Consider a finite dimensional vector space V. Let $n=\operatorname{dim}(V)$. We know that any basis of V consists of n vectors. Let us choose one such basis $b_{1}, b_{2}, \ldots, b_{n}$. We will denote this basis by B, so B will stand for the list $b_{1}, b_{2}, \ldots, b_{n}$ (note that there are many choices for a basis of V). Any vector v in V can be expressed in a unique way as a linear combination of vectors in B :

$$
v=s_{1} b_{1}+s_{2} b_{2}+\ldots+s_{n} b_{n}
$$

for unique scalars s_{1}, \ldots, s_{n}. The numbers s_{1}, \ldots, s_{n} are called the coordinates of v in the basis B. This way each vector v can be identified with a string of numbers $\left(s_{1}, \ldots, s_{n}\right)$, and conversely any string of numbers $\left(s_{1}, \ldots, s_{n}\right)$ corresponds to unique vector, namely $s_{1} b_{1}+s_{2} b_{2}+\ldots+s_{n} b_{n}$.

There is a very useful way of thinking about coordinates in terms of linear transformations. Consider the linear transformation $K_{B}: \mathbb{R}^{n} \longrightarrow V$ given by $K_{B}\left(x_{1}, \ldots, x_{n}\right)=x_{1} b_{1}+x_{2} b_{2}+\ldots+x_{n} b_{n}$. Since B is a basis, K_{B} is a bijection. The inverse transformation K_{B}^{-1} assigns to each vector v its coordinates $K_{B}^{-1}(v)$ (considered as an element of \mathbb{R}^{n}). Conversely, if $L: \mathbb{R}^{n} \longrightarrow V$ is a linear transformation and a bijection then the vectors $b_{1}=L\left(e_{1}\right), \ldots, b_{n}=L\left(e_{n}\right)$ form a basis B of V and $L=K_{B}$.

Definition. A linear transformation $L: V \longrightarrow W$ is called an isomorphism if it is a bijection. Two vector spaces are called isomorphic if there is an isomorphism mapping one of the spaces onto the other.

Thus, choosing a basis of a vector space V of dimension n is essentially the same as choosing an isomorphism between V and \mathbb{R}^{n}. In particular, we have the following result:

Theorem. Two finite dimensional vector spaces are isomorphic if and only if they have the same dimension.

Indeed, if b_{1}, \ldots, b_{n} is a basis B of a vector space V and $d_{1}, d_{2}, \ldots, d_{n}$ is a basis D of a vector space W then the linear transformation $K_{D} K_{B}^{-1}: V \longrightarrow W$ is an isomorphism.

We have seen some time ago that if W is a vector space and $w_{1}, \ldots w_{n}$ are arbitrary vectors in W then there is unique liner transformation $T: \mathbb{R}^{n} \longrightarrow W$ such that $T\left(e_{i}\right)=w_{i}$ for $i=1,2 \ldots, n$. The following rather simple but very useful observation extends this result to arbitrary vector spaces.

Theorem. Let $b_{1}, b_{2}, \ldots, b_{n}$ be a basis B of a vector space V. If w_{1}, \ldots, w_{n} are arbitrary vectors in a vector space W then there is a unique linear transformation $T: V \longrightarrow W$ such that $T\left(b_{i}\right)=w_{i}$ for $i=1, \ldots, n$.

Indeed, suppose first that T exists. For any $v \in V$ we can write $v=x_{1} b_{1}+\ldots+x_{n} b_{n}$ and then

$$
T(v)=x_{1} T\left(b_{1}\right)+\ldots+x_{n} T\left(b_{n}\right)=x_{1} w_{1}+\ldots+x_{n} w_{n}
$$

Thus T is uniquely determined if it exists at all. To see that T exists, consider the linear transformation $L: \mathbb{R}^{n} \longrightarrow W$ given by the formula $L\left(x_{1}, \ldots, x_{n}\right)=x_{1} w_{1}+\ldots+x_{n} w_{n}$. The composition $L \circ K_{B}^{-1}$ maps b_{i} to w_{i} for $i=1, \ldots, n$, so it has the required property.

Suppose now that W is another vector space with a basis $D: d_{1}, \ldots, d_{m}$ and that $T: V \longrightarrow W$ is a linear transformation. Then $K_{D}^{-1} T K_{B}$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}, so it is equal to L_{M} for some $m \times n$ matrix M. The i-th column of M is $K_{D}^{-1} T K_{B}\left(e_{i}\right)$. Since $K_{B}\left(e_{i}\right)=b_{i}$, we have

$$
K_{D}^{-1} T K_{B}\left(e_{i}\right)=K_{D}^{-1} T\left(b_{i}\right)=\text { coordinates of } T\left(b_{i}\right) \text { in the basis } D
$$

This prompts the following definition

Let $T: V \longrightarrow W$ be a linear transformation. Let B be a basis b_{1}, \ldots, b_{n} of V and let D be a basis d_{1}, \ldots, d_{m} of W. The matrix of the linear transformation T in the bases B, D is the $m \times n$ matrix ${ }_{D} T_{B}$, whose i-th column consists of coordinates of the vector $T\left(b_{i}\right)$ in the basis D.

