
MATH 304 - Linear Algebra

Our basic example of a vector space is Rn. We have distinguished a sequence of vectors e1, e2, . . . , en

in R
n and we have seen that every other vector in R

n can be expressed as a1e1 + . . . + anen for some (in
fact unique) choice of numbers a1, . . . , an. There is no fundamental reason why the vectors ei should be
distinguished (they just appear naturally to us because of the way we write elements of Rn). In fact,
there are situations when a different choice is more convenient. It is our next goal to make this more
precise and extend this idea to arbitrary vector spaces. The following concept will be fundamental to
achieve this goal.

Definition. Let v1, v2, . . . , vn be a sequence of vectors from a vector space V . We say that a
vector v ∈ V is a linear combination of the vectors v1, . . . , vn if v = a1v1 +a2v2 + . . .+anvn for some
choice of the numbers a1, . . . , an. The set of all vectors which are linear combinations of v1, . . . , vn is
denoted by span{v1, . . . , vn}.

There is a very useful way of thinking about linear combinations and span via the concept of linear
transformation.

Let V be a vector space and let v1, v2, . . . , vn be a sequence of vectors from V . The function
L : Rn −→ V defined by

L(a1, . . . , an) = a1v1 + a2v2 + . . . + anvn

is a linear transformation. It is the unique linear transformation which sends e1 to v1, e2 to v2, ..., en

to vn. The image of L is equal to span{v1, . . . , vn}.

Indeed, note that

L((a1, . . . , an) + (b1, . . . , bn)) = L(a1 + b1, . . . , an + bn) = (a1 + b1)v1 + . . . + (an + bn)vn =

= a1v1 + b1v1 + a2v2 + b2v2 + . . . + anvn + bnvn = a1v1 + a2v2 + . . . + anvn + b1v1 + b2v2 + . . . + bnvn =

= L(a1, . . . , an) + L(b1, . . . , bn)

and

L(c(a1, . . . , an)) = L(ca1, . . . , can) = (ca1)v1+(ca2)v2+. . .+(can)vn = c(a1v1+a2v2+. . .+anvn) = cL(a1, . . . , an).

These prove that L is indeed a linear transformation. It is clear from the definition that L(ei) = vi for
i = 1, 2, . . . , n. Conversely, suppose that T : Rn −→ V is a linear transformation such that T (ei) = vi

for i = 1, 2, . . . , n. Then

T (a1, . . . , an) = T (a1e1+. . .+anen) = a1T (e1)+. . .+anT (en) = a1v1+a2v2+. . .+anvn = L(a1, . . . , an).

This shows that T = L. Finally, v is in the image of L if and only if

v = L(a1, . . . , an) = a1v1 + a2v2 + . . . + anvn

for some (a1, . . . , an) ∈ R
n, which is the same as saying that v is in span{v1, . . . , vn}. Thus the image

of L coincides with span{v1, . . . , vn}.
Since the image of any linear transformation is a subspace, we get

Corollary. span{v1, . . . , vn} is a subspace of V .

Exercise. Give a direct argument that span{v1, . . . , vn} is a subspace of V .

We say that the vectors v1, . . . , vn span the vector space V if V = span{v1, . . . , vn}.
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The following rather obvious observation is often useful: if U is a subspace of V and vi ∈ U for
i = 1, . . . , n then span{v1, . . . , vn} is contained in U . This is an immediate consequence of the fact that
U is closed under addition and scalar multiplication. This observation leads us to the following simple
but important result.

Theorem (Going Down). Let v1, v2, . . . , vn be a sequence of vectors from a vector space V . If vi is
a linear combination of the other vectors then

span{v1, . . . , vn} = span{v1, . . . , vi−1, vi+1, . . . , vn}

i.e. we can remove vi from the sequence and the remaining vectors span the same subspace.

Indeed, since every vector in the spanning sequence on the right belongs to the subspace span{v1, . . . , vn},
we get the inclusion

span{v1, . . . , vi−1, vi+1, . . . , vn} ⊆ span{v1, . . . , vn}.

On the other hand, since vi is a linear combination of the other vectors, it belongs to the subspace
span{v1, . . . , vi−1, vi+1, . . . , vn} and so do the vectors v1, . . . , vi−1, vi+1, . . . , vn. Thus we get the opposite
inclusion

span{v1, . . . , vn} ⊆ span{v1, . . . , vi−1, vi+1, . . . , vn}

proving that both spans coincide.

