
Quizzes for Math 222

QUIZ 1. I. Let f(x) = 2x + ln x, x ∈ (0,∞).

a) Explain why f has an inverse function.

b) Compute (f−1)′(2).

c) Find the range of f . Explain your answer.

II. What is the inverse funstion of y = ex3
?

Solution: I. a) Note that f ′(x) = 2 + 1/x > 0, so f is increasing, hence also

one-to-one.

b) First we need to find f−1(2), i.e. we need to find a such that f(a) = 2a+ln a = 2.

We do it by experimenting with some small numbers and observing that a = 1 works

(solving the equation f(a) = 3 would be much harder and no nice answer can be

given). Recall now that

(f−1)′(2) =
1

f ′(1)
=

1

2 + 1
=

1

3
.

c) Since f is increasing and continuous on the interval (0,∞), the range of f is (a, b),

where a = limx→0+ f(x) and b = limx→∞ f(x). Recall that limx→0+ ln x = −∞,

limx→0+ 2x = 0, limx→∞ ln x = ∞, and limx→∞ 2x = ∞. It follows that

lim
x→0+

(2x + ln x) = −∞ and lim
x→∞

(2x + ln x) = ∞,

so the range of f is (−∞,∞).

II. We need to use the equation y = ex3
to express x in terms of y. Taking natural

logarithms of both sides we get ln y = ln ex3
= x3. Thus x = 3

√
ln y. The inverse

function is y = 3
√

ln x.
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QUIZ 2. a) Differentiate the function f(x) = log10x 2x arctan x.

b) Compute sin(arctan(3/4)). Explain your reasoning.

c) Compute

∫

dx√
x
√

1 − x
. Hint: u =

√
x.

Solution: a) We use the identity loga b = ln b/ ln a. Thus

f(x) = log10x 2x arctan x =
ln 2x arctan x

ln 10x
=

(x arctan x) ln 2

x ln 10
=

(arctan x)
ln 2

ln 10
= (log 2) arctanx.

Now we are ready to differentiate: f ′(x) = [(log 2) arctanx]′ =
log 2

(1 + x2)
.

b) Let α = arctan(3/4). Then tan(α) = 3/4 and we need to compute sin α. Note

that α ∈ (−π/2, π/2) and tan α > 0. This tells us that sin α > 0 (and α ∈ (0, π/2)).

We have sin α/ cos α = 3/4, i.e. sin α =
3

4
cos α. By squaring both sides we get

sin2 α =
9

16
cos2 α =

9

16
(1 − sin2 α).

This means that (1 +
9

16
) sin2 α =

9

16
which yields sin2 α =

9

25
. It follows that

sin α =
3

5
(since we have seen that it is positive).

c) As hinted, we use the substitution u =
√

x. Thus du = dx/2
√

x and x = u2. We

get
∫

dx√
x
√

1 − x
=

∫

2du√
1 − u2

= 2 arcsin u + C = 2 arcsin
√

x + C.

QUIZ 3. a) Compute the following limits:

(1) lim
x→∞

x(π − arctan x) (2) lim
x→0

(1 − cos x)x.

b) Compute the following integrals:

(1)

∫

2cosh x sinh xdx (2)

∫

x2e2xdx.

Solution: a) (1) Note that limx→∞ x = ∞ and

lim
x→∞

(π − arctan x) = π − lim
x→∞

arctan x = π − π/2 = π/2.

2



It follows that this is not an indeterminate form and we have

lim
x→∞

x(π − arctan x) = ∞ · π/2 = ∞.

(2) As limx→0(1 − cos x) = 0, the limit is of the form 00, hence it is of one of the

exponential indeterminate forms. So we first compute

lim
x→0

ln(1 − cos x)x = lim
x→0

x ln(1 − cos x) = lim
x→0

ln(1 − cos x)
1
x

.

The last limit is of the form ∞/∞, hence we can try to use L’Hospital’s rule, so we

compute the limit of the derivatives:

lim
x→0

sin x
1−cos x

−1
x2

= lim
x→0

x2 sin x

cos x − 1
.

The last limit is of the form 0/0, so we try to use L’Hospital’s rule again:

lim
x→0

2x sin x + x2 cos x

− sin x
.

Again, we get a limit of the form 0/0 so we use L’Hospital’s rule one more time:

lim
x→0

2 sin x + 2x cos x + 2x cos x = x2 sin x

− cos x
= 0/ − 1 = 0.

In the last limit the numeartor approches 0 when x tends to 0 and the denominator

approaches −1, so the limit equals 0. Going backwards and using L’Hospital’s rule,

we conclude that

lim
x→0

ln(1 − cos x)x = 0.

