
MATH 304 - Linear Algebra

An m × n matrix is a rectangular table with m rows and n columns. The i, j-entry of a matrix is
the entry in the i-th row and j-th column. For example, here is a 4 × 5 matrix:

M =







2 6 1 4 4
1 3 1 3 3
1 3 2 5 5
1 3 3 7 7







and its 3, 2-entry is 3. In this course, the entries of matrices will be numbers.

Elementary row operations. We perform the following operations on rows of matrices.

• Ei,j(a) denotes the operation ”add a times the j-th row to the i-th row”. Here i 6= j and a is any
number.

• Si,j denotes the operation ”switch i-th and j-th rows”.

• Di(a) denotes the operation ”multiply the i-th row by a”. Here a can be any non − zero number
(i.e. 0 is not allowed for a).

For example, applying each of the operations E3,2(−1), S1,4, D2(π) to the matrix M above yields

E2,3(−1)M =







2 6 1 4 4
0 0 −1 −2 −2
1 3 2 5 5
1 3 3 7 7






, S1,4M =







1 3 3 7 7
1 3 1 3 3
1 3 2 5 5
2 6 1 4 4






, D2(π)M =







2 6 1 4 4
π 3π π 3π 3π
1 3 2 5 5
1 3 3 7 7







We say that a matrix M is row equivalent to a matrix N if there is a sequence of elementary
row operations which transforms M into N . Note that each elementary row operation is reversible:
Ei,j(−a)Ei,j(a)M = M , Si,jSi,jM = M , Di(

1

a
)Di(a)M = M for any matrix M . It follows that if M is

row equivalent to N then N is row equivalent to M , and that any matrix is row equivalent to itself. It
is clear that if M is row equivalent to N and N is row equivalent to P then M is row equivalent to P .

Note that, in general, elementary row operations do not commute with each other, so the order in
which they are applied matters. However, for a fixed j, the operations E1,j(a1), E2,j(a2), E3,j(a3), . . .
commute with each other. Similarly, for a fixed i, the operations Ei,1(a1), Ei,2(a2), Ei,3(a3), . . . commute
with each other.

Exercise. Verify that Ei,j(a)Ei,j(b)M = Ei,j(a + b)M and Dj(1/a)Ei,j(1)Dj(a)M = Ei,j(a)M for
every matrix M .

Exercise. Verify that Dj(−1)Ei,j(1)Ej,i(−1)Ei,j(1)M = Si,jM for any matrix M . Also,
Ej,i(1)Ei,j(−1)Ej,i(1)Ei,j(1/a)Ej,i(−a)Ei,j(1/a)M = Di(a)Dj(1/a)M .

The moral of the last exercise is that the operations Si,j are redundant, but having them among our
tools often reduces the number of operations one needs to perform.

The goal of the elementary row operations is to transform a given matrix to a more convenient form.
To make this more precise we need some terminology. We say that a row (column) of a matrix is a zero

row (column), if all the entries in this row (column) are zero.

We say that a matrix N is in a row-echelon form if:

1. every non-zero row of N is above any zero row of N ;

2. the first non-zero entry in any non-zero row is to the right of the first non-zero entry in the row
above it.
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We say that N is in a reduced row-echelon form if it is in a row-echelon form and, in addition,
satisfies the following property:

3. In every non-zero row the first non-zero entry is equal to 1 and all other entries in its column are 0.

The key result, on which almost all computations in this class will be based, is the following theorem.

Theorem 0.1 Any matrix is row-equivalent to a unique matrix in a reduced row-echelon form.

The uniqueness part of the theorem is not obvious and we will sketch an argument for it after
we discuss systems of linear equations. The fact that there is always a sequence of elementary row
operations which transforms a given matrix into a matrix in a reduced row echelon form follows from
an algorithm producing such a sequence. First we transform our matrix into a row-echelon form using
the following procedure:
Look at the first non-zero column of a given matrix. Performing an elementary row operation if

necessary make the top entry in this column non-zero (operation of the type E1,i(1) will always work
for this step, but it is often easier to do a switch of the form S1,i). Then eliminate (make equal to
0) all the other entries in this column by performing operations of the type Ei,1(a) for appropriate a
(often, especially when doing this by hand, it is more convenient to use more operations in order to
avoid complicated fractions).

You apply this procedure to a given matrix M and get a matrix M1. Then you keep the first row
of M1 unchanged and apply the procedure again to the matrix consisting of the remaining rows to get
a matrix M2. Then you keep the first 2 rows of M2 unchanged and apply the procedure again to the
matrix consisting of the remaining rows, and so on It is straightforward to see that at the end you will
have a matrix in a row-echelon form.

