MATH 304 - Linear Algebra

YOU MUST SHOW ALL WORK TO GET CREDIT.

1. (10 points) Consider the system of linear equations

$$2x_1 - 3x_2 + 4x_3 - 3x_4 = -1,$$

$$-3x_1 + 3x_2 - 7x_3 + x_4 = 3,$$

$$x_1 + 5x_2 - 2x_3 - 4x_4 = 11.$$

- a) What is the augmented matrix of the system above?
- b) What is the coefficient matrix of the system above?
- 2. (20 points) Reduce

$$\begin{bmatrix} -2 & 2 & -1 & 0 & -5 \\ 4 & -4 & 1 & 0 & 11 \\ -4 & 4 & -7 & 0 & -5 \\ -2 & 2 & 2 & 1 & -4 \end{bmatrix}$$

to reduced row echelon form. BE VERY CAREFUL.

3. (15 points) The augmented matrix of a system of linear equations is

and the reduced row echelon form of A is

$$R = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 & 4 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 & 3 & 1 \end{bmatrix}$$

- a) What is the solution set for the system of linear equations?
- b) What are the pivot columns of A? WARNING: This is asking for the content of the columns and not their locations.
- 4. (20 points) Without actually finding the solutions to the following systems, say how many solutions there are. The similarities are not a coincidence and are supposed to make your life easier. Say at least a few words to justify your answers.

c)
$$\begin{array}{rclcrcr} 2x_1 & + & x_2 & + & 3x_3 & = & 0 \\ x_1 & + & x_2 & + & 2x_3 & = & 0 \\ -x_1 & + & 2x_2 & + & x_3 & = & 0 \end{array}$$

1

- 5. (10 points) A function from \mathbb{R}^n to \mathbb{R}^m is given by a coefficient matrix.
 - a) If the matrix is a (4×3) matrix and its rank is 3, is the function one-to-one? Is it onto?
 - b) If the matrix is a (3×4) matrix and its rank is 3, is the function one-to-one? Is it onto?

6. (15 points) Let
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 2 \end{bmatrix}$$
, let $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, and let $C = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$.

- a) What is A + B?
- b) What is 5B?
- c) What is AC?
- d) What is CA?

7. (10 points)

- a) If F is a function from a vector space V to a vector space W, what does F have to satisfy in order to be a linear transformation?
- b) Assume that H is a linear transformation from a vector space V to a vector space W and J is a linear transformation from the vector space W to a vector space U. Prove that the composition JH is a linear transformation.