lim

t→∞

∫ t

0

2x

1 + x4
dx = lim

t→∞
(arctan t2 − arctan 0) =

π

2
.

b) Verify that the integral test can be applied to the series
∞

∑

n=1

n

1 + n4
and use it to

determine if this series converges or diverges.

Solution. Let f(x) =
x

1 + x4
. Clearly f is continuous and positive on [1,∞). Now

f ′(x) =
(1 + x4) − x(4x3)

(1 + x4)2
=

1 − 3x4)

(1 + x4)2
< 0 for x > 1

so f(x) is decreasing on [1,∞). Thus we can apply the integral test, which says

that the integral

∫ ∞

1

f(x)dx converges if and only if the sum
∞

∑

n=1

f(n) converges.

As the convergence of the integral has been established in part a), the infinite series
∞

∑

n=1

n

1 + n4
converges.

Remark. Strictly speaking, the integral in a) is

∫ ∞

0

2x

1 + x4
dx and the integral in

b) is

∫ ∞

1

x

1 + x4
dx. Note however that there is a simple relation between them:

∫ ∞

0

2x

1 + x4
dx =

∫ 1

0

2x

1 + x4
dx + 2

∫ ∞

1

x

1 + x4
dx.

In particular, one converges if and only if the other does. You could also handle the

integral in b) directly.

Problem 4. Does

∫ 4

1

1

x − 2
dx converge or diverge? Why? Evaluate it if it

converges.

Solution. The integral in question is improper since the function
1

x − 2
is un-

bounded around x = 2. Thus we must break up the integral and consider separately

the improper integrals

∫ 2

1

1

x − 2
dx and

∫ 4

2

1

x − 2
dx. If either of these integrals

diverges, then so does the original integral. If both of them converge, then
∫ 4

1

1

x − 2
=

∫ 2

1

1

x − 2
dx +

∫ 4

2

1

x − 2
dx.

Now
∫ 2

1

1

x − 2
= lim

t→2−

∫ t

1

1

x − 2
= lim

t→2−
(ln |t − 2| − ln |1 − 2|) = −∞,
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so the integral

∫ 2

1

1

x − 2
dx diverges, and hence our original integral diverges as well

(similarly one shows that

∫ 4

2

1

x − 2
dx diverges).

Problem 5. Use the Comparison Theorem to determine whether the following im-

proper integral converges or diverges. DO NOT COMPUTE THE EXACT VALUE

OF THE INTEGRAL, but show all work needed for the Comparison Theorem.
∫ ∞

2

x√
x6 + 4

dx

Solution. Clearly x6 + 4 > x6, so
√

x6 + 4 >
√

x6 = x3 and
x√

x6 + 4
<

x

x3
=

1

x2

for all x > 2. Now we know that the integral

∫ ∞

2

1

x2
dx converges. Thus the integral

∫ ∞

2

x√
x6 + 4

dx also converges by the comparison test.

Problem 6. Compute limits of the following sequences:

a) an =

√
2n6 − n3 + 3n

3n3 + 2n2 − 3 cos n

Solution. We have

an =

√
2n6 − n3 + 3n

3n3 + 2n2 − 3 cos n
=

√

n6(2 − n3

n6 + 3n
n6 )

n3(3 + 2n2

n3 − 3 cos n
n3 )

=

√

2 − 1
n3 + 3

n5

3 + 2
n
− 3 cos n

n3

.

Recall now that lim
n→∞

c

np
= 0 for any p > 0 and any constant c. Also,

0 ≤ |3 cos n

n3
| ≤ 3

n3
, so lim

n→∞

3 cos n

n3
= 0 by the squeeze theorem. Thus

lim
n→∞

an = lim
n→∞

√

2 − n3

n6 + 3n
n6

3 + 2
n
− 3 cos n

n3

=

√
2 − 0 + 0

3 + 0 − 0
=

√
2

3
.

b) an = ln(2n +
√

n) − ln(n)

Solution. We have

an = ln(2n +
√

n) − ln(n) = ln
2n +

√
n

n
= ln

(

2 +
1√
n

)

.