The matrix ${ }_{D} T_{B}$ represents the linear transformation $K_{D}^{-1} T K_{B}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. In other words, we have the following important fact.

If s_{1}, \ldots, s_{n} are the coordinates of a vector $v \in V$ in the basis B, then ${ }_{D} T_{B}\left[\begin{array}{r}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{array}\right]$ are the coordinates of $T(v)$ in the basis D.

An important special case of the above discussion is the case when $V=W$ and $T=I$ is the identity transformation. The matrix ${ }_{D} I_{B}$ is called the transition matrix from the basis B to the basis D.

Let B be a basis b_{1}, \ldots, b_{n} of V and let D be another basis d_{1}, \ldots, d_{n} of V. The transition matrix from basis B to basis D is the $n \times n$ matrix ${ }_{D} I_{B}$, whose i-th column consists of coordinates of the vector b_{i} in the basis D.

In particular, we have the following property which justifies the name "transition matrix":

If s_{1}, \ldots, s_{n} are the coordinates of a vector $v \in V$ in the basis B, then ${ }_{D} I_{B}\left[\begin{array}{r}s_{1} \\ s_{2} \\ \vdots \\ s_{n}\end{array}\right]$ are the coordinates of v in the basis D.

Suppose now that we have two linear transformations: $T: V \longrightarrow W$ and $S: W \longrightarrow U$. Let B be a basis $b_{1}, b_{2}, \ldots, b_{n}$ of V, let D be a basis $d_{1}, d_{2}, \ldots, d_{n}$ of W, and let G be a basis g_{1}, \ldots, g_{k} of U. Te matrix ${ }_{D} T_{B}$ represents the linear transformation $K_{D}^{-1} T K_{B}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. Similarly, the matrix ${ }_{G} S_{D}$ represents the linear transformation $K_{G}^{-1} S K_{D}: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{k}$. It follows that the product $\left({ }_{G} S_{D}\right) \cdot\left({ }_{D} T_{B}\right)$ represents the composition $\left(K_{G}^{-1} S K_{D}\right)\left(K_{D}^{-1} T K_{B}\right): \mathbb{R}^{n} \longrightarrow \mathbb{R}^{k}$. Using the associativity of composition and the fact that $K_{D} K_{D}^{-1}=I$ is the identity, we see that $\left(K_{G}^{-1} T K_{D}\right)\left(K_{D}^{-1} T K_{B}\right)=K_{G}^{-1}(S T) K_{B}$. On the other hand, the linear transformation $K_{G}^{-1}(S T) K_{B}$ is represented by the matrix ${ }_{G}(S T)_{B}$, so we have ${ }_{G}(S T)_{B}=\left({ }_{G} S_{D}\right) \cdot\left({ }_{D} T_{B}\right)$. Thus we have the following important result.

Theorem. Let $T: V \longrightarrow W$ and $S: W \longrightarrow U$ be linear transformations. Let B be a basis $b_{1}, b_{2}, \ldots, b_{n}$ of V, let D be a basis $d_{1}, d_{2}, \ldots, d_{n}$ of W, and let G be a basis g_{1}, \ldots, g_{k} of U. Then ${ }_{G}(S T)_{B}=\left({ }_{G} S_{D}\right) \cdot\left({ }_{D} T_{B}\right)$.

Note that for any basis D of a vector space V the matrix ${ }_{D} I_{D}$ is the identity matrix. In fact, if D consists of vectors d_{1}, \ldots, d_{n} then the coordinates of d_{i} in the basis D are all zero except the i-th coordinate, which is 1 .

This observation paired with our last theorem tell us that for any two bases B, D of a vector space V we have ${ }_{D} I_{B}{ }_{B} I_{D}={ }_{D} I_{D}=I$. In other words:

Transition matrices are invertible and $\left({ }_{D} I_{B}\right)^{-1}={ }_{B} I_{D}$.

The following straightforward corollary of our last theorem allows us to compare matrices of the same linear transformation in different bases.

Let $T: V \longrightarrow W$ be a linear transformation. Let B and B_{1} be two bases of V and let D and D_{1} be two bases of W. Then

$$
{ }_{D_{1}} T_{B_{1}}={ }_{D_{1}} I_{D}{ }_{D} T_{B}{ }_{B} I_{B_{1}}={ }_{D_{1}} I_{D}{ }_{D} T_{B B_{1}} I_{B}^{-1}
$$

Example. Let \mathbb{P}_{3} be the space of all polynomials of degree at most 3. It is a vector space of dimension 4. The polynomials $1, x, x^{2}, x^{3}$ for a basis B. Polynomials $1, x-1,(x-1)^{2},(x-1)^{3}$ for a basis D. The function $T: \mathbb{P}_{3} \longrightarrow \mathbb{P}_{3}$ defined by $T(f)=f-2(x-1) f^{\prime}$ is a linear transformation $\left(f^{\prime}\right.$ is the derivative of f).
a) Find the transition matrix from the basis B to the basis D.
b) Find the matrix ${ }_{B} T_{B}$ of T in the bases B of the domain and B of the codomain.
c) Find the matrix ${ }_{D} T_{D}$ of T in the bases D of the domain and D of the codomain.
d) Find the matrix ${ }_{D} T_{B}$ of T in the bases B of the domain and D of the codomain.

