
MATH 304 - Linear Algebra

Definition. A vector space is a non-empty set V , whose elements are called vectors, on which
there are defined two operations:

1. addition, which to any two vectors v, w assigns a vector v + w, called the sum of v and w;

2. scalar multiplication, which to any number c and any vector v assigns a vector c · v (we will
often write just cv);

and these operations satisfy the following properties:
V1. addition is associative, i.e. (u + v) + w = u + (v + w) for any vectors u, v, w.
V2. addition is commutative, i.e. v + w = w + v for any vectors v, w.
V3. there is a vector 0 ∈ V such that 0 + v = v for every vector v.
V4. for any vector v there is a vector w such that v + w = 0.
V5. 1 · v = v for any vector v.
V6. c · (d · v) = (cd) · v for any numbers c, d and any vector v.
V7. c · (v + w) = c · v + c · w for any number c and any vectors v, w.
V8. (c + d) · v = c · v + d · v for any numbers c, d and any vector v.

It is not hard to see that the addition and scalar multiplication in vector spaces have additional familiar
properties, for example:

• the vector 0 defined in V3. is unique with the required property. We call it the zero vector.

• for a given vector v, the vector w defined in V4. is unique with the required property. We call it
the negative of v and denote it by −v.

• for any vector v we have 0 · v = 0. Note that the zero on the left is the number 0 and the zero on
the right is the vector 0.

• for any vector v we have −v = (−1) · v.

• c · 0 = 0 for any number c.

We can justify the above properties as follows. Suppose first that 0 and 01 both have the property
stated in V3. Then 0 + 01 = 01 (apply V3 with v = 01). On the other hand 0 + 01 = 01 + 0 by V2 and
applying V3 with v = 0 yields 0 + 01 = 01 + 0 = 0. Thus 0 = 01.

Suppose now that w and w1 both have the property stated in V4. Thus 0 = v + w. Adding w1 to
both sides and using associativity we get

w1 = w1 + 0 = w1 + (v + w) = (w1 + v) + w = 0 + w = w.

Next note that 0 · v = (0 + 0) · v = 0 · v + 0 · v. Adding −0 · v to both sides we get

0 = 0 · v + (−0 · v) = (0 · v + 0 · v) + (−0 · v) = 0 · v + (0 · v + (−0 · v)) = 0 · v + 0 = 0 · v.

Finally, we have v + (−1) · v = 1 · v + (−1) · v = (1 + (−1)) · v = 0 · v = 0, so (−1) · v = −v by
uniqueness of the negative.

We leave the justification of the last property and other similar properties as exercise.

Definition. A subset U of a vector space V is called a subspace, if it is non-empty and for any
u, v ∈ U and any number c the vectors u + v and cu are are also in U (i.e. U is closed under addition
and scalar multiplication in V ).
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Clearly a subspace of a vector space is itself a vector space under the addition and scalar multipli-
cation inherited from V .

Vector spaces appear often in mathematics and its applications and linear algebra provides tools to
work with vector spaces.

Examples of vector spaces. The sets R
n with the usual addition and multiplication by scalars are

fundamental examples of vector spaces.

The set of all functions from R to R is a vector space with the usual addition of functions and mul-
tiplication by numbers. The subset of all continuous functions is clearly a subspace. A subset of all
differentiable functions is a subspace of the space of continuous functions. The subset of all polynomial
functions is a subspace of the space of all differentiable functions. The subset of all polynomials of degree
at most d (where d is any non-negative integer) is a subspace of the space of all polynomial functions.
All these spaces naturally appear in calculus.

The set of all m × n matrices with the addition and multiplication by numbers we discussed in previous
notes is a vector space.

If A is an m × n matrix then the set of all solutions to the homogeneous system of linear equations
Ax = 0 is a subspace of Rn.

If L : Rn −→ R
m is a linear transformation then the image of L is a subspace of Rm.

The last two examples are special cases of a more general result. To state it we introduce the following
fundamental definition.