Thus

lim
x→0

(1 − cos x)x = e0 = 1.

b) (1) We use substitution u = cosh x, so du = sinh xdx and the integral becomes

∫

2udu =
2u

ln 2
+ C =

2cosh x

ln 2
+ C.

(2) We use integration by parts: f ′(x) = e2x, g(x) = x2, so f(x) = e2x/2, g′(x) = 2x

and
∫

x2e2xdx =
x2e2x

2
−

∫

xe2xdx.
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We need to sompute the integral on the right hand side, and we use integration by

parts again: f ′(x) = e2x, g(x) = x, so f(x) = e2x/2, g′(x) = 1 and

∫

xe2xdx =
xe2x

2
−

∫

e2xdx

2
=

xe2x

2
− e2x

4
+ C.

Returning to our original integratin, we get
∫

x2e2xdx =
x2e2x

2
− xe2x

2
+

e2x

4
+ C.

QUIZ 4. a) State the form of the partial fractions decomposition of the rational

function

f(x) =
x2 + 2

(x2 − 3x + 2)(x2 + x + 1)2
.

b) Evaluate the following integrals:

(1)

∫

x + 2

(x2 + 4x + 5)2
dx (2)

∫

dx√
x + 3

√
x

(3)

∫

ln(x + 1)

x2
dx.

Hint for (1): think!. Hint for (2): try x = u6.

Solution: a) Note that the first quadratic polynomial x2 − 3x + 2 in the denom-

inator has positive discriminant, hence it can be factored into a product of linear

polynomials: x2 − 3x + 2 = (x − 1)(x − 2). The other quadratic polynomial has

negative discriminant. Now we have the denominator factored appropriately and

therefore the partial fractions decomposition is of the following form:

f(x) =
x2 + 2

(x − 1)(x − 2)(x2 + x + 1)2
=

A

x − 1
+

B

x − 2
+

Cx + D

x2 + x + 1
+

Ex + F

(x2 + x + 1)2
.

b) (1) We use the substitution u = x2 + 4x + 5 so du = (2x + 4)dx = 2(x + 2)dx.

Thus
∫

x + 2

(x2 + 4x + 5)2
dx =

∫ 1
2
du

u2
=

−1

2u
+ C =

−1

2(x2 + 4x + 5)
+ C.

(2) We follow the hint and use the substitution x = u6, so dx = 6u5du,
√

x = u3

and 3
√

x = u2. Thus

∫

dx√
x + 3

√
x

=

∫

6u5du

u3 + u2
= 6

∫

u3du

u + 1
.
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We perform the long division u3 : (u+1) and get u3 = (u2 −u+1)(u+1)− 1. Thus

∫

u3du

u + 1
=

∫

((u2 − u + 1)(u + 1) − 1)du

u + 1
=

∫

(u2 − u + 1)du −
∫

du

u + 1
=

u3

3
− u2

2
+ u − ln |u + 1| + C.

Returning to our original integral, and noting that u = x1/6 we get

∫

dx√
x + 3

√
x

= 6

(

u3

3
− u2

2
+ u − ln |u + 1| + C

)

= 2
√

x−3 3
√

x+6 6
√

x−6 ln( 6
√

x+1)+C.

(3) We use integration by parts with f ′(x) = 1/x2 and g(x) = ln(x + 1). Thus

f(x) = −1/x, g′(x) = 1/(x + 1) and

∫

ln(x + 1)

x2
dx =

− ln(x + 1)

x
−

∫ −1

x(x + 1)
dx =

− ln(x + 1)

x
+

∫

dx

x(x + 1)
.

In order to compute the last integral, we decompose 1/x(x+1) into partial fractions:

1

x(x + 1)
=

A

x
+

B

x + 1
=

(A + B)x + A

x(x + 1)
.

It follows that 1 = (A + B)x + A, so A + B = 0 and A = 1, i.e. A = 1 and B = −1.

Thus
∫

dx

x(x + 1)
=

∫

dx

x
−

∫

dx

x + 1
= ln |x| − ln |x + 1| + C

and consequently

∫

ln(x + 1)

x2
dx =

− ln(x + 1)

x
+ ln |x| − ln |x + 1| + C.

QUIZ 5. a) Is the integral

∫ ∞

1

arctan x√
x2 − x

dx convergent or divergent? Small hint:

arctan x is increasing. Hint: focus on infinity.

b) Is the integral

∫ 2

1

dx√
x − 1

proper? Compute this integral.

c) Compute the following limits:

lim
n→∞

√
n4 + n3 + 1

n2 + 1
lim

n→∞

arctan
√

n
√

4 + n

√
3

.
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d) A convergent sequence (an) satisifes the recurssive formula: a1 = 2, an+1 =
√

2an − 1 for all n. What is limn→∞ an?

