MATH 304 - Linear Algebra Inner product spaces

- 1. a) Find an orthonormal basis of the subspace W of \mathbb{R}^4 spanned by the vectors (1,1,1,1), (3,1,3,1), (1,1,3,-1) by applying the Gram-Schmidt orthogonalization process. Find an orthogonal basis of the orthogonal complement W^{\perp} to this subspace.
 - b) Let V be an inner product space with orthogonal basis $v_1,...,v_n$. Prove that for any $v \in V$ we have

$$v = \frac{\langle v, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle v, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \dots + \frac{\langle v, v_n \rangle}{\langle v_n, v_n \rangle} v_n.$$

c) Let W be a subspace of an inner product space V. Suppose that $w_1,...,w_k$ is an orthogonal basis for W. Let $v\in V$. Prove that the vector

$$\pi(v) = \frac{< v, w_1 >}{< w_1, w_1 >} w_1 + \frac{< v, w_2 >}{< w_2, w_2 >} w_2 + \dots + \frac{< v, w_k >}{< w_k, w_k >} w_k$$

is the unique vector in W such that $v-\pi(v)$ is orthogonal to W (i.e. it is orthogonal to each vector w_i). The function $\pi:v\mapsto \pi(v)$ from V to W is called the **orthogonal projection onto** W. It is a linear transformation. What is the kernel of π ? Show that $\pi^2=\pi$. Among all the vectors in W the vector $\pi(v)$ is closest to v, i.e. the length of $v-\pi(v)$ is minimal.

- d) Find the orthogonal projection of v=(1,0,0,0) onto the subspace W of \mathbb{R}^4 spanned by (1,-1,-1,1), (1,1,-1,-1).
- 2. Consider the vector space P_2 of all polynomials of degree ≤ 2 with the inner product $\langle f,g \rangle = \int_0^1 f(x)g(x)dx$. Apply the Gram-Schmidt process to the basis $1,x,x^2$ to get an orthogonal basis. Express the polynomial $f=1+x+x^2$ in this orthogonal basis. What is the length of f?