Starting with any sequence of vectors and using the Going Down Theorem we can keep removing vectors
until we obtain a sequence which spans the same subspace as the original vectors and no vector in this
new sequence is a linear combination of the the other vectors. This prompts the following definition.

Definition. Vectors v1, v2, . . . , vn are called linearly independent if they are all non-zero and
none of the vectors is a linear combination of the other vectors.

We can now state our observation above as follows: every sequence of vectors, not all of which are
zero, contains a subsequence which is linearly independent and spans the same subspace as the original
sequence. Moreover, linearly independent vectors play analogous role for the subspace they span as the
vectors e1, . . . , en do for R

n (it is very easy to see that e1, . . . , en are linearly independent). To make
this sentence more clear, we note the following characterization of linearly independent vectors.

Proposition. Vectors v1, v2, . . . , vn are linearly independent if and only if the only numbers
a1, . . . , an such that a1v1 + a2v2 + . . . + anvn = 0 are a1 = a2 = . . . = an = 0.

Indeed, if v1, v2, . . . , vn are not linearly independent, then either vi = 0 for some i and then ai = 1
and aj = 0 for j 6= i are not all zero and satisfy a1v1 + a2v2 + . . . + anvn = 0, or vi = b1v1 + . . . +
bi−1vi−1 + bi+1vi+1 + . . . + bnvn for some choice of the numbers bi. Taking ai = −1 and aj = bj for
i 6= j, we see that a1, . . . , an are not all zero and a1v1 + a2v2 + . . . + anvn = 0. This proves that if
v1, v2, . . . , vn are not linearly independent then there exist a1, . . . , an which are not all zero and such
that a1v1 + a2v2 + . . . + anvn = 0. Conversely, suppose that a1v1 + a2v2 + . . . + anvn = 0 and ai 6= 0
for some i. If n = 1, this means that v1 = 0. If n > 1, we can write

vi =
a1

−ai

v1 + . . . +
ai−1

−ai

vi−1 +
ai+1

−ai

vi+1 + . . . +
an

−ai

vn

so vi is a linear combination of the other vectors. In both cases, v1, v2, . . . , vn are not linearly indepen-
dent.

It is convenient to make the following definition.
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Definition. Vectors v1, v2, . . . , vn are called linearly dependent if they are not linearly indepen-
dent. In other words, v1, v2, . . . , vn are linearly dependent if and only if there exist numbers a1, . . . , an,
not all zero, such that a1v1 + a2v2 + . . . + anvn = 0.

It is clear now that if v1, . . . , vn are linearly independent and a1v1 + . . . anvn = b1v1 + . . . + bnvn then
a1 = b1, ..., an = bn. Thus every vector in span{v1, . . . , vn} can be expressed in a unique way as a
linear combination a1v1 + a2v2 + . . . + anvn. This is why the vectors v1, . . . , vn play analogous role for
span{v1, . . . , vn} as the vectors e1, . . . , en do for R

n

We restate the last proposition in a slightly different form.

Let V be a vector space and let v1, v2, . . . , vn be a sequence of vectors from V . Consider the linear
transformation L : Rn −→ V defined by

L(a1, . . . , an) = a1v1 + a2v2 + . . . + anvn.

1. L is onto if and only if V = span{v1, . . . , vn};

2. L is one-to-one if and only if v1, v2, . . . , vn are linearly independent;

3. L is a bijection if and only if v1, v2, . . . , vn are linearly independent and span V .

This result prompts the following definitions.

Definition. We say that v1, v2, . . . , vn is a basis of a vector space V if v1, v2, . . . , vn are linearly
independent and V = span{v1, . . . , vn}.

Definition. We say that a vector space V is finite dimensional if there is a sequence v1, v2, . . . , vn

such that V = span{v1, . . . , vn}.

Restating some of our earlier observations we get the following theorem.

Theorem. Every non-trivial finite dimensional vector space V has a basis. Moreover, every sequence
which spans V contains a subsequence which is a basis.

Remark. We say that a vector space V is trivial if V = {0}, i.e. V consists of only the zero vector. It
is convenient to define the empty sequence to be a basis of a trivial vector space.

The name ”finite dimensional” suggests that there is a notion of dimension. Indeed such notion exists
and it captures our intuitive idea that R

n should have dimension n. It should be clear that e1, . . . , en

is a basis of Rn. This suggests that dimension should be related to the size of a basis. For this to make
sense it would be ideal to know that any two bases of a vector space have the same number of elements.
As we will see, this is indeed true.
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Theorem. Any two bases of a finite dimensional vector space V have the same number of elements.
This number is called the dimension of V and it is denoted by dim(V ).

