
Solutioms to Exam II, Math 222, section 1

Problem 1. Compute the following infinite sum
∞

∑

n=1

(ln 2)n

2nn!
.

Solution: Note that
∞

∑

n=1

(ln 2)n

2nn!
=

∞
∑

n=1

(

ln 2
2

)n

n!
.

Recall now the Taylor series expansion of ex centered at 0:

ex =
∞

∑

n=0

xn

n!
= 1 +

∞
∑

n=1

xn

n!

which holds for every x. Taking x = ln 2/2, we get

1 +
∞

∑

n=1

(

ln 2
2

)n

n!
= e

ln 2
2 =

(

eln 2
)

1
2 =

√
2.

Thus
∞

∑

n=1

(ln 2)n

2nn!
=

√
2 − 1.

Problem 2. Determine whether the following series is absolutely convergent, condi-

tionally convergent or divergent. Explain what test you are applying and verify all the

conditions necessary to apply the test.

a)
∞

∑

n=1

(−1)n n4 − n + 1

2n7 − n
b)

∞
∑

n=1

(−1)n tan

(

1√
n

)

.

Solution: a) The key observation is that for large n the quantity
n4 − n + 1

2n7 − n
is comparable

to
n4

2n7
=

1

2n3
. More precisely, we have

lim
n→∞

n4−n+1
2n7−n

1
n3

= lim
n→∞

n7 − n4 + n3

2n7 − n
= lim

n→∞

1 − 1
n3 + 1

n4

2 − 1
n6

=
1

2
.

The limit comparison test tells us that the series
∞

∑

n=1

n4 − n + 1

2n7 − n
and

∞
∑

n=1

1

n3
either both

converge or both diverge. But the series
∞

∑

n=1

1

n3
converges, so also

∞
∑

n=1

n4 − n + 1

2n7 − n
con-

verges. Thus the series
∞

∑

n=1

(−1)n n4 − n + 1

2n7 − n
converges absolutely,as

∣

∣

∣

∣

(−1)n n4 − n + 1

2n7 − n

∣

∣

∣

∣

=
n4 − n + 1

2n7 − n
.
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Remark. One can also use the comparison test, by observing that 0 < n4 − n + 1 ≤ n4

and 2n7 − n = n7 + (n7 − n) ≥ n7 for evry natural number n, so
n4 − n + 1

2n7 − n
≤ n4

n7
=

1

n3
.

b) Note that the series
∞

∑

n=1

(−1)n tan

(

1√
n

)

is alternating. Thus it is natural to try

the alternating series test with an = tan(1/
√

n). We need to verify that (an) satisfies the

assumptions of the test, i.e. that (an) is decreasing and tends to 0. Clearly limn→∞ an = 0

as tan x is continuous at 0:

lim
n→∞

tan
1√
n

= tan( lim
n→∞

1√
n

) = tan 0 = 0.

To show that the sequence (an) is decreasing note that
1√

n + 1
<

1√
n

, and since tan x is

increasing in the interval (−π/2, π/2), we have an+1 = tan(1/
√

n + 1) < tan(1/
√

n) = an.

By the alternating series test, we conclude that the series
∞

∑

n=1

(−1)n tan

(

1√
n

)

converges.

In order to determine whether it converges absolutely, we need to study convergence

of the series
∞

∑

n=1

tan
1√
n

. Recall that lim
x→0

tan x

x
= 1 (this can be seen, for example, by

L’Hospital’s rule, and it means that for small x the numbers tan x and x are about the

same). It follows that

lim
n→∞

tan 1√
n

1√
n

= 1.

By the limit comparison test, the series
∞

∑

n=1

tan
1√
n

and
∞

∑

n=1

1√
n

either both converge or

both diverge. As the latter series diverges (p-series, with p = 1/2 < 1), we conclude that

the former series also diverges. Thus the series
∞

∑

n=1

(−1)n tan

(

1√
n

)

does not converge

absolutely, but it converges, hence it converges conditionally.

Problem 3. Determine the interval of convergence of the following power series:

a)
∞

∑

n=1

(arctan n)−nxn , b)
∞

∑

n=1

(x − 1)2n−1

n(n + 1)4n
.

Solution: a) We apply the root test, so we compute

lim
n→∞

n

√

|(arctan n)−nxn| = lim
n→∞

(arctan n)−1|x| = lim
n→∞

|x|
arctan n

=
|x|
π
2

.