As lim
n→∞

(

2 +
1√
n

)

= 2 and ln x is continuous at 2, we have

lim
n→∞

an = lim
n→∞

ln

(

2 +
1√
n

)

= ln

(

lim
n→∞

(

2 +
1√
n

))

= ln 2.
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c) an =

(

1 +
2

n

)3n+2

.

Solution. We have

an =

(

1 +
2

n

)3n+2

=

(

1 +
2

n

)2 (

1 +
2

n

)3n

=

(

1 +
2

n

)2 [(

1 +
2

n

)n]3

.

Recall now that lim
n→∞

(

1 +
x

n

)n

= ex for all x. So lim
n→∞

(

1 +
2

n

)n

= e2. Also,

lim
n→∞

(

1 +
2

n

)2

= 1. Thus

lim
n→∞

an = lim
n→∞

(

1 +
2

n

)2

lim
n→∞

[(

1 +
2

n

)n]3

= 1 · [e2]3 = e6.

Remark. One can also compute lim
x→∞

(

1 +
2

x

)3x+2

using L’Hospital’s rule.

d) an = n
√

3n + 4n (Hint: Use the Squeeze Theorem.)

Solution. Clearly 4n < 3n + 4n < 2 · 4n for every natural number n. Thus
n
√

4n < n
√

3n + 4n < n
√

2 · 4n, i.e. 4 < an < 4 n
√

2. Now lim
n→∞

4 = 4 = lim
n→∞

4
n
√

2,

so lim
n→∞

n
√

3n + 4n = 4 by the squeeze theorem.

Problem 7. A convergent sequence of positive numbers satisfies the recursive

relation anan+1 = an + 2. Find lim
n→∞

an.

Solution. Let lim
n→∞

an = g (the problem tells us that it exists). Then lim
n→∞

an+1 = g

and lim
n→∞

anan+1 = g2. Thus

g2 = lim
n→∞

anan+1 = lim
n→∞

(an + 2) = g + 2.

The quadratic equation x2 = x + 2 has 2 solutions: x = 2 and x = −1, so g must

be one of them. However, the sequence consists of positive numbers, so its limit can

not be negative. It follows that g = 2 is the only possibility.

Problem 8. Compute the following limits

a) lim
x→∞

x(31/x − 1)
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Solution. The limit is of the form ∞ · 0. We use the identity fg = g
1

f

to make it

into the 0
0

form and then apply L’Hospital’s rule:

lim
x→∞

x(31/x − 1) = lim
x→∞

31/x − 1
1
x

= lim
x→∞

31/x ln 3−1
x2

−1
x2

= lim
x→∞

31/x ln 3 = 30 ln 3 = ln 3.

b) lim
x→0

(1 + 3x)1/ sin x

Solution. The limit is of the form 1∞, which is an indeterminate form. We use the

following fact:

lim
x→a

f(x)g(x) = lim
x→a

eg(x) ln f(x) = elimx→a g(x) ln f(x).

In our case, we have f(x) = 1 + 3x and g(x) = 1/ sin x and a = 0. Thus we first

compute the limit

lim
x→0

ln(1 + 3x)

sin x
.

As the last limit is of the form 0
0

we can try to apply L’Hospital’s rule and compute

the limit of the ratio of the derivatives:

lim
x→0

1
1+3x

· 3
cos x

=
1

1+3·0 · 3
1

= 3.

Thus

lim
x→0

(1 + 3x)1/ sin x = e3.

Problem 9. Determine whether each series converges or diverges. If the series

converges, find the sum. Explain the reason for your answer. Make sure to mention

what test your using and explain why the test is appropriate.

a)
∞

∑

n=0

3n+1

πn

Solution. We have

∞
∑

n=0

3n+1

πn
=

∞
∑

n=0

3 · 3n

πn
= 3

∞
∑

n=0

(

3

π

)n

.

The last series is a geometric series with the common ratio r = 3/π, which is between

−1 and 1. Thus the geometric series converges to 1/(1 − r), so

∞
∑

n=0

3n+1

πn
= 3

∞
∑

n=0

(

3

π

)n

= 3 · 1

1 − 3
π

=
3π

π − 3
.
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b)
∞

∑

n=1

n
√

2

Solution. Since lim
n→∞

n
√

2 = 1 6= 0, the series diverges by the divergence test.

c)
∞

∑

n=2

n2 − 5n

n3 + n2 − 1

Solution. For large n the quantity
n2 − 5n

n3 + n2 − 1
is about

n2

n3
=

1

n
and both are

positive. Thus we compare the series to the harmonic series
∞

∑

n=2

1

n
, which diverges.

