Quizzes for Math 304

QUIZ 1. A system of linear equations has augmented matrix

$$A = \begin{pmatrix} 2 & 4 & 1 & 1 & 4 \\ -1 & -2 & 0 & -1 & -1 \\ 2 & 4 & 3 & -1 & 5 \\ 1 & 2 & -1 & 1 & -1 \end{pmatrix}$$

- a) Write down this system of equations;
- b) Find the reduced row-echelon form of A;
- c) What is the rank of A?
- d) Solve the system of equations found in a).

QUIZ 2. a) Is the matrix

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
-1 & 1 & 0 & 2 \\
2 & 0 & 1 & 1
\end{pmatrix}$$

one-to-one? Explain your answer.

b) Is the matrix

1

onto? Is it one-to-one? Explain your answer.

c) State a definition of a linear transformation.

QUIZ 3. a) Define linear combination of vectors $v_1, ..., v_n$.

- b) The function $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, T(a, b, c) = (a-b+c, 2a+c) is a linear transformation. What is the matrix of T?
- c) Compute the product

$$C = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ -2 & 1 & 0 \end{pmatrix}$$

Is C 1-1? Answer this question without any computations.

QUIZ 4. Let
$$A = \begin{pmatrix} 3 & 2 & 0 \\ 2 & 1 & 1 \\ 5 & 3 & 2 \end{pmatrix}$$
.

- a) Find A^{-1} .
- b) Express A as a product of elementary matrices.
- c) Suppose that B is a matrix such that $AB = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Is B invertible? Explain your answer.

QUIZ 5. a) The vectors $v_1, ..., v_n$ of a vector space V are linearly independent iff ... (state all three equivalent conditions).

- b) Are the vectors $v_1 = (1,0,2,1)$, $v_2 = (2,1,1,1)$, $v_3 = (-1,-2,4,1)$ linearly independent? If no, find a dependence relation among them.
- c) Is (1, -1, 1, -1) in the span of $\{v_1, v_2, v_3\}$?

QUIZ 6. a) Define a basis of a vector space V.

- b) Find a basis of span $\{(1,0,1),(1,3,-2),(1,1,0)\}.$
- c) Let $T: V \longrightarrow W$ be a linear transformation and $v_1, ..., v_n \in V$. Prove that if $T(v_1), ..., T(v_n)$ are linearly independent then $v_1, ..., v_n$ are also linearly independent.

QUIZ 7. a) Define the change of basis matrix from the basis $X = \{v_1, ..., v_n\}$ to the basis $Y = \{w_1, ..., w_n\}$ of a vector space V.

- b) Find the transition matrix from from the basis $X=\{e_1,e_2,e_3\}$ to the basis $Y=\{(1,1,1),(1,2,1),(-1,-3,2)\}$ of \mathbb{R}^3 .
- c) Find the coordinates of the vector (1, 2, 3) in the basis Y.

QUIZ 8. a) Find the change of basis matrix from the basis $\{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ to the basis $\{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$ of \mathbb{R}^3 .

- b) State a definition of the determinant.
- c) Compute the determinanat of the matrix

$$\begin{pmatrix} 0 & 1 & 3 \\ -2 & -3 & -5 \\ 4 & -4 & 4 \end{pmatrix}.$$

QUIZ 9. a) State a definition of an eigenvector and an eigenvalue of a matrix A (or a linear transformation $T:V\longrightarrow V$, if you prefer).

b) Let
$$A = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$$

- Find the eigenvalues of A.
- Find the eigenvectors of A.

QUIZ 10. a) State a definition of an inner product on a vector space V.

- b) The inner product < , > on \mathbb{R}^2 has matrix $Q=\begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$ in the standard basis of \mathbb{R}^2 .
 - Compute <(1,2),(2,1)>.
 - Find a vector orthogonal to (1,0).