Solutioms to Exam II, Math 222, section 1
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Problem 1. Compute the following infinite sum Z

Solution: Note that

Recall now the Taylor series expansion of e” centered at 0:
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which holds for every x. Taking x = In2 / 2, we get
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Problem 2. Determine whether the following series is absolutely convergent, condi-
tionally convergent or divergent. Explain what test you are applying and verify all the

conditions necessary to apply the test.
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Solution: a) The key observation is that for large n the quantity o7 is comparable
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to — = ——. More precisely, we have
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The limit comparison test tells us that the series Z and Z — either both
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converge or both diverge. But the series — converges, so also —— con-
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verges. Thus the series Z(—
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o7 converges absolutely,as
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Remark. One can also use the comparison test, by observing that 0 < n* —n + 1 < n*
4 4
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and 2n” —n =n" + (n” —n) > n" for evry natural number n, 50 ———— < — = —..
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b) Note that the series Z(—l)” tan (—) is alternating. Thus it is natural to try

n=1 \/ﬁ

the alternating series test with a,, = tan(1/y/n). We need to verify that (a,) satisfies the
assumptions of the test, i.e. that (a,) is decreasing and tends to 0. Clearly lim,, ., a, =0

as tan x is continuous at 0:
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lim tan — = tan( lim —) = tan0 = 0.

To show that the sequence (a,) is decreasing note that

and since tan z is
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increasing in the interval (—m /2, 7/2), we have a, 11 = tan(1/yv/n + 1) < tan(1/y/n) = a,.
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By the alternating series test, we conclude that the series 5 (—1)" tan (7) converges.
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In order to determine whether it converges absolutely, we need to study convergence

1
of the series Ztan—. Recall that llm MT _ 4 (this can be seen, for example, by
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L’Hospital’s rule and it means that for small z the numbers tan x and z are about the

same). It follows that

tan -
lim —" = 1.
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By the limit comparison test, the series Z tan and Z either both converge or

n=1

both diverge. As the latter series diverges (p—ser1es, Wlth p =1 / 2 < 1), we conclude that
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the former series also diverges. Thus the series Z(—l)” tan { — | does not converge
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absolutely, but it converges, hence it converges conditionally.

Problem 3. Determine the interval of convergence of the following power series:
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Solution: a) We apply the root test, so we compute
lim {/|(arctann)—"z"| = lim (arctann)~!|z| = lim & = m
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It follows that the series converges if @ < 1,ie. |z[ < § and it diverges if @ > 1, ie.
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|z| > 3 The radius of convergence is threfore equal to 5



To determine the interval of convergence, we need to test the series with x = 7/2 and

x = —n/2. When z = 7/2, we get
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Note now that —2— > 1 for all n (as arctanx < w/2 for all z). It follows that
. , arctann
(;> > 1 for all n, so the series diverges at x = m/2 by the divergence test.
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Same argument works for z = —7/2, i.e. the series
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Thus the interval of convergence is (—7/2,7/2).

diverges by the divergence test, as > 1 for all n.
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b) We use the ratio test with a,, = |—————
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. Thus we compute
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It follows that the series converges if < 1, ie. |z — 1] < 2 and it diverges if
o — 17
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determine the interval of convergence, we need to test the series with x = 3 and x = —1.

> 1, i.e. |x — 1] > 2. The radius of convergence is threfore equal to 2. To

When z = 3, we get
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This series convergence, for example, by comaprison test with the series Z —
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Similarly, When z = —1, we get
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so this series converges as well.

The interval of convergence of our series is therefore [—1, 3].



Problem 4. a) Express the function f(x) = as a power series centered at 0

1
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and state the radius of convergence. Use the power series to compute f(®)(0) (the answer

must be given as a fraction in lowest terms).

Solution: By Newton’s binomial formula, we have
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which is the required power series expansion. This series converges if | — 2z%| < 1, i.e.
lz| < 1/v/2 and diverges when | — 22| > 1, i.e. |2| > 1//2. It follows that the radius of
convergence is 1/v/2.

In particular, the series on the right is the Taylor series of f centered at 0 (Maclaurin
series). This means that f*)(0)/k! is the coefficient at z* for every k. When k = 6, we
look at the coefficient at z° (so n = 3) and get
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so f©(0) = 6!-5/2 = 1800.
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b) Find the Taylor series centered at 0 of the function f(x) = w.
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Solution: Recall that the Tayl i tered at 0 of arct i E -1)" .
olution: Reca at the Taylor series centered at 0 of arctanx is (—1) 1
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Moreover we have the equality
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for all = € [—1,1]. It follows that
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The series on the right is therefore the Taylor series centered at 0 for f.
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Problem 5. The curve z = t2+2, y = 5153 —t+2,t € [0,1] is revolved about the y-axis.

a) Compute the area of the resulting surface.



Solution: We have 2’ = 2t and ¢/ = t* — 1. As z(t) > 0 for ¢t € [0,1], the area of the

surface obtained by revolving the curve about the y-axis is
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b) Compute the length of this curve.

Solution: The length of our curve between points corresponding to ¢t =0 and t = 1 is

/0 VIR + g ()2t

In the silution to part a) we have see that /2/(t)? + v/(t)2 = t* + 1. Thus the length is

equal to
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Problem 6. Consider the simple closed curve x = sint + cost, y = cost, t € [0, 27].
a) Find the equation of the line tangent to this curve at the point corresponding to

t=m/2.

Solution: We have 2/(t) = cost — sint and y/(t) = —sint. The equation of the tangent
line at the point (z(t),y(t)) is given by

y=u0) = L@ = a(t)

if 2/(t) # 0, and by = = z(t) if 2/(t) = 0 and ¥/(t) # 0. When ¢t = 7/2 we have
2(m)2) = -1,y (n/2) = —1, x(n/2) = 1, y(7/2 = 0. Thus the tangent at the point (1,0)
isy=x—2.

b) Compute the area enclosed by this curve. Hint: fo% cos? xdx = .

Solution: As we are told that our curve is a simple closed curve, and when ¢ varies from

0 to 27 the curve is traveled around clockwise, the area enclosed by the curve is
27 27 27 27
/ y(t)x'(t) dt = / cost(cost —sint) dt = / cos’t dt — / sintcost dt =
0 0 0 0
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as sint cost is the derivative of (sin®t)/2, so the last integral is 0.

Problem 7. Let f(z) = /x.

a) Find the second Taylor polynomial of f centered at 8 (i.e. To(/x,8)(x)).

Solution: We have

Ty(x) = To(f,8)(x) = f(8) + ' (8)(x — 8) + f"(8)—
Now
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Thus Tp(z) =2+ E(l‘— 8) —

b) Use Taylor’s inequality to show that

Vo - To(Y2,8)(9)] <

31.98°
Solution: Taylor’s inequality tells us that
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where M is an upper bound for |f” ()| on the inteval [8,9], i.e. M satisfies |f" (t)| < M
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for all t € [8,9]. We need to find M. Recall that |f (¢)] = which is clearly

Py
a decreasing function of ¢. Thus |f"(t)] < |f"(8)] for all ¢ E [8,9], so we can take
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Remark. A simple computation yields 75(9) = 2.079861111 ... and FraETi 0.000241 ... ..
Also v/9 = 2.08008382... ..



