MATH 304 - Linear Algebra

We have seen that matrices form a complex structure with addition and multiplication which, on
one hand, have many of the familiar properties of addition and multiplication of numbers, but, on the
other hand, multiplication shows some significantly different behavior (like it is not commutative, two
non-zero matrices can multiply to a zero matrix, etc.). Nevertheless, we can compute with matrices
and, as in the case with numbers, this often leads to equations with unknown matrix (or matrices).
Perhaps one of the simplest such equations (which involves multiplication) is an equation of the form
AX = B. Here A, B are given matrices of size k x m and k x n respectively and X is an unknown matrix
of size m x n. When A is a square invertible matrix then we can solve such equations easily by just
multiplying both sides on the left by A=!: A=}(AX) = A~!B. Since multiplication is associative, we
have A71(AX) = (A7'A)X = X, so X = A7 B is the unique solution. But when A is not invertible,
we need a different method.

Let us look at an example. Let
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We want to solve the equation AX = B. Even though A in this example is a square matrix, it is not
invertible. The most naive way of approaching this problem would be to perform the multiplication
AX and then make each entry equal to the corresponding entry in B. For example, the 1,3-entry of
AX is —x13 + T2,3 + 2233 S0 we get equation —x1,2 + x22 + 2232 = —1. Doing this for all 12 entries
will result is a system of 12 equations with 12 unknowns. The good news is that this is a system of
linear equations, so we have tools to solve it. The bad news is that we would need to work with 12 x 12
matrices. We can simplify this approach by observing that this system splits into 4 systems, each having
three equations and 3 unknowns (the unknowns in each system being independent of each other). This
follows from the fact that the entries in the first column of AX only involve the first column of X, and
the same applies to other columns of X. In our example, the 4 systems are:

—11 2] |* 3 —11 2] |7*2 0
3 2 -1 To1 | =161, 3 2 -1 T2 | = 1|51,
12 1] |2y, 6 12 1] |as, 3
-11 2 T1.3 -1 —11 2] |*%14 4
392 1| |z23| =1 3/, 32 —1| |z2a]| =18
12 1] |ass 1 12 1] |agy 8

At this point it looks like even though we reduced the size of the systems, but now we have to solve four
such systems, which may still require quite a bit of labor. Final simplification comes from the observation
that all 4 systems have the same coefficient matrix. Recall that our method of solving systems of linear
equations is to form the augmented matrix and then perform elementary row operations to transform the
coefficient part into reduced row-echelon form. Since all 4 systems have the same coefficient parts, the
elementary row operations involved will be the same for each system. We can organize the computations
through a single 3 x 7 matrix as follows.
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We form a ”combined augmented matrix”: 32 —1§ 6 5 3 8|.If we focus only on the i-th
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column to the right of the dividing line, we are working with the i-th system of equations, i.e. solving
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D;(—1),D2(1/5),D3(1/3) and get . Then we do E52(—1), E12(1) and get
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. The part to the left of the dividing line is now in the reduced row-echelon form.
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If we had pivot columns to the right of the dividing line, one of the four system would be inconsistent
and we would conclude that there are no solutions to our original matrix equation. In our example
though there are no pivot columns to the right of the dividing line. This means that all 4 systems are
consistent and now we need to read the solutions for each of them. Note that the last column of the
left part is not a pivot column and the other two columns are pivot columns. This means that the third
unknown in each system will be a free variable and the first two will be dependent variables expressed
in terms of the free variable. Working with the first column to the right of the dividing line we see that

231 = a is a free variable and 21 =3 —a, 21,1 = a.
Similarly, working with the second column to the right of the dividing line we get
x32 = b is a free variable and x99 =1—10, 212 =140
From the third column we get
x3,3 = cis a free variable and 23 = —¢, 213 =1+¢,
and from the fourth column we get
234 = d is a free variable and 94 =4 —d x14 = d.

Summarizing the above computations, the equation AX = B in the example has infinitely many solu-
tions, depending on 4 parameters a, b, ¢, d, as follows:
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We can choose any values for the parameters a, b, c,d and get a concrete solution. For example, when
1111

a=1,0=0,c=0,d=1,weget X= |2 1 0 3| as one of the possible solutions.
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The method outlined in the above example works in general. To solve AX = B, we form the ”combined
augmented matrix” [A|B] and we perform elementary row operations to transform the part to the left
of the dividing line into reduced row-echelon form. If in the resulting matrix there is a pivot column
to the right of the dividing line, there are no solutions. Otherwise, we read the solutions column by
column.

Note that our method of finding the inverse of a matrix is a special case of the above method. It should
not come as a surprise, as inverting the matrix A is the same as solving the equation AX = I.

A natural questions which may come to mind at this point is: what about equations of the form X A = B,
where A, B are given matrices of size m x n and k x n respectively and X is unknown matrix of the size
k x m? We can easily reduce it to the case discussed above by using a tool we learned in the previous
note. Namely, we can transpose both side of the equation to get a new equation (XA)T = BT i..
ATXT = BT. Now we can use the method we just learned to solve for X7 and then transpose the
solution to get X.

Let us consider an example:
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In order to solve the equation X A = B, we first solve the equation AT X7 = BT. Here
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and the ”combined augmented matrix” is |2 3118 31
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1 1y 7 12 5 0i35 2
0 1i 4 7 3|.Nextdo Esa(4), F12(—1) to get 1 4 7 3| . This matrix is in reduced
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row echelon form and no column to the right of the dividing line is a pivot column, so there are solutions.
Moreover, we have no free variables (all columns to the left of the dividing line are pivot), so the solution
is actually unique: the first column of X7 (written as a row) is 3,4, the second column is 5,7 and the

third is 2,3. In other words, X7 = {i ? g} . It follows that
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Using the correspondence between linear transformations and matrices we can restate the two matrix
equations considered above into problems about linear transformations.
The equation AX = B is equivalent to the following question:

Given linear transformations Lp : R* — R¥ and L4 : R — Rk, is there a linear transformation
L:R"® — R™ such that Ly o L = Lg?
Any L satisfying this condition will be of the form Lx where AX = B.

Similarly, The equation X A = B is equivalent to the following question:

Given linear transformations Lg : R® — R* and L4 : R® — R™, is there a linear transformation
L:R™ —s R¥ such that Lo L4 = Lg?
Any L satisfying this condition will be of the form Lx where XA = B.