Definition. A linear transformation between vector spaces V and W is a function L : V −→ W

such that L(u + v) = L(u) + L(v) and L(cu) = cL(u) for any vectors u, v in V and any number c.

Clearly this definition is a straightforward generalization of the concept of linear transformation from
R

n to R
m. As in this special case, the linear transformations have the following properties.

Proposition. Let L : V −→ W and T : W −→ U be linear transformations.

1. L(0) = 0

2. L(a1v1 + a2v2 + . . . + asvs) = a1L(v1) + a2L(v2) + . . . + asL(vs) for any vectors v1, v2, . . . , vs ∈ V

and any numbers a1, . . . , as.

3. the composition T ◦ L : V −→ U is a linear transformation.

4. if L is a bijection then the inverse function L−1 : W −→ V is a linear transformation.

All these properties are justified in the same way as we did before for linear transformation from R
n to

R
m. For example,

(T ◦ L)(u + v) = T (L(u + v)) = T (L(u) + L(v)) = T (L(u)) + T (L(v)) = (T ◦ L)(u) + (T ◦ L)(v)

for any u, v in V . This verifies one of the properties needed for T ◦ L to be a linear transformation. The
other property is verified in a similar way.

To show that L−1(u + w) = L−1(u) + L−1(w) it suffices to show that when we apply L to each side
of the last equation, we get equal results (since L is one-to-one):

L(L−1(u) + L−1(w)) = L(L−1(u)) + L(L−1(w)) = u + w = L(L−1(u + w))

(we use the fact that L(L−1(x)) = x for any x).
The verification of the other properties is left as an exercise.
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Definition. The kernel ker(L) of a linear transformation L : V −→ W is the set of all vectors v

in V such that L(v) = 0:
ker(L) = {v ∈ V : L(v) = 0}.

Remark. The name nullity of L is sometimes used instead of the word ”kernel”.

The following proposition extends the observation we made for linear transformation from R
n to R

m

made in our list of examples of vector spaces.

Proposition. Let L : V −→ W be a linear transformation. Then

1. ker(L) is a subspace of V .

2. the image L(V ) of L is a subspace of W .

Indeed, let u, v be in ker(L) and let c be a number. Then

L(u + v) = L(u) + L(v) = 0 + 0 = 0, and L(cv) = cL(v) = c · 0 = 0

so u + v ∈ ker(L) and cv ∈ ker(L). This shows that ker(L) is a subspace of V (note that 0 ∈ ker(T ), so
the kernel is non-empty).

Suppose now that w1 and w2 are in the image of L. This means that w1 = L(v1) and w2 = L(v2)
for some v1, v2 ∈ V . Thus

w1 + w2 = L(v1) + L(v2) = L(v1 + v2), and cw1 = cL(v1) = L(cv1)

for any number c. This shows that both w1 + w2 and cw1 belong to the image of L, i.e. the image is
indeed a subspace of W (note that 0 = L(0) is in the image, so the image is non-empty).

The following observation is often useful.

Proposition. Let L : V −→ W be a linear transformation. Then L(u) = L(v) if and only if u − v

belongs to ker(L). In particular, L is one-to one if and only if ker(L) = {0}, i.e. 0 is the only vector v

in V such that L(v) = 0 (we say that the kernel of L is trivial in this case).

Indeed, L(u) = L(v) if and only if L(u − v) = 0.
If L is one-to-one then there is at most one v such that L(v) = 0, so ker(L) = {0}. Conversely,

suppose that ker(L) = {0} and that L(v) = L(u). Since u − v is in the kernel of L, we have u − v = 0,
i.e. u = v. This shows that L is one-to-one.

We end with the following example.

Example Let V be the space of all twice differentiable functions from R to R and let W be the space
of all functions from R to R. Define L : V −→ W by L(f) = f

′′

+ f . It is a simple calculus exercise that
L is a linear transformation. Clearly L(sin x) = 0 = L(cos x), so sin x and cos x are both in the kernel
of L. It is not obvious, but can be proved, that

ker(L) = {a sin x + b cos x : a, b ∈ R}.

Describing the image of L is a challenging calculus problem.
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