We use the limit comparison test, hence we compute

lim
n→∞

n2−5n
n3+n2−1

1
n

= lim
n→∞

n3 − 5n2

n3 + n2 − 1
= lim

n→∞

1 − 5
n

1 + 1
n
− 1

n3

= 1.

The limit comparison test tells us that the series
∞

∑

n=2

n2 − 5n

n3 + n2 − 1
and

∞
∑

n=2

1

n
ei-

ther both converge or both diverge. Since the harmonic series diverges, our series
∞

∑

n=2

n2 − 5n

n3 + n2 − 1
diverges as well.

d)
∞

∑

n=1

2

n(n + 2)

Solution. We use partial fractions to get the identity
2

n(n + 2)
=

1

n
− 1

n + 2
.

Consider now the n-th partial sum sn of our series:

sn =
n

∑

k=1

2

k(k + 2)
=

n
∑

k=1

(

1

k
− 1

k + 2

)

=

=

(

1

1
− 1

3

)

+

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+ . . . +

(

1

n
− 1

n + 2

)

=

=

(

1

1
+

1

2
+ . . . +

1

n

)

−
(

1

3
+

1

4
+ . . . +

1

n + 2

)

=
1

1
+

1

2
− 1

n + 1
− 1

n + 2
.

Thus
∞

∑

n=1

2

n(n + 2)
= lim

n→∞
sn = lim

n→∞

(

1

1
+

1

2
− 1

n + 1
− 1

n + 2

)

=
3

2
.
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Problem 10.(extra credit) Use the identity tan
x

2
= cot

x

2
− 2 cot x to compute

∞
∑

n=1

1

2n
tan

a

2n
.

Solution. Let us substitute x = a/2n−1 into the given identity:

tan
a

2n
= cot

a

2n
− 2 cot

a

2n−1
. Dividing both sides by 2n, we get

1

2n
tan

a

2n
=

1

2n
cot

a

2n
− 1

2n−1
cot

a

2n−1
.

Set an =
1

2n
tan

a

2n
and bn =

1

2n
cot

a

2n
so the the last equality becomes an =

bn − bn−1. It follows that the n-th partial sum of our series is

sn = a1 + a2 + . . . + an = (b1 − b0) + (b2 − b1) + . . . + (bn − bn−1) = bn − b0

(the process is often called ”telescoping”). Thus
∞

∑

n=1

1

2n
tan

a

2n
= lim

n→∞
sn = lim

n→∞
(bn − b0) = lim

n→∞
bn − b0 = lim

n→∞

1

2n
cot

a

2n
− cot a.

It remains to compute lim
n→∞

1

2n
cot

a

2n
. Not that

1

2n
cot

a

2n
=

1

2n

cos a
2n

sin a
2n

=
1

a

cos a
2n

sin a
2n

a
2n

.

When n tends to infinity, the quantity a/2n tends to 0, so lim
n→∞

cos
a

2n
= 1 and

lim
n→∞

sin a
2n

a
2n

= 1 (recall that lim
x→ 0

sin x

x
= 1). It follows that

lim
n→∞

1

2n
cot

a

2n
= lim

n→∞

1

a

cos a
2n

sin a
2n

a
2n

=
1

a
.

Thus
∞

∑

n=1

1

2n
tan

a

2n
=

1

a
− cot a.

Remark. Let us justify the identity used in the problem: tan
x

2
= cot

x

2
− 2 cot x.

This is the same as

cot
x

2
− tan

x

2
= 2 cot x.

Recall now that cos2 t − sin2 t = cos 2t and 2 sin t cos t = sin 2t. Thus

2 cot x = 2
cos x

sin x
= 2

cos2 x
2
− sin2 x

2

2 sin x
2
cos x

2

=
cos2 x

2
− sin2 x

2

sin x
2
cos x

2

=
cos x

2

sin x
2

− sin x
2

cos x
2

= cot
x

2
−tan

x

2
.

which is exactly what we need to justify.
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