Solution: a) Note that the integral is improper at both ends. Thus we need to

study convergence of the integrals

∫ ∞

2

arctan x√
x2 − x

dx and

∫ 2

1

arctan x√
x2 − x

dx.

We follow the hint and focus on the first integral. Intuitively, for large x the value

of arctan x is about π/2 and the value of
√

x2 − x is about x. Thus the quantity

arctan x/
√

x2 − x is approximately π/2x. This suggests that the first integral should

behave like
∫ ∞

2
1
x
dx which diverges. To get a precise argument, note that in the

interval [2,∞) we have arctan x ≥ arctan 2 and
√

x2 − x ≤ x. It follows that

arctan x√
x2 − x

≥ arctan 2

x

for all x > 2. Since

∫ ∞

2

c

x
dx diverges for any constant c > 0, the integral

∫ ∞

2

arctan x√
x2 − x

dx

also diverges by comparison test. It follows that the original integral
∫ ∞

1

arctan x√
x2 − x

dx

diverges.

Remark. It is natural to ask whether
∫ 2

1

arctan x√
x2 − x

dx

converges or diverges. Note that
arctan x√

x2 − x
and

arctan 1√
x − 1

are comparable when x

is close to 1. As the integral

∫ 2

1

1√
x − 1

dx conveges (see b)), we expect that our

integral also converges. More precisely, in (1, 2] we have arctan x ≤ arctan 2 and
√

x2 − x =
√

x
√

x − 1 ≥
√

x − 1. Thus

arctan x√
x2 − x

≤ arctan 2√
x − 1
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for x ∈ (1, 2]. We will see in b) that

∫ 2

1

1√
x − 1

dx converges, so

∫ 2

1

arctan x√
x2 − x

dx

converges by comparison test.

b) The integral is improper since the function escapes to ∞ when x approaches 1.

Note that
∫

1√
x − 1

dx = 2
√

x − 1 + C

for x > 1. Thus
∫ 2

1

1√
x − 1

dx = lim
t→1+

∫ 2

t

1√
x − 1

dx = lim
t→1+

(2
√

2 − 1 − 2
√

t − 1) = 2

converges.

c) We have
√

n4 + n3 + 1

n2 + 1
=

√

n4(1 + 1
n

+ 1
n4 )

n2(1 + 1
n2 )

=

√

1 + 1
n

+ 1
n4

1 + 1
n2

.

Thus

lim
n→∞

√
n4 + n3 + 1

n2 + 1
= lim

n→∞

√

1 + 1
n

+ 1
n4

1 + 1
n2

=
1

1
= 1.

Note now that limn→∞ arctan
√

n = π/2 and limn→∞
n

√
3 = 1, so

lim
n→∞

arctan
√

n
√

4 + n

√
3

=
π
2√

4 + 1
=

π

2
√

5
.

d) Let limn→∞ an = g. Passing to the limit in the equalities an+1 =
√

2an − 1 we

get

g = lim
n→∞

an+1 = lim
n→∞

√
2an − 1 =

√

2g − 1.

Thus g2 = 2g − 1, i.e. g2 − 2g + 1 = (g − 1)2 = 0. Thus g = 1.

QUIZ 6. a) Determine whether the following series converge or diverge:

(1)
∞

∑

n=1

arctan n

2n2 − 1
(2)

∞
∑

n=2

1

n ln n
(3)

∞
∑

n=1

(

1 − 2

n

)2n+1

.

b) Compute
∞

∑

n=0

2n − 1

32n+1
.
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Solution: a) (1) For large n the quantity
arctan n

2n2 − 1
is like

π

4n2
so we should compare

our series to the series
∞

∑

n=1

1

n2
, which converges. To make this more precise, we can

either use limit comparison test or comparison test.

Using limit comparison: We compute

lim
n→∞

arctan n
2n2−1

1
n2

= lim
n→∞

n2 arctan n

2n2 − 1
= lim

n→∞

arctan n

2 − 1
n2

=
π
2

2
=

π

4
.

As the limit is positive, the limit comparison test tells us the the eseries
∞

∑

n=1

1

n2
,

∞
∑

n=1

arctan n

2n2 − 1
either both converge or both diverge. Since the former series converges,

so does the latter.

Using comparison test: Note that arctann ≤ π/2 and 2n2−1 = n2+(n2−1) ≥ n2

for all positive integers n. It follows that

arctan n

2n2 − 1
≤

π
2

n2

for all positive integers n. Since the series
∞

∑

n=1

π/2

n2
converges, the series

∞
∑

n=1

arctan n

2n2 − 1

also converges by the comparison test.

