
MATH 304 - Linear Algebra

In the last two notes we have introduced several fundamental concepts. Now we will discuss methods
to deal with these concepts in practice. We will be working with vectors in R

m. Suppose we have given
vectors v1, . . . , vn, v in R

m. We may ask the following questions:

1. is v in the span of v1, . . . vn? If yes, how to express v as a linear combination of v1, . . . , vn?

2. are the vectors v1, . . . vn linearly independent? If not, how to choose among them a subsequence
which is a basis of of the subspace span{v1, . . . , vn}?

3. what is the dimension of span{v1, . . . , vn}?

It turns out that these questions are equivalent to some questions we have already learned how to
answer and a rather simple technique which we have already used many times can be used again to
answer all these questions.

Consider the linear transformation L : Rn −→ R
m which sends e1 to v1, e2 to v2,..., en to vn. We

have seen that span{v1, . . . , vn} is the same as the image of L. So our first question is equivalent to: is v

in the image of L? If yes, find x = (x1, . . . , xn) ∈ R
n such that L(x) = v. We also know that v1, . . . , vn

are linearly independent if and only if L is one-to-one. Now L = LA, where A is the m×n matrix whose
columns are the vectors v1, . . . , vn. So all we need to do is to consider the augmented matrix M = [A|v]
(i.e. we add v as the last column) and v is in the span if and only if the last column of M is not a pivot
column. Any solutions x = (x1, . . . , xn) to the system of linear equations with augmented matrix M

will give us expression of v as linear combination of v1, . . . , vn: v = x1v1 + . . . + xnvn. Furthermore,
vectors v1, . . . , vn are linearly independent if and only if the rank of A is equal to n.

In order to answer the last two of our questions, we need to understand which subsequences of
v1, . . . , vn are linearly dependent and which are linearly independent. Let S be a subset of the set
{1, 2, . . . , n}. If we consider only the vectors vi whose number i belongs to S, i.e. i ∈ S, then these
vectors are linearly dependent if and only if there are numbers xi for i ∈ S which are not all zero and
such that the sum

∑

i∈S xivi = 0 (this means that we only use the numbers from S in the summation).
This is the same as having a vector x = (x1, . . . , xn) such that not all xi are zero, but xi = 0 whenever i

is not in S, and LA(x) = 0. For example, v2, v4, v5 are linearly dependent iff there is a non-zero vector x

of the form (0, x2, 0, x4, x5, 0, . . . , 0) such that LA(x) = 0. Let us write down this observation explicitly:

Let A be an m × n matrix and let S be a subset of {1, 2, . . . , n}. The columns of A with numbers in
the subset S are linearly dependent if and only if there is a non-zero vector x = (x1, . . . , xn) such that
xi = 0 for all i not in the subset S and LA(x) = 0.

Suppose now that B is an m × n matrix row-equivalent to A. This is the same as saying that
B = EA for some invertible m × m matrix E (since every invertible matrix is a product of elementary
matrices and multiplication on the left by an elementary matrix acts as elementary row operation). Thus
LB = LE ◦ LA. Since LE is a bijection, we have LB(x) = 0 if and only if LA(x) = 0. Thus columns of
A with numbers in a subset S are linearly dependent if and only if columns of B with numbers in S are
linearly dependent and a linear dependencies among columns of A are the same as linear dependencies
among columns of B and vice versa. Let us apply this observation to the case when B is the reduced
row-echelon form row equivalent to A. Suppose s is the rank of B (which is the same as rank of A),
i.e. the number if pivot columns. Note that the first pivot column of B is e1 = (1, 0, . . . , 0), the second
pivot column is e2, ..., the last pivot columns is es. Thus pivot columns of B are linearly independent.
It follows that pivot columns of A are linearly independent. Any other column of B will look like
(a1, . . . , as, 0, . . . , 0) (when written as a row) so it will be a linear combination of the pivot columns:

(a1, . . . , as, 0, . . . , 0) = a1e1 + . . . + ases.

It follows that the corresponding column of A is the same linear combination of the pivot column of A.
Thus we get the following important result.
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The pivot columns of a matrix A form a basis of the subspace spanned by all columns of A. In other
words, the pivot columns of A form a basis of the image of the linear transformation LA. In particular,
the dimension of the subspace spanned by all columns of A (i.e the dimension of the image of LA)
is equal to the rank of A. Moreover, a column of the reduced row-echelon form row equivalent to A

provides coefficients to express the corresponding column of A as a linear combination of the pivot
columns of A.

This result tells us how to answer the last two of our questions. The dimension of span{v1, . . . , vn}
is equal to the rank of the matrix A. And the pivot columns of A form a basis of span{v1, . . . , vn}.