The second procedure starts with a matrix M in a row-echelon form and produces a matrix in a
reduced row-echelon form as follows. You start with the last non-zero row of M , say it is the k−th row.
If the first non-zero entry in this row is u then divide this row by u (i.e perform Dk(1/u) to get the first
non-zero entry in this row equal to 1. Then, perform operations of the type Ei,k(a) for i = 1, . . . , k − 1
to make all entries in the column of u equal to 0. Now you move to row k − 1 and apply the same
procedure and so on. At the end you will have a matrix in a reduced row echelon form.

It should be clear from the second procedure that the first non zero entry in any non-zero row of
a matrix in a row-echelon form is in the same place as the first non-zero entry in the same row of the
reduced row-echelon form. We make the following definitions.

A pivot column of a matrix M is a column such that the corresponding column in any row-echelon
form row equivalent to M contains the first non-zero entry of some row.

The rank of a matrix M is the number of non-zero rows in any row-echelon form row equivalent to
M . Equivalently, it is the number of pivot columns of M .

A straightforward, but useful, observation is that the rank of an m × n matrix is always smaller or
equal than each m and n.

We illustrate the above ideas and concepts by finding the reduced row echelon form of the following
matrix M :

M =











3 6 5 −2 21 14 30
2 4 5 −3 19 12 27
1 2 2 −1 8 5 11
2 4 3 −1 13 9 19
3 6 7 −4 27 17 38











.

The first non-zero column of M is the first column and the top entry in this column is non-zero. However
this entry is equal to 3 and to avoid division by 3 we switch the first and third rows performing S1,3
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(this step is not necessary, but it is convenient). We get the matrix











1 2 2 −1 8 5 11
2 4 5 −3 19 12 27
3 6 5 −2 21 14 30
2 4 3 −1 13 9 19
3 6 7 −4 27 17 38











.

Now we perform operations E2,1(−2), E3,1(−3), E4,1(−2), E5,1(−3) (note that these operations commute
so it does not matter in which order we perform them) to get











1 2 2 −1 8 5 11
0 0 1 −1 3 2 5
0 0 −1 1 −3 −1 −3
0 0 −1 1 −3 −1 −3
0 0 1 −1 3 2 5











.

Now we leave the first row alone and apply the procedure to the matrix consisting of rows 2,3,4,5. The
first non-zero column of this matrix is the third column and the top entry in this column is already
non-zero (it is in fact 1, which is convenient). We perform operations E3,2(1), E4,2(1), E5,2(−1) (again,
these operations commute) to get











1 2 2 −1 8 5 11
0 0 1 −1 3 2 5
0 0 0 0 0 1 2
0 0 0 0 0 1 2
0 0 0 0 0 0 0











.

Now we concentrate on the matrix consisting of the last three rows. The first non-zero column is column
6 and the top entry in this column is 1. We perform operation E4,3(−1) to get











1 2 2 −1 8 5 11
0 0 1 −1 3 2 5
0 0 0 0 0 1 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0











.

At this point we arrive at a matrix in row-echelon form. From it we can easily see that M has three
pivot columns, namely the first, third and sixth columns (these are the columns of the last matrix which
contain the first non-zero entry of some row). Thus the rank of M is equal to 3.

Now we employ our second procedure to transform the last matrix into a reduced row-echelon form.
The first non-zero entry of each row is already equal to 1. We start with the third row, perform E2,3(−2),
E1,3(−5) to get











1 2 2 −1 8 0 1
0 0 1 −1 3 0 1
0 0 0 0 0 1 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0











.

Now we move to the second row and perform E1,2(−2) to get

K =











1 2 0 1 2 0 −1
0 0 1 −1 3 0 1
0 0 0 0 0 1 2
0 0 0 0 0 0 0
0 0 0 0 0 0 0











.

The matrix K is indeed in a reduced row-echelon form. We can summarize our computations in the
following equation:

E1,2(−2)E2,3(−2)E1,3(−5)E4,3(−1)E3,2(1)E4,2(1)E5,2(−1)E2,1(−2)E3,1(−3)E4,1(−2)E5,1(−3)S1,3M = K

Right now this should be interpreted as performing elementary row operations on M , recorded ”from
right to left”. Later we will develop concepts which will allow to interpret the above line as a certain
”product” of matrices.
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