(2) Let f(x) =
1

x ln x
. Since x ln x is an increasing function of x for x > 1, the

function f(x) is decreasing. Alternatively, compute the derivative

f ′(x) =
− ln x − 1

(x ln x)2
< 0 for x > 1,

which is negative, so f(x) is decreasing. Clearly f is continuous and positive for

x > 1. Thus we may apply the integral test to the series
∞

∑

n=2

f(n). Using substitution

u = ln x, du = dx/x, we evaluate the integral
∫

1

x ln x
dx =

∫

du

u
= ln |u| + C = ln ln x + C

for x > 1. It follows that the integral
∫ ∞

2

1

x ln x
dx = lim

t→∞
(ln ln t − ln ln 2) = ∞
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diverges. By the integral test, the series
∞

∑

n=2

f(n) diverges as well.

(3) Recall that

lim
n→∞

(

1 +
x

n

)n

= ex

for every real number x. Note that

(

1 − 2

n

)2n+1

=

(

1 − 2

n

)[(

1 +
−2

n

)n]2

.

Since lim
n→∞

(

1 − 2

n

)

= 1 we get

lim
n→∞

(

1 − 2

n

)2n+1

= lim
n→∞

(

1 − 2

n

)

lim
n→∞

[(

1 +
−2

n

)n]2

= 1 · [e−2]2 = e−4.

Thus our series diverges by the divergence test.

b) Recall the formula for the sum of a geometric series:

∞
∑

n=0

an =
1

1 − a
for −1 < a < 1.

Note that
2n − 1

32n+1
=

2n − 1

3 · 9n
=

1

3

(

2

9

)n

− 1

3

(

1

9

)n

.

Now
∞

∑

n=0

(

2

9

)n

=
1

1 − 2
9

=
9

7

and
∞

∑

n=0

(

1

9

)n

=
1

1 − 1
9

=
9

8
.

Thus
∞

∑

n=0

2n − 1

32n+1
=

1

3

∞
∑

n=0

(

2

9

)n

− 1

3

∞
∑

n=0

(

1

9

)n

=
3

7
− 3

8
=

3

56
.

QUIZ 7. Determine whether the following series converge conditionally, converge

absolutely, or diverge.

(1)
∞

∑

n=1

(−1)n tan
1

n
(2)

∞
∑

n=1

enn!

(2n)!
(3)

∞
∑

n=1

5n

3n + 7n
(4)

∞
∑

n=1

(−1)n (arctan n)2n

(

1 + 2
n

)n2
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Solution: (1) Note that the series is alternating. Thus it is natural to start with

the alternating series test with an = tan(1/n). Clearly limn→∞ an = 0 as tan x is

continuous at 0:

lim
n→∞

tan
1

n
= tan( lim

n→∞

1

n
) = tan 0 = 0.

We now show that an is decreasing. In fact, we have
1

n + 1
<

1

n
, and since tan x is

increasing in the interval (−π/2, π/2), we have an+1 = tan(1/(n + 1)) < tan(1/n) =

an. By the alternating series test, we conclude that the series (1) converges.

In order to determine whether it converges absolutely, we need to study con-

vergence of the series
∞

∑

n=1

tan
1

n
. Recall that lim

x→0

tan x

x
= 1 (this can be seen, for

example, by L’Hospital’s rule, and it means that for small x the numbers tan x and

x are about the same). It follows that

lim
n→∞

tan 1
n

1
n

= 1.

By the limit comparison test, the series
∞

∑

n=1

tan
1

n
and

∞
∑

n=1

1

n
either both converge or

both diverge. As the latter series diverges (harmonic series), we conclude that the

former series also diverges. Thus (1) does not converge absolutely, but it converges,

hence it converges conditionally.

(2) We apply the ratio test. Thus we compute the following limit:

lim
n→∞

en+1(n+1)!
(2(n+1))!

enn!
(2n)!

= lim
n→∞

en+1

en

(n + 1)!

n!

(2n)!

(2n + 2)!
= lim

n→∞
e(n+1)

1

(2n + 1)(2n + 2)
= lim

n→∞

e

4n + 2
= 0.

As the limit exist and is less than 1, the series converges absolutely.

(3) Note that 0 <
5n

3n + 7n
<

5n

7n
for every n. As the series

∞
∑

n=1

(5/7)n converges (it is

a geometric series), the series (3) converges as well by the comparison test. As this

is a series with positive terms, it converges absolutely.

Remark. This problem can be also solved using limit comparison test, or the root

test (note that lim
n→∞

n

√
3n + 7n = 7), or the ratio test.
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(4) We try to apply the root test, so we compute the following limit:

lim
n→∞

n

√

√

√

√

∣

∣

∣

∣

∣

(−1)n
(arctan n)2n

(

1 + 2
n

)n2

∣

∣

∣

∣

∣

= lim
n→∞

(arctan n)2

(

1 + 2
n

)n =

(

π
2

)2

e2
=

( π

2e

)2

< 1.