To justify this result, note that if v1, . . . , vn is a basis of V then there is a linear transformation
L : R

n −→ V which is a bijection. Similarly, if w1, . . . , wk is a basis of V then there is a linear
transformation T : Rk −→ V which is a bijection. Now T −1L : Rn −→ R

k is also a linear transformation
which is a bijection. However, we know that this is only possible when n = k.

Remark. We define the dimension of the trivial vector space to be 0. It is consistent with the convention
in our previous remark that the empty sequence is a basis of a trivial vector space, as empty sequence
has 0 elements.

Suppose now that V is a finite dimensional vector space and U is a subspace of V . Our intuition suggests
that U should be also finite dimensional and dim(U) ≤ dim(V ). We are going to show that this is indeed
true. The key observation is the following result.

Theorem (Going Up). Let v1, v2, . . . , vn be a linearly independent sequence of vectors from a vector
space V . If v ∈ V is a vector not in span{v1, . . . , vn} then v1, v2, . . . , vn, v are linearly independent.

Indeed, suppose that v1, v2, . . . , vn, v are not linearly independent. Then there exists numbers a1, . . . , an, a,
not all zero, such that a1v1 + . . . anvn +av = 0. If a = 0, then v1, v2, . . . , vn are not linearly independent
contrary to our assumption. Thus a 6= 0. However this means that

v =
a1

−a
v1 + . . . +

an

−a
vn

i.e. v is a linear combination of v1, . . . , vn, again contrary to our assumptions.

We also need the following observation.

Theorem. Let V be a vector space of dimension n. If v1, . . . , vk is a linearly independent sequence in
V then k ≤ n. Moreover, this sequence can be extended to a basis of V .

Indeed, since V has dimension n there is a linear transformation L : Rn −→ V which is a bijection.
Since v1, . . . , vk is a linearly independent sequence in V , we have an injective linear transformation
T : Rk −→ V . It follows that L−1 ◦ T : Rk −→ R

n is an injective linear transformation. This can only
happen if k ≤ n.

Now, using the Going Up Theorem and starting with v1, . . . , vk, we can produce longer and longer
linearly independent sequences as long as they do not span V . However we already proved that there is
no linearly independent sequence in V longer than n. Thus, we must arrive at a a basis of V .

We are now ready to justify the result we stated earlier.

Theorem. Let V be a vector space of dimension n. If U is a proper subspace of V (i.e. U is not equal
to V ) then U has finite dimension which is smaller than n.

Indeed, the result is obvious when U is the trivial subspace. Assume that U is not trivial. We proved
that any linearly independent sequence of vectors from V has length at most n. Thus we may choose
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longest linearly independent sequence which consists of elements from U , say u1, . . . , uk. If this sequence
does not span U , we could choose u ∈ U which is not in the span{u1, . . . , uk} and we would get a longer
linearly independent sequence u1, . . . , uk, u by the Going Up Theorem, which contradicts our choice of
k. Thus U = span{u1, . . . , uk} and dim(U) = k. Since U 6= V , we can chose v ∈ V which is not in U

and then, again by the Going Up Theorem, the sequence u1, . . . , uk, v is linearly independent. It follows
that k + 1 ≤ n, so k < n.

Remarks. Not every vector space is finite dimensional. For example, consider the vector space P of all
polynomial functions. If p1, . . . , pk is a finite sequence of polynomials then all these polynomials have
degree bounded above by some integer k and then any linear combination of these polynomials has also
degree bounded above by k. Thus the span of p1, . . . , pk does not contain polynomials of degree larger
than k, hence it can not be equal to the whole P . This shows that P is not finite dimensional.

The concept of span and basis can be extended to vector spaces which are not finite dimensional.
First, as it is done in many texts on linear algebra, we define span(X) for any subset X of a vector
space V . When X is finite, we can put the elements of X in a finite sequence x1, . . . , xn and define
span(X) = span{x1, . . . , xn}. Furthermore, we say that X is linearly independent if x1, . . . , xn is linearly
independent. It is easy to see that these notions do not depend on the way we list the elements. When
X is infinite, we define span(X) as the union of the subspaces span(Y ), where Y runs through all finite
subsets of X. It is easy to see that span(X) is a subspace consisting of all vectors which are linear
combinations of some finite sequence of vectors from X. We say that X is linearly independent if every
finite subset of X is linearly independent. We say that X is a basis of V if X is linearly independent
and spans V . It can be proved that every vector space has a basis, but it is significantly harder than
the finite dimensional case. In our course we will study only finite dimensional vector spaces.
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