MATH 304 - Linear Algebra

Given a linear transformation $T: V \longrightarrow W$, we often want to understand the two subspaces associated with T: the kernel of T and the image of T. We would like to know the dimensions of these subspaces and a basis (as we will see soon, choosing a basis of a vector space allows us to identify it with \mathbb{R}^n , so we can apply our techniques of computations with matrices to answer various questions about the vector space).

Suppose then that we are given a linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$. We know that $T = L_A$ for unique $m \times n$ matrix A. In the previous note we learned that the pivot columns of A form a basis of the image of L_A . Thus, the image of L_A (which is the same as the column space of A) had dimension equal to the rank of A. Our goal now is to gain a better understanding of the kernel of L_A . Clearly, the kernel of L_A is the set of solutions of the homogeneous system of linear equations with coefficient matrix A: Ax = 0. We already know how to solve this system and we now translate our method of solving this system into the language of bases and linear combinations. To this end, let P be a reduced row-echelon form of A. From P we know the free variables (which correspond to non-pivot columns of P) and how to express the dependent variables in terms of the free variables. Let s be the rank of A so we have n-s free variables. For each $1 \leq i \leq n-s$ there is unique solution $v_i = (v_{1,i}, v_{2,i}, \ldots, v_{n,i})$ corresponding to choosing 1 for the i-th free variable and 0 for all the other free variables. We claim that the vectors v_1, \ldots, v_{n-s} are linearly independent. Indeed, suppose that the *i*-th free variable has number m_i , so $1 \le m_1 < m_2 < ... < m_{n-s} \le n$. Suppose that $a_1v_1 + ... + a_{n-s}v_{n-s} = 0$. Note that the m_i -th coordinate of v_j is 0 when $j \neq i$ and it is 1 when j = i. Thus the m_i -th coordinate of $a_1v_1 + \ldots + a_{n-s}v_{n-s}$ is equal to a_i , so $a_i = 0$ for all i. This shows the linear independence of v_1, \ldots, v_{n-s} . Furthermore, we know that for any choice $x_{m_1} = t_1, \ldots, x_{m_{n-s}} = t_{n-s}$ of values of the free variables there is a unique solution $x = (x_1, x_2, \ldots, x_n)$ to our system with these values of the free variables. On the other hand, $t_1v_1 + \ldots + t_{n-s}v_{n-s}$ is a solution with m_i -th coordinate equal to t_i for $i = 1, \ldots, n-s$. It follows that $x = t_1 v_1 + \ldots + t_{n-s} v_{n-s}$. In other words, the vectors v_1, \ldots, v_{n-s} span the space of all solutions to Ax = 0. Putting all these together we get the following result.

Theorem. Let A be an $m \times n$ matrix. Consider the homogeneous system of linear equations Ax = 0. Let s be the rank of A. For each $1 \leq i \leq n-s$ let $v_i = (v_{1,i}, v_{2,i}, \ldots, v_{n,i})$ be the unique solution corresponding to choosing 1 for the *i*-th free variable and 0 for all the other free variables. Then $v_1, v_2, \ldots, v_{n-s}$ is a basis of the space of all solutions to the system, i.e. it is a basis of the kernel of the linear transformation L_A . In particular, the dimension of the kernel of L_A is equal to n-s:

$$\dim(\ker(L_A)) = n - \operatorname{rank}(A).$$

It is convenient to make the following definition.

Definition. Let A be an $m \times n$. The **nullity** of A, denoted by nul(A) is the dimension of the space of solutions to the homogeneous system of linear equations Ax = 0. In other words, $nul(A) = dim(ker(L_A))$.

As an immediate corollary we get the following important theorem.

Rank-nullity Theorem. Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Then

 $\dim(\ker(T)) + \dim(\operatorname{im}(T)) = n$

where im(T) denotes the image of T. Equivalently, for any $m \times n$ matrix A we have

 $\operatorname{rank}(A) + \operatorname{nul}(A) = n.$

Example. Find bases of the kernel and the image of the linear transformation L_A , where

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 3 & 2 & 3 \\ 3 & 2 & 3 & 2 & 3 & 2 & 3 \\ 2 & -1 & 2 & -1 & 2 & -1 & 2 \end{bmatrix}.$$

Solution. The reduced row-echelon form of this matrix is

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & -2 & -1 & -2 \\ 0 & 0 & 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The free variables of the system Ax = 0 are x_3, x_5, x_6 and x_7 and the system is equivalent to:

The choice $x_3 = 1, x_5 = x_6 = x_7 = 0$ yields the solution $v_1 = (-1, 0, 1, 0, 0, 0, 0)$. The choice $x_5 = 1, x_3 = x_6 = x_7 = 0$ yields the solution $v_2 = (-1, 2, 0, -2, 1, 0, 0)$. The choice $x_6 = 1, x_3 = x_5 = x_7 = 0$ yields the solution $v_3 = (0, 1, 0, -2, 0, 1, 0)$. The choice $x_7 = 1, x_3 = x_5 = x_6 = 0$ yields the solution $v_4 = (-1, 2, 0, -2, 0, 0, 1)$.

Thus the kernel of L_A has dimension 4 and a basis v_1, v_2, v_3, v_4 . Every vector in the kernel (i.e every solution of Ax = 0) can be expressed as $t_1v_1 + t_2v_2 + t_3v_3 + t_4v_4$ for unique choice of the parameters t_1, t_2, t_3, t_4 .

The image of L_A has dimension 3 and the pivot columns of A form a basis of the image, i.e. (1, 1, 3, 2), (1, 0, 2, -1), (1, 1, 2, -1) is a basis of $im(L_A)$.

From now on, when we ask to solve a system of linear equations Ax = b, we mean to express all solutions in terms of a basis of the space of solutions to the homogeneous system Ax = 0. Namely we find a basis $v_1, \ldots v_r$ of the space of solutions to Ax = 0 and we find a particular solution y to the system Ax = b. Then every solution to Ax = b can be expressed as $t_1v_1 + \ldots + t_rv_r + y$ for unique choice of the parameters t_1, \ldots, t_r . For y it is convenient to choose the solution corresponding to the choice of all the free variables to be 0.

Example. Solve the following system of linear equations:

Solution: The augmented matrix of this system is

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 3 & 2 & 3 & 2 \\ 3 & 2 & 3 & 2 & 3 & 2 & 3 & 2 \\ 2 & -1 & 2 & -1 & 2 & -1 & 2 & -1 \end{bmatrix}$$

The reduced row-echelon form of this matrix is

$$\begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -2 & -1 & -2 & -2 \\ 0 & 0 & 0 & 1 & 2 & 2 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The last column is not a pivot column so the system is consistent. The free variables are x_3 , x_5 , x_6 and x_7 and the system takes form:

We see that a basis of solutions to the associated homogeneous system is $\mathbf{v}_1 = (-1, 0, 1, 0, 0, 0, 0)$, $\mathbf{v}_2 = (-1, 2, 0, -2, 1, 0, 0)$, $\mathbf{v}_3 = (0, 1, 0, -2, 0, 1, 0)$, $\mathbf{v}_4 = (-1, 2, 0, -2, 0, 0, 1)$. A particular solution to the non-homogeneous system is obtained by setting $x_3 = x_5 = x_6 = x_7 = 0$. We get $\mathbf{y} = (0, -1, 0, 2, 0, 0, 0)$.

The general solution to the system can be written as:

$$(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (0, -1, 0, 2, 0, 0, 0) + t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + t_3 \mathbf{v}_3 + t_4 \mathbf{v}_4$$

where t_1, t_2, t_3, t_4 are independent parameters.