As the limit exists and is less than 1, the series converges absolutely.

QUIZ 8. a) Determine the radius of convergence and the interval of convergence

of the following power series:
∞

∑

n=1

n(x + 1)n

4n
.

b) Determine the radius of convergence of the power series

∞
∑

n=0

(n!)2x2n+1

(2n)!
.

c) Express
x

x + 2
as a power series centered at 0.

Solution: a) Note that the center of the power series is at −1. To find the radius of

convergence we apply the root test to the series, so we compute the following limit:

lim
n→∞

n

√

∣

∣

∣

∣

n(x + 1)n

4n

∣

∣

∣

∣

= lim
n→∞

n

√
n|x + 1|

4
=

|x + 1|
4

.

By the root test, the series converges if 1 > |x + 1|/4, i.e. |x + 1| < 4, and the series

diverges if 1 < |x + 1|/4, i.e. |x + 1| > 4. Thus the radius of convergence is 4 and

the ends of the interval of convergence are at −1 + 4 = 3 and −1 − 4 = −5.

We now need to test convergence at the ends of the interval of convergence. For

x = 3 we get the series
∞

∑

n=1

n

which diverges by the divergence test. Similarly, for x = −5, we get the series

∞
∑

n=1

n(−1)n

which diverges by the divergence test. Thus the interval of convergence is the open

interval (−5, 3).
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Remark. For the first part of the problem, the ratio test works as well.

b) We apply the ratio test to the series (assuming x 6= 0), so we compute

lim
n→∞

∣

∣

∣

∣

∣

∣

((n+1)!)2x2(n+1)+1

(2(n+1))!

(n!)2x2n+1

(2n)!

∣

∣

∣

∣

∣

∣

= lim
n→∞

(

(n + 1)!

n!

)2
(2n)!

(2n + 2)!
|x|2 = lim

n→∞

(n + 1)2

(2n + 1)(2n + 2)
|x|2 =

= lim
n→∞

n + 1

4n + 2
|x|2 =

|x|2
4

.

By the ratio test, the series converges when 1 > |x|2/4, i.e. |x| < 2, and it diverges

when 1 < |x|2/4, i.e. |x| > 2. Thus the radius of convergence is 2.

Remark. Testing convergence at the ends of the interval (−2, 2) is a harder problem.

It turns out that the series diverges at both ends. To see that note that

4n = (1 + 1)2n =
2n
∑

k=0

(

2n

k

)

>

(

2n

n

)

=
(2n)!

(n!)2
.

It follows that
∣

∣

∣

∣

(n!)2(±2)2n+1

(2n)!

∣

∣

∣

∣

= 2
4n(n!)2

(2n)!
> 2

for every n, so the series
∞

∑

n=0

(n!)2(±2)2n+1

(2n)!

diverges by the divergence test.

c) Note that
x

x + 2
=

1

2
x

1

1 + x
2

.

Recall now that

1

1 + x
= 1 − x + x2 − x3 + x4 − . . . =

∞
∑

n=0

(−1)nxn

and the interval of convergence is (−1, 1). It follows that

1

1 + x
2

= 1 − x

2
+

(x

2

)2

−
(x

2

)3

+ . . . =
∞

∑

n=0

(−1)n
(x

2

)n

=
∞

∑

n=0

(−1)n

2n
xn

and it converges iff x/2 ∈ (−1, 1), i.e. x ∈ (−2, 2). Thus

x

x + 2
=

1

2
· x ·

∞
∑

n=0

(−1)n

2n
xn =

∞
∑

n=0

(−1)n

2n+1
xn+1 =

∞
∑

n=1

(−1)n−1

2n
xn

12



and the interval of convergence is (−2, 2).

QUIZ 9. a) State Newton’s binomial formula.

b) Express the function f(x) =
√

1 − 2x2 as a power series centered at 0 and state

the radius of convergence. Use the power series to compute f (4)(0).

c) Compute the third Taylor polynomial T3(x) of the function
√

x centered at a = 4

(i.e. find T3(x) = T3(
√

x, 4)(x)). Use Taylor’s inequality to show that |
√

5−T3(5)| ≤
5/214.

Solution: a) Newton’s binomial formula states that for any exponent α we have

(1 + x)α =
∞

∑

n=0

(

α

n

)

xn,

where

(

α

n

)

are the binomial coefficients defined as follows:

(

α

0

)

= 1 and

(

α

n

)

=
α(α − 1) . . . (α − (n − 1))

n!
for every positive integer n.