It follows that the series converges if
|x|
π
2

< 1, i.e. |x| < π
2

and it diverges if
|x|
π
2

> 1, i.e.

|x| >
π

2
. The radius of convergence is threfore equal to

π

2
.
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To determine the interval of convergence, we need to test the series with x = π/2 and

x = −π/2. When x = π/2, we get

∞
∑

n=1

(arctan n)−n
(π

2

)n

=
∞

∑

n=1

( π
2

arctan n

)n

.

Note now that
π
2

arctan n
> 1 for all n (as arctanx < π/2 for all x). It follows that

( π
2

arctan n

)n

> 1 for all n, so the series diverges at x = π/2 by the divergence test.

Same argument works for x = −π/2, i.e. the series

∞
∑

n=1

(arctan n)−n
(

−π

2

)n

=
∞

∑

n=1

( −π
2

arctan n

)n

diverges by the divergence test, as

∣

∣

∣

∣

−π
2

arctan n

∣

∣

∣

∣

n

> 1 for all n.

Thus the interval of convergence is (−π/2, π/2).

b) We use the ratio test with an =

∣

∣

∣

∣

(x − 1)2n−1

n(n + 1)4n

∣

∣

∣

∣

. Thus we compute

lim
n→∞

∣

∣

∣

(x−1)2(n+1)−1

(n+1)(n+2)4n+1

∣

∣

∣

∣

∣

∣

(x−1)2n−1

n(n+1)4n

∣

∣

∣

= lim
n→∞

n|x − 1|2
4(n + 2)

=
|x − 1|2

4
.

It follows that the series converges if
|x − 1|2

4
< 1, i.e. |x − 1| < 2 and it diverges if

|x − 1|2
4

> 1, i.e. |x − 1| > 2. The radius of convergence is threfore equal to 2. To

determine the interval of convergence, we need to test the series with x = 3 and x = −1.

When x = 3, we get

∞
∑

n=1

(3 − 1)2n−1

n(n + 1)4n
=

∞
∑

n=1

22n−1

n(n + 1)22n
=

∞
∑

n=1

1

2n(n + 1)
.

This series convergence, for example, by comaprison test with the series
∞

∑

n=1

1

n2
.

Similarly, When x = −1, we get

∞
∑

n=1

(−1 − 1)2n−1

n(n + 1)4n
=

∞
∑

n=1

(−2)2n−1

n(n + 1)22n
=

∞
∑

n=1

−1

2n(n + 1)
= −

∞
∑

n=1

1

2n(n + 1)
,

so this series converges as well.

The interval of convergence of our series is therefore [−1, 3].
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Problem 4. a) Express the function f(x) =
1√

1 − 2x2
as a power series centered at 0

and state the radius of convergence. Use the power series to compute f (6)(0) (the answer

must be given as a fraction in lowest terms).

Solution: By Newton’s binomial formula, we have

f(x) =
1√

1 − 2x2
= (1 + (−2x2))−1/2 =

∞
∑

n=0

(−1
2

n

)

(−2x2)n =
∞

∑

n=0

(−1
2

n

)

(−2)nx2n

which is the required power series expansion. This series converges if | − 2x2| < 1, i.e.

|x| < 1/
√

2 and diverges when | − 2x2| > 1, i.e. |x| > 1/
√

2. It follows that the radius of

convergence is 1/
√

2.

In particular, the series on the right is the Taylor series of f centered at 0 (Maclaurin

series). This means that f (k)(0)/k! is the coefficient at xk for every k. When k = 6, we

look at the coefficient at x6 (so n = 3) and get

f (6)(0)

6!
=

(−1
2

3

)

(−2)3 =
−1
2

(−1
2
− 1)(−1

2
− 2)

6
· (−8) =

5

2

so f (6)(0) = 6! · 5/2 = 1800.

b) Find the Taylor series centered at 0 of the function f(x) =
arctan x − x

x3
.

Solution: Recall that the Taylor series centered at 0 of arctanx is
∞

∑

n=0

(−1)n x2n+1

2n + 1
.

Moreover we have the equality

arctan x =
∞

∑

n=0

(−1)n x2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+ . . .

for all x ∈ [−1, 1]. It follows that

arctan x − x = −x3

3
+

x5

5
− x7

7
+ . . . =

∞
∑

n=1

(−1)n x2n+1

2n + 1

and
arctan x − x

x3
= −1

3
+

x2

5
− x4

7
+ . . . =

∞
∑

n=0

(−1)n+1 x2n

2n + 3
.

The series on the right is therefore the Taylor series centered at 0 for f .