Let us illustrate the above discussion with a concrete example which shows how the method works.

Example. Let v1 = (1, 2, −1, 0, 3), v2 = (1, 1, −1, 2, 1), v3 = (2, 3, −2, 2, 4), v4 = (0, 1, 0, −2, 2), v5 =
(1, 1, 0, 0, 1), u = (1, 0, 0, 0, 0), w = (1, 2, 0, −2, 3). Determine whether u or w belongs to span{v1, . . . , v5}.
Among the vectors v1, . . . , v5 find a basis of span{v1, . . . , v5} and express all the other vectors as linear
combinations of the vectors in the basis found.

Solution. We start with the matrix











1 1 2 0 1 1 1
2 1 3 1 1 0 2

−1 −1 −2 0 0 0 0
0 2 2 −2 0 0 −2
3 1 4 2 1 0 3











.

We list the vectors v1, . . . , v5 spanning our subspace as columns to the left of the dividing line (this part
is the matrix A in our discussion above) and to the right of the dividing line we list as columns the
vectors u, w (these are the vectors about which we want to know if they belong to the span or not).

Next we perform elementary row operations to bring the part to the left of the dividing line to the
reduced row-echelon form. We start with E2,1(−2), E3,1(1), E5,1(−3) and get











1 1 2 0 1 1 1
0 −1 −1 1 −1 −2 0
0 0 0 0 1 1 1
0 2 2 −2 0 0 −2
0 −2 −2 2 −2 −3 0











.

Then we perform E1,2(1), E4,2(2), E5,2(−2) and get











1 0 1 1 0 −1 1
0 −1 −1 1 −1 −2 0
0 0 0 0 1 1 1
0 0 0 0 −2 −4 −2
0 0 0 0 0 1 0











.

Finally, we do E4,3(2), E2,3(1) followed by D2(−1) to get











1 0 1 1 0 −1 1
0 1 1 −1 0 1 −1
0 0 0 0 1 1 1
0 0 0 0 0 −2 0
0 0 0 0 0 1 0











.

At this point the part to the left of the dividing line is in reduced row-echelon form (i.e. this is the
reduced row echelon form row equivalent to A). Now we look at the part to the left and any particular
column to the right of the dividing line. If the column to the right has a non-zero entry in some row
whose part to the left of the dividing line has only zeros, the vector corresponding to this column does
not belong to the span (the system is inconsistent). Otherwise the vector belongs to the span. In
our case the, the first column to the right of the dividing line has a non zero entry in the fourth row,
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and all entries to the left of the dividing line in the 4th row are zero. This means that u is not in
span{v1, . . . , v5}. On the other hand, the second column to the right of the division line has no non-zero
entry in rows 4 or 5. Thus w is in span{v1, . . . , v5}.

Since columns 1,2,5 are the pivot columns of the part to the left of the dividing line, vectors v1, v2, v5

form a basis of span{v1, . . . , v5}. Moreover, from the reduced row-echelon form we see that v3 = v1 +v2,
v4 = v1 − v2, w = v1 − v2 + v5 (the coefficients are given by the corresponding columns of the reduced
matrix).

Let A be an m × n matrix. In our discussion above we were led to consider the subspace spanned by
the columns of A. This motivates the following definition.

Definition. Let A be an m × n matrix. The subspace of Rm spanned by the columns of A is called
the column space of A. Similarly, the subspace of Rn spanned by the rows of A is called the row

space of A.

We have seen that the dimension of the column space of a matrix A coincides with the rank of A. What
can we say about the row space?

The following simple observation, which is an immediate consequence of the way matrices are mul-
tiplied, is very useful for questions about column or row spaces.

Let A be an m × n matrix, let B be n × k matrix, and let C = AB.

• The i-th column of C is the linear combination of the columns of A with coefficients provided by
the i-th column of B. In particular, the column space of C is contained in the column space of
A.

• The i-th row of C is the linear combination of the rows of B with coefficients provided by the
i-th row of A. In particular, the row space of C is contained in the row space of B.

Example. Consider the product

AB =





3 −1 2 3 −1
1 −1 2 3 5
2 −3 6 9 4















−1 2
4 2
7 −2

−1 3
4 −2











=





0 11
26 −5
35 5



 = C.

We see that the second row of C is

(26, −5) = (−1, 2) − (4, 2) + 2(7, −2) + 3(−1, 3) + 5(4, −2),

i.e. it is a linear combination of the rows of B with coefficients provided by the 2nd row of A. Similarly,
the second column of C is

(11, −5, 5) = 2(3, 1, 2) + 2(−1, −1, −3) − 2(2, 2, 6) + 3(3, 3, 9) − 2(−1, 5, 4),

i.e. it is a linear combination of the columns of A with coefficients provided by the 2nd column B.