The formula holds for all x in the interval of convergence of the power series on the

right. This interval of convergence is as follows:

• (−1, 1) if α ≤ −1;

• (−1, 1] if −1 < α < 0;

• [−1, 1] if α > 0 and α is not an integer.

• (−∞,∞) if α is a non-negative integer (i.e. α = 0, 1, 2, . . .).

In any case, the radius of convergence is 1 except that it is ∞ when α is a non-

negative integer.

b) By Newton’s binomial formula, we have

f(x) =
√

1 − 2x2 = (1 + (−2x2))1/2 =
∞

∑

n=0

(

1
2

n

)

(−2x2)n =
∞

∑

n=0

(

1
2

n

)

(−2)nx2n

which is the required power series expansion. This series converges if | − 2x2| < 1,

i.e. |x| < 1/
√

2 and diverges when | − 2x2| > 1, i.e. |x| > 1/
√

2. It follows that the

radius of convergence is 1/
√

2.

13



In particular, the series on the right is the Taylor series of f centered at 0

(Maclaurin series). This means that f (k)(0)/k! is the coefficient at xk for every k.

When k = 4, we look at the coefficient at x4 (so n = 2) and get

f (4)(0)

4!
=

(

1
2

2

)

(−2)2 =
1
2
(1

2
− 1)

2!
· 4 =

−1

2

so f (4)(0) = −12.

c) Let f(x) =
√

x. Then

T3(x) = T3(f, 4)(x) = f(4) + f
′

(4)(x − 4) + f
′′

(4)
(x − 4)2

2!
+ f

′′′

(4)
(x − 4)3

3!
.

We have

• f
′

(x) =
1

2
x−1/2 =

1

2
√

x
so f

′

(4) =
1

4
.

• f
′′

(x) =
1

2

−1

2
x−3/2 =

−1

4
√

x3
so f

′′

(4) =
−1

32
.

• f
′′′

(x) =
1

2

−1

2

−3

2
x−5/2 =

3

8
√

x5
so f

′′′

(4) =
3

256
.

• f (4)(x) =
1

2

−1

2

−3

2

−5

2
x−7/2 =

−15

16
√

x7
.

Thus T3(x) = 2 +
x − 4

4
− (x − 4)2

64
+

(x − 4)3

512
.

Taylor’s inequality (which we will review below) implies that

|
√

5 − T3(5)| ≤ M
|5 − 4|4

4!
=

M

24

where M is an upper bound for |f (4)(t)| on the inteval [4, 5], i.e. M satisfies |f (4)(t)| ≤
M for all t ∈ [4, 5]. We need to find M . Recall that |f (4)(t)| =

15

16
√

t7
, which is

clearly a decreasing function of t. Thus |f (4)(t)| ≤ |f (4)(4)| for all t ∈ [4, 5], so we

can take M = |f (4)(4)| =
15

211
. Using this value of M we get

|
√

5 − T3(5)| ≤ M

24
=

5

214
,

as required.

A simple computation yields T3(5) = 2121
512

= 2.236328125 and 5/214 = 0.00030517578125.

Hence we proved that |
√

5−2.236328125| < 0.00031. In fact,
√

5 = 2.2360679774997896964091736687313

14



Remark. Let us review Taylor’s inequality. Let f be a function which has deriva-

tives of all orders in a neighborhood of a. The k−th Taylor polynomial of f centered

at a is

Tk(f, a)(x) =
k

∑

n=0

f (n)(a)

n!
(x − a)n.

The Taylor series of f centered at a is defined as

T (f, a)(x) =
∞

∑

n=0

f (n)(a)

n!
(x − a)n

The k−th remainder Rk(x) is the difference f(x) − Tk(f, a)(x). To prove that the

Taylor series at x converges to f(x) is equivalent to proving that limk→∞ Rk(x) = 0.

This can be done if we can understand Rk(x), which can often be achieved by using

the following theorem:

Taylor’s Formula. Under the above assumptions we have

f(x) −
k

∑

n=0

f (n)(a)

n!
(x − a)n = Rk(x) =

∫ x

a

f (k+1)(t)
(x − t)k

k!
.

(a proof consists of performing integration by parts several times).

Using Taylor’s formula, we can get very useful estimate for Rk(x), called Taylor’s

inequality:

Taylor’s Inequality.

|Rk(x)| ≤ M
(x − a)k+1

(k + 1)!

where M is any number such that |f (n+1)(t)| ≤ M for all t between x and a. In

other words, M is an upper bound for |f (n+1)(t)| on the interval between a and x.

A key step in using Taylor’s inequality is to find M .

QUIZ 10. a) Express
∫

cos(
√

x) dx as a power series centered at 0. What is the

radius of convergence?

b) Consider a curve given by the parametric equation x = t2+2t+2, y = 4t3+3t2+2.

