MATH 304 - Linear Algebra

Consider a finite dimensional vector space V. Let n = dim(V'). We know that any basis of V' consists
of n vectors. Let us choose one such basis by, b, ..., b,. We will denote this basis by B, so B will stand
for the list b1, b, ..., b, (note that there are many choices for a basis of V). Any vector v in V' can be
expressed in a unique way as a linear combination of vectors in B:

'U:Slb1+82b2+...+8nbn

for unique scalars sq, . ..,s,. The numbers s1, ..., s, are called the coordinates of v in the basis B.
This way each vector v can be identified with a string of numbers (s1,...,s,), and conversely any string
of numbers (s1,...,s,) corresponds to unique vector, namely s1b; + sobs + ... + s,b,,.

There is a very useful way of thinking about coordinates in terms of linear transformations. Consider
the linear transformation Kp : R™ — V given by Kp(z1,...,2,) = 1b1 + 22ba + ... + xpby,. Since B
is a basis, Kp is a bijection. The inverse transformation Kgl assigns to each vector v its coordinates
K3 (v) (considered as an element of R™). Conversely, if L : R — V is a linear transformation and a
bijection then the vectors by = L(eq), ..., b, = L(e,) form a basis B of V and L = Kp.

Definition. A linear transformation L : V' — W is called an isomorphism if it is a bijection. Two
vector spaces are called isomorphic if there is an isomorphism mapping one of the spaces onto the
other.

Thus, choosing a basis of a vector space V of dimension n is essentially the same as choosing an
isomorphism between V' and R”™. In particular, we have the following result:

Theorem. Two finite dimensional vector spaces are isomorphic if and only if they have the same
dimension.

Indeed, if by, ..., b, is a basis B of a vector space V and dy,ds,...,d, is a basis D of a vector space W
then the linear transformation K DKE1 : V. — W is an isomorphism.

We have seen some time ago that if W is a vector space and wy, ... w, are arbitrary vectors in W then
there is unique liner transformation 7' : R — W such that T'(e;) = w; for i = 1,2...,n. The following
rather simple but very useful observation extends this result to arbitrary vector spaces.

Theorem. Let by,bq,...,b, be a basis B of a vector space V. If wy,...,w, are arbitrary vectors in
a vector space W then there is a unique linear transformation T': V' — W such that T'(b;) = w; for
1=1,...,n.

Indeed, suppose first that T exists. For any v € V we can write v = z1b1 + ... + z,b,, and then
Tw)=o1T(b1) + ... +2,T(by) = v1w1 + ... + Tpwy.

Thus T is uniquely determined if it exists at all. To see that T exists, consider the linear transformation
L :R™ — W given by the formula L(x1,...,2,) = z1w; + ... + £yw,. The composition L o K;l maps
b; to w; for i =1,...,n, so it has the required property.

Suppose now that W is another vector space with a basis D : di,...,d,, and that T : V — W is a
linear transformation. Then KBlTK B is a linear transformation from R™ to R™, so it is equal to Ljs
for some m x n matrix M. The i-th column of M is K5'TKp(e;). Since Kp(e;) = b;, we have

Kp'TKg(e;) = K, 'T(b;) = coordinates of T(b;) in the basis D.

This prompts the following definition



Let T : V — W be a linear transformation. Let B be a basis by,...,b, of V and let D be a basis
di,...,dy, of W. The matrix of the linear transformation 7T in the bases B, D is the m x n
matrix pTg, whose i-th column consists of coordinates of the vector T'(b;) in the basis D.

The matrix pTp represents the linear transformation KBlTK B : R" — R™. In other words, we
have the following important fact.

S1
52
If s1,..., s, are the coordinates of a vector v € V' in the basis B, then pTp | are the coordinates

of T'(v) in the basis D.

An important special case of the above discussion is the case when V' = W and T = [ is the identity
transformation. The matrix plpg is called the transition matrix from the basis B to the basis D.

Let B be a basis by,...,b, of V and let D be another basis dy,...,d, of V. The transition matrix
from basis B to basis D is the n X n matrix pIg, whose i-th column consists of coordinates of the
vector b; in the basis D.

In particular, we have the following property which justifies the name ”transition matrix”:

S1
S2
If s1,...,s, are the coordinates of a vector v € V' in the basis B, then plpg | are the coordinates

of v in the basis D.

Suppose now that we have two linear transformations: 7: V — W and S : W — U. Let B be a
basis by, b2,...,b, of V, let D be a basis dy,ds,...,d, of W, and let G be a basis ¢1,...,gr of U. Te
matrix pTp represents the linear transformation KBlT Kp : R* — R™. Similarly, the matrix ¢Sp
represents the linear transformation K;'SKp : R™ — R¥. It follows that the product (¢Sp) - (pT5s)
represents the composition (KalSKD)(KngKB) : R® — R*. Using the associativity of composition
and the fact that KpK ' = I is the identity, we see that (K;'TKp)(K,'TKp) = K5'(ST)Kg. On
the other hand, the linear transformation K;'(ST)Kp is represented by the matrix ¢(ST)p, so we
have ¢(ST)g = (¢Sp) - (pTB). Thus we have the following important result.

Theorem. Let T : V — W and S : W — U be linear transformations. Let B be a basis
b1,b2,...,b, of V let D be a basis di,ds,...,d, of W, and let G be a basis ¢1,...,gx of U. Then
c¢(ST)p = (¢Sp) - (0TB).




Note that for any basis D of a vector space V' the matrix pIp is the identity matrix. In fact, if D consists
of vectors dy,...,d, then the coordinates of d; in the basis D are all zero except the i-th coordinate,
which is 1.