An immediate corollary from the last observation is the following result.

Let A and B be m × n matrices which are row equivalent. Then the row spaces of A and B coincide.
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Indeed, there is an invertible m × m matrix M such that B = MA. Thus the row space of B is
contained in the row space of A. Since M is invertible, we have A = M−1B, so the row space of A is
contained in the row space of B. It follows that the row spaces of A and B are equal.

We can apply this to the case when B is the reduced row-echelon form row equivalent to A. It is
easy to see that the non-zero rows of of a matrix in reduced row-echelon form are linearly independent.
In fact, consider the i-th row of B. Let us look at the i-th pivot column of of B, say it is column j. It
has 1 in the i-th row and zeros everywhere else. Thus all rows of B except the i-th row have zero in the
j-th place. Thus the i-th row can not be a linear combination of the other rows. This proves that the
non-zero rows of B are linearly independent. Thus we get the following theorem.

Let A be an m × n matrix. Then non zero rows of the reduced row-echelon form row equivalent to A

form a basis of the row space of A. Thus the dimension of the row space of A is equal to the rank of A.

As a corollary we get the following theorem.

Theorem. Let A be an m × n matrix. Then rank of A, the dimension of the row space of A, and the
dimension of the column space of A are all equal. In particular A and AT have the same rank.

To justify the last part note that the row space of A is the same as the column space of AT .

The above results can be used to give a different method of finding a basis of span{v1, . . . , vn}, given
the vectors v1, . . . vn of Rm. Namely, we make a matrix M whose rows are the vectors v1, . . . vn and
then find the matrix N in reduced row-echelon form, row equivalent to M . The non-zero rows of N form
a basis of span{v1, . . . , vn}. Note however that this basis is usually not a part of the vectors v1, . . . vn.
Moreover, expressing the vectors vi as linear combinations of the vectors in this basis is much harder
than in our first method.

There is however one peculiar feature of this method. Namely, no matter which spanning set we
choose for a given subspace we will always get the same basis using this method. In other words, we
have the following result.

Theorem. Consider two collections of vectors v1, . . . , vn and w1, . . . , wk in R
m. Let A be the

n × m matrix with rows v1, . . . , vn and let B be the k × m matrix with rows w1, . . . , wk. Then
span{v1, . . . , vn} = span{w1, . . . , wk} if and only if the reduced row-echelon forms row equivalent to A

and B have the same non-zero rows.

Indeed, if the reduced row-echelon forms row equivalent to A and B have the same non-zero rows then
these rows form a basis of both span{v1, . . . , vn} and span{w1, . . . , wk}, so these two subspaces are the
same.

Conversely, suppose that span{v1, . . . , vn} = span{w1, . . . , wk}. Consider the (n + k) × m matrix
M whose first n rows are v1, . . . , vn and the last k rows are w1, . . . , wk. Since wi = a1,iv1 + . . . an,ivn

for some numbers ai,1, . . . , ai,n, subtracting form the (n + i)-th row of M the first row multiplied by
a1,i, then the second row multiplied by a2,i,..., then the n-th row multiplied by an,i (we do this for
i = 1, 2, . . . , k) we get a matrix M1 row equivalent to M whose rows are v1, . . . , vn followed by k zero
rows. Now M1 is clearly row equivalent a matrix whose non-zero rows coincide with the non-zero rows
of the reduced row-echelon form of A. Thus the reduced row echelon forms of M and A have the same
non-zero rows. Now let N be the matrix with rows w1, . . . , wk followed by rows v1, . . . , vn. The same
reasoning as above shows that the the reduced row echelon forms of N and B have the same non-zero
rows. But N is obtained from M by permuting rows, so M and N are row-equivalent, hence they have
the same reduced row-echelon forms.
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Example. Let v1 = (1, 2, −1, 0, 3), v2 = (1, 1, −1, 2, 1), v3 = (2, 3, −2, 2, 4), v4 = (0, 1, 0, −2, 2), v5 =
(1, 1, 0, 0, 1). We will use our second method to find a basis of span{v1, . . . , v5}. We start with the
matrix whose rows are v1, . . . , v5:











1 2 −1 0 3
1 1 −1 2 1
2 3 −2 2 4
0 1 0 −2 2
1 1 0 0 1











.

We leave it as an exercise to see that the reduced row-echelon form row equivalent to this matrix is











1 0 0 2 −1
0 1 0 −2 2
0 0 1 −2 0
0 0 0 0 0
0 0 0 0 0











.

Thus the vectors (1, 0, 0, 2, −1), (0, 1, 0, −2, 2), (0, 0, 1, −2, 0) for a basis of span{v1, . . . , v5}.
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