Find all points at which the tangent to this curve is vertical or horizontal. Find the

tangent lines at the points corresponding to t = −1 and t = 1.
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Solution: a) Recall the Taylor series centered at 0 (the Maclaurin series) for cos x:

cos x =
∞

∑

n=0

(−1)n x2n

(2n)!
,

which holds for all x (so the radius of convergence is ∞). It follows that

cos(
√

x) =
∞

∑

n=0

(−1)n (
√

x)2n

(2n)!
=

∞
∑

n=0

(−1)n xn

(2n)!
,

which again holds for all x. Integrating term by term we get

∫

cos(
√

x)dx = C +
∞

∑

n=0

(−1)n xn+1

(n + 1)(2n)!
,

(C an arbitrary constant) which is valid for all x (so the radius of convergence is

∞).

b) Let us recall the following facts about parametric curves. Let x = x(t), y = y(t),

t ∈ [a, b] be a parametric curve. The derivative of y as a function of x at a point

corresponding to a parameter t is equal to
y′(t)

x′(t)
(provided x′(t) 6= 0). In particular,

the tangent line to the curve at a point corresponding to a parameter t has slope
y′(t)

x′(t)
, provided x′(t) 6= 0. If x′(t) = 0 and y′(t) 6= 0 then the tangent is vertical.

The equation of the tangent line at the point (x(t), y(t)) is given by

y − y(t) =
y′(t)

x′(t)
(x − x(t))

if x′(t) 6= 0, and by x = x(t) if x′(t) = 0 and y′(t) 6= 0.

Now we solve part b). We have x′(t) = 2t + 2 and y′(t) = 12t2 + 6t. The tangent is

horizontal if y′(t) = 0 and x′(t) 6= 0. Solving y′(t) = 12t2 − 6t = 0 yields y = 0 or

y = −1/2, and in both cases we have x′(t) 6= 0. Thus the tangent is horizontal at

the point (2, 2) (corrsponding to t = 0) and (5/4, 9/4) (corresponding to t = −1/2).

The tangent is vetical if x′(t) = 0 and y′(t) 6= 0. Solving x′(t) = 2t+2 = 0 yields

t = −1, and y′(−1) 6= 0. Thus tangent is vertical at the point (1, 1) corresponding

to t = −1.

As we have observed above, the tangent at the point (1, 1) corresponding to

t = −1 is vertical, hence has equation x = 1. The point corresponding to t = 1 is

16



(5, 9) and the slope of the tangent at this point is y′(1)/x′(1) = 18/4 = 9/2. Thus

the tangent line at the point (5, 9) has equation y − 9 =
9

2
(x− 5), i.e. y =

9

2
x− 27

2
.

QUIZ 11. a) The graph of the function y =
x2

4
− ln x

2
, 1 ≤ x ≤ 2 is revolved about

the y-axis. Compute the area of the resulting surface.

b) Compute the length of the parametric curve x = 3t2 + 1, y = 2t3 + 1, t ∈ [0, 1].

c) compute the area enclosed by the loop of the curve x = t2, y = t3 − 3t, when the

parameter varies in [−
√

3,
√

3].

Solution: Let us recall some basic facts about parametric curves. Let x = x(t),

y = y(t), t ∈ [a, b] be a parametric curve.

1. the length of the curve between points corresponding to t = a and t = b is

∫ b

a

√

x′(t)2 + y′(t)2dt

(assuming that there are no overlaps; in general the integral expresses the

distance traveled along the curve). The quantity
√

x′(t)2 + y′(t)2 should be

considered as the speed. The speed is the length of the vector [x′(t), y′(t)], the

velocity.

2. the area of the surface obtained by revolving the curve about the x-axis is

2π

∫ b

a

y(t)
√

x′(t)2 + y′(t)2dt

(assuming that y(t) > 0 for t ∈ [a, b]; otherwise use |y(t)|).

3. the area of the surface obtained by revolving the curve about the y-axis is

2π

∫ b

a

x(t)
√

x′(t)2 + y′(t)2dt

(assuming that x(t) > 0 for t ∈ [a, b], otherwise use |x(t)|).

4. the graph of a function y = f(x), x ∈ [a, b] can be considered as a special case

of a parametric curve with x(t) = t, y(t) = f(t), t ∈ [a, b].
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5. if x(t) is increasing and y(t) ≥ 0 on [a, b] then the curve is a graph of a function

and the area under the graph is equal to

∫ b

a

y(t)x′(t) dt

6. if the parametrization describes a simple (no self intersections) closed curve

which is traveled around clockwise once when t varies from a to b then the

area enclosed by the curve is equal to

∫ b

a

y(t)x′(t) dt

(if the parametrization goes counteclokwise, we get minus the area).