This observation paired with our last theorem tell us that for any two bases B, D of a vector space
V we have pIg pIp =p Ip = I. In other words:

Transition matrices are invertible and (pIg)~!' =5 Ip.

The following straightforward corollary of our last theorem allows us to compare matrices of the
same linear transformation in different bases.

Let T : V — W be a linear transformation. Let B and B; be two bases of V and let D and D; be
two bases of W. Then

—1
0. I, =p, Ip pTB BIB, =D, ID DIB B, I8

Example. Let P53 be the space of all polynomials of degree at most 3. It is a vector space of dimension
4. The polynomials 1, z, 2%, 2 for a basis B. Polynomials 1,7 — 1, (x — 1)?, (x — 1) for a basis D. The
function 7' : P3 — P3 defined by T(f) = f — 2(x — 1)f’ is a linear transformation (f’ is the derivative
of f).

a) Find the transition matrix from the basis B to the basis D.

b) Find the matrix g7 of T in the bases B of the domain and B of the codomain.
¢) Find the matrix pTp of T in the bases D of the domain and D of the codomain.
d) Find the matrix pTs of T in the bases B of the domain and D of the codomain.

Solution. a) In order to find the transition matrix plp we need to express each vector from basis B
as a linear combination of vectors from basis D. It is easier first to find the transition matrix gIp form
the basis D to the basis B, as this amounts to expressing vectors from basis D as linear combinations
of vectors from the basis B. After doing so, we will use the fact that pIg =p 151.

We have
1=1-140-240-224+0-2%, z—-1=-1-1+1-2+4+0-2240-23,
(r—1)2=1-1-2-2+1-2°40-2% (z—-1)P=-1-14+3-2+(-3) 22 +1-2°

Thus the transition matrix glp form the basis D to the basis B is the matrix

1 -1 1 -1
;|0 1-2 3
BID= 109 0 1 -3
0 0 0 1

In order to invert the matrix gIp we find the reduced row-echelon form of the matrix

1 -1 1-1{1000

0 1 -2 3:0100
0 0 1-3:0010
0 0 0 1:0001
which is equal to
10001111
01000123
00100013
0001:0001



Thus

plp =

[Nl
OO ==
O = N =
W W

Note that from the matrix plp we see that
1=1-140-(z—1D)+0-(z—1)24+0-(z—1)3 2=1-1+1-(z—1)+0-(x—1)2+0- (z—1)3,

P?=1-142-(z2-D)+1-(2—-1)?+0-(2—1? 2°=1-14+3- (2 - 1) +3-(x - 1)* +1- (x — 1)

b) In order to find the matrix 5Tz, we need to express each of T'(1),T(z), T(x?),T(x?) as linear com-
binations of vectors in the basis B. We have

T(1)=1-2(x—1)-0=1-140-2+0-22+0-2°, T(zx)=2—-2@x—1)-1=2-1+(-1)-2+0-22+0-2°,
T(2?) = 2*—2(x—1)22 = 0-1+4-24+(—3)-2*+0-2°, T(2*) = 2*-2(x—1)-32% = 0-14+0-2+6-2°+(—5)-z>.

It follows that the matrix g7’z is equal to

(S \V]

BIB =

OO O
o o

O w O
ol O OO

¢) In order to find the matrix pTp we can use the formula pTp =p Ip T Blp, since the matrices
plIp and plIp were computed in part a). We have

111171 2 0 071 -1 1-1 1000
Ty {0123 ]0-1 4 0fj0 123 _|0-1 0 0
00130 0-3 6[|0 0 1-3 0 0-3 0
ooo1lLlo o o-5llo 0o o0 1 0 0 0-5

We can also compute pTp directly (it turns out quite simple in this case). This amounts to expressing
each of T(1), T(z —1), T((x —1)?), T((x01)3) as linear combinations of vectors in the basis D. We have

T(1)=1-2(x—1)-0=1-140-(z=1)+0-(x = 1)2+0- (z —1)3,
Tx—1)=@x—-1)-2x—-1)-1=0-1+(-1)-(z—1)+0- (2 —1)*4+0- (x — 1),
T(z-—1D))=(x-1)%*-2x-1)-2x—1)=0-1+0-(z—1)+(=3)- (2 = 1)2+0- (z — 1),
T(xz-1)3)=(x—-12-22z-1)-3z-1)>=0-14+0-(x —1)+0- (x —1)* + (=5) - (z — 1),
It follows that

pIp =

co o
oo RO
ocl,ooo
o oo

¢) In order to find the matrix pTp we use the formula pTs =p I gT. Thus

1111771 2 0 0 1 1 1 1
ro_ 0123 101 4 0f_|0-1-2-3
PAB=19013[]0 0-3 6| |0 0-3-9

0001J]L0o 0 0 -5 0 0 0 -5

We could also use the formula pTp =p Tp plp which yields

1 0 0 0771111 1 1 1 1

7. |0-1 0 0/l0123| |0-1-2-3
PEB=10 0-3 0/|0013] |0 0-3-9
0 0 0-5JLl000O0T1 0 0 0 -5



Let us remark that the matrix p7'g tells us that
T(1)=1-140-(z—1)+0-(z—1)2+0- (z — 1)%,
T(2) =1-14 (~1)- (@ = 1) +0- (e — 1) +0- (x — 1)",
T(*)=1-14+(=2)- (= 1)+ (=3)- (- 1)2+0- (z — 1),
T(e%) =114 (=3) - (¢ — 1)+ (=9) - (& — 1)> + (=5) - (z — 1)".