Problem 5. The curve x = t2 + 2, y =
1

3
t3 − t + 2, t ∈ [0, 1] is revolved about the y-axis.

a) Compute the area of the resulting surface.
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Solution: We have x′ = 2t and y′ = t2 − 1. As x(t) > 0 for t ∈ [0, 1], the area of the

surface obtained by revolving the curve about the y-axis is

2π

∫ 1

0

x(t)
√

x′(t)2 + y′(t)2dt = 2π

∫ 1

0

(t2 + 2)
√

(2t)2 + (t2 − 1)2dt =

= 2π

∫ 1

0

(t2 + 2)
√

4t2 + t4 − 2t2 + 1dt = 2π

∫ 1

0

(t2 + 2)
√

t4 + 2t2 + 1dt =

= 2π

∫ 1

0

(t2 + 2)
√

(t2 + 1)2dt = 2π

∫ 1

0

(t2 + 2)(t2 + 1)dt =

= 2π

∫ 1

0

(t4 + 3t2 + 2)dt = 2π

(

1

5
+ 1 + 2

)

=
32π

5
.

b) Compute the length of this curve.

Solution: The length of our curve between points corresponding to t = 0 and t = 1 is
∫ 1

0

√

x′(t)2 + y′(t)2dt.

In the silution to part a) we have see that
√

x′(t)2 + y′(t)2 = t2 + 1. Thus the length is

equal to
∫ 1

0

(t2 + 1)dt =
1

3
+ 1 =

4

3
.

Problem 6. Consider the simple closed curve x = sin t + cos t, y = cos t, t ∈ [0, 2π].

a) Find the equation of the line tangent to this curve at the point corresponding to

t = π/2.

Solution: We have x′(t) = cos t − sin t and y′(t) = − sin t. The equation of the tangent

line at the point (x(t), y(t)) is given by

y − y(t) =
y′(t)

x′(t)
(x − x(t))

if x′(t) 6= 0, and by x = x(t) if x′(t) = 0 and y′(t) 6= 0. When t = π/2 we have

x′(π/2) = −1, y′(π/2) = −1, x(π/2) = 1, y(π/2 = 0. Thus the tangent at the point (1, 0)

is y = x − 2.

b) Compute the area enclosed by this curve. Hint:
∫ 2π

0
cos2 xdx = π.

Solution: As we are told that our curve is a simple closed curve, and when t varies from

0 to 2π the curve is traveled around clockwise, the area enclosed by the curve is
∫ 2π

0

y(t)x′(t) dt =

∫ 2π

0

cos t(cos t − sin t) dt =

∫ 2π

0

cos2 t dt −
∫ 2π

0

sin t cos t dt = π
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as sin t cos t is the derivative of (sin2 t)/2, so the last integral is 0.

Problem 7. Let f(x) = 3
√

x.

a) Find the second Taylor polynomial of f centered at 8 (i.e. T2( 3
√

x, 8)(x)).

Solution: We have

T2(x) = T2(f, 8)(x) = f(8) + f
′

(8)(x − 8) + f
′′

(8)
(x − 8)2

2!
.

Now

• f(8) = 2.

• f ′(x) =
1

3
x−2/3 and f ′(8) =

1

3
· 8−2/3 =

1

12
.

• f
′′

(x) =
1

3

−2

3
x−5/3 =

−2

9
x−5/3 and f

′′

(8) =
−2

9
· 8−5/3 =

−1

144
.

• f
′′′

(x) =
1

3

−2

3

−5

3
x−8/3 =

10

27
3
√

x8
.

Thus T2(x) = 2 +
1

12
(x − 8) − 1

288
(x − 8)2.

b) Use Taylor’s inequality to show that

| 3
√

9 − T2(
3
√

x, 8)(9)| ≤ 5

34 · 28
.

Solution: Taylor’s inequality tells us that

| 3
√

9 − T2(9)| ≤ M
|9 − 8|3

3!
=

M

6

where M is an upper bound for |f ′′′

(t)| on the inteval [8, 9], i.e. M satisfies |f ′′′

(t)| ≤ M

for all t ∈ [8, 9]. We need to find M . Recall that |f ′′′

(t)| =
10

27
3
√

t8
, which is clearly

a decreasing function of t. Thus |f ′′′

(t)| ≤ |f ′′′

(8)| for all t ∈ [8, 9], so we can take

M = |f ′′′

(8)| =
10

27 · 28
=

5

33 · 27
. Using this value of M we get

| 3
√

9 − T2(9)| ≤ M

6
=

5

34 · 28
.

Remark. A simple computation yields T2(9) = 2.079861111 . . . and
5

34 · 28
= 0.000241 . . ..

Also 3
√

9 = 2.08008382 . . ..
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