Now we can solve our problem.

a) The graph has parametrization x = t, y =
t2

4
− ln t

2
, t ∈ [1, 2]. We have x′(t) = 1

and y′(t) =
t

2
− 1

2t
. The surface area is then given by

2π

∫ 2

1

x(t)
√

x′(t)2 + y′(t)2 dt = 2π

∫ 2

1

t

√

1 +

(

t

2
− 1

2t

)2

dt = 2π

∫ 2

1

t

√

1 +
t2

4
− 1

2
+

1

4t2
dt =

= 2π

∫ 2

1

t

√

(

t

2
+

1

2t

)2

dt = 2π

∫ 2

1

t

(

t

2
+

1

2t

)

= 2π

(

t3

6
+

t

2

)

∣

∣

∣

2

1
=

10π

3

b) Note that x′(t) = 6t, y′(t) = 6t2. The lenght of the curve is computed using 1:

length =

∫ 1

0

√

(6t)2 + (6t2)2 dt =

∫ 1

0

√

(6t)2(t2 + 1) dt =

∫ 1

0

6t
√

t2 + 1 dt.

Using the substitution u = t2 + 1, du = 2tdt, we get

length =

∫ 2

1

3
√

udu = 2(23/2 − 1) = 4
√

2 − 2.

c) When t varies between −
√

3 and
√

3, the loop is traveled once counterclockwise.

The area enclosed by the loop is then given by

area = −
∫

√
3

−
√

3

y(t)x′(t) dt = −
∫

√
3

−
√

3

(t3 − 3t)2t dt = −2

∫

√
3

−
√

3

(t4 − 3t2) dt =

18



= −2

(

t5

5
− t3

)

∣

∣

∣

√
3

−
√

3
=

24
√

3

5
.

QUIZ 12. a) Consider the polar curve r = 1 + 2 sin θ, θ ∈ [0, 2π]. When θ varies

through [0, 2π], the curve passes through the origin twice. What are the values of θ

for which the curve passes through the origin?

b) Find the area enclosed by the loop made between the first and second pass

through the origin (inner loop on the picture).

c) Find the equation of the two tangent lines to the curve at the origin.

d) Find the length of the polar curve r = sin θ + cos θ, θ ∈ [0, π].

Solution: a) The origin is the point for which r = 0. Thus we need to find all θ

such that 1 + 2 sin θ = 0. This means that sin θ = −1/2, so θ = 7π/6 or θ = 11π/6.

b) The area of a polar region 0 ≤ r ≤ f(θ), θ ∈ [a, b] is given by the formula
1

2

∫ b

a

f(θ)2 dθ. In our case, a = 7π/6, b = 11π/6, f(θ) = 1 + 2 sin θ, so the area of

the inner loop is

1

2

∫ 11π/6

7π/6

(1 + 2 sin θ)2 dθ =
1

2

∫ 11π/6

7π/6

(1 + 4 sin θ + 4 sin2 θ) dθ =

=
1

2

∫ 11π/6

7π/6

(4 sin θ +3− 2 cos(2θ)) dθ =
1

2
(−4 cos θ + 3θ − sin(2θ))

∣

∣

∣

11π/6

7π/6
= π +

√
3

2
.

We used above the identity 2 sin2 θ = 1 − cos(2θ).

c) The parametric equation of the polar curve r = f(θ) is

x = f(θ) cos θ, y = f(θ) sin θ.

Thus our curve has parametric equation

x = (1 + 2 sin θ) cos θ, y = (1 + 2 sin θ) sin θ.

It follows that

x′ = − sin θ − 2 sin2 θ + 2 cos2 θ, y′ = cos θ + 4 sin θ cos θ.

The slope of the tangent line at a point corresponding to θ is equal to y′(θ)/x′(θ).
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When θ = 7π/6 we get the slope euqal to
√

3/3 so the tangent line has equation

y =

√
3

3
x. When θ = 11π/6 we get the slope euqal to −

√
3/3 so the tangent line

has equation y =
−
√

3

3
x

d) The length of the polar curve r = f(θ), θ ∈ [a, b] is given by

∫ b

a

√

f ′(θ)2 + f(θ)2 dθ

(assuming the curve has no ”backtracking”; in general we get the length ”traveled”

along the curve). In our case, a = 0, b = π, f(θ) = sin θ+cos θ, f ′(θ) = cos θ− sin θ,

so the length of our curve is
∫ π

0

√

(cos θ − sin θ)2 + (sin θ + cos θ)2 dθ =

∫ π

0

√
2 dθ =

√
2π.

Remark. It is not hard to see that our curve is a circle with center at (1/2, 1/2)

and radius
√

2/2.
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