Solution. a) In order to find the transition matrix ${ }_{D} I_{B}$ we need to express each vector from basis B as a linear combination of vectors from basis D. It is easier first to find the transition matrix ${ }_{B} I_{D}$ form the basis D to the basis B, as this amounts to expressing vectors from basis D as linear combinations of vectors from the basis B. After doing so, we will use the fact that ${ }_{D} I_{B}={ }_{B} I_{D}^{-1}$.

We have

$$
\begin{gathered}
1=1 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}, \quad x-1=-1 \cdot 1+1 \cdot x+0 \cdot x^{2}+0 \cdot x^{3} \\
(x-1)^{2}=1 \cdot 1-2 \cdot x+1 \cdot x^{2}+0 \cdot x^{3}, \quad(x-1)^{3}=-1 \cdot 1+3 \cdot x+(-3) \cdot x^{2}+1 \cdot x^{3} .
\end{gathered}
$$

Thus the transition matrix ${ }_{B} I_{D}$ form the basis D to the basis B is the matrix

$$
{ }_{B} I_{D}=\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 1 & -2 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

In order to invert the matrix ${ }_{B} I_{D}$ we find the reduced row-echelon form of the matrix

$$
\left[\begin{array}{rrrr:rrrr}
1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 3 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

which is equal to

$$
\left[\begin{array}{llll:llll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Thus

$$
{ }_{D} I_{B}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Note that from the matrix ${ }_{D} I_{B}$ we see that

$$
\begin{aligned}
& 1=1 \cdot 1+0 \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \quad x=1 \cdot 1+1 \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
& x^{2}=1 \cdot 1+2 \cdot(x-1)+1 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, x^{3}=1 \cdot 1+3 \cdot(x-1)+3 \cdot(x-1)^{2}+1 \cdot(x-1)^{3} .
\end{aligned}
$$

b) In order to find the matrix ${ }_{B} T_{B}$, we need to express each of $T(1), T(x), T\left(x^{2}\right), T\left(x^{3}\right)$ as linear combinations of vectors in the basis B. We have
$T(1)=1-2(x-1) \cdot 0=1 \cdot 1+0 \cdot x+0 \cdot x^{2}+0 \cdot x^{3}, \quad T(x)=x-2(x-1) \cdot 1=2 \cdot 1+(-1) \cdot x+0 \cdot x^{2}+0 \cdot x^{3}$, $T\left(x^{2}\right)=x^{2}-2(x-1) \cdot 2 x=0 \cdot 1+4 \cdot x+(-3) \cdot x^{2}+0 \cdot x^{3}, \quad T\left(x^{3}\right)=x^{3}-2(x-1) \cdot 3 x^{2}=0 \cdot 1+0 \cdot x+6 \cdot x^{2}+(-5) \cdot x^{3}$.
It follows that the matrix ${ }_{B} T_{B}$ is equal to

$$
{ }_{B} T_{B}=\left[\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & -3 & 6 \\
0 & 0 & 0 & -5
\end{array}\right] .
$$

c) In order to find the matrix ${ }_{D} T_{D}$ we can use the formula ${ }_{D} T_{D}={ }_{D} I_{B}{ }_{B} T_{B}{ }_{B} I_{D}$, since the matrices ${ }_{D} I_{B}$ and ${ }_{B} I_{D}$ were computed in part a). We have

$$
{ }_{D} T_{D}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & -3 & 6 \\
0 & 0 & 0 & -5
\end{array}\right]\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
0 & 1 & -2 & 3 \\
0 & 0 & 1 & -3 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -5
\end{array}\right]
$$

We can also compute ${ }_{D} T_{D}$ directly (it turns out quite simple in this case). This amounts to expressing each of $T(1), T(x-1), T\left((x-1)^{2}\right), T\left((x 01)^{3}\right)$ as linear combinations of vectors in the basis D. We have

$$
\begin{gathered}
T(1)=1-2(x-1) \cdot 0=1 \cdot 1+0 \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T(x-1)=(x-1)-2(x-1) \cdot 1=0 \cdot 1+(-1) \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T\left((x-1)^{2}\right)=(x-1)^{2}-2(x-1) \cdot 2(x-1)=0 \cdot 1+0 \cdot(x-1)+(-3) \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T\left((x-1)^{3}\right)=(x-1)^{3}-2(x-1) \cdot 3(x-1)^{2}=0 \cdot 1+0 \cdot(x-1)+0 \cdot(x-1)^{2}+(-5) \cdot(x-1)^{3} .
\end{gathered}
$$

It follows that

$$
{ }_{D} T_{D}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -5
\end{array}\right]
$$

c) In order to find the matrix ${ }_{D} T_{B}$ we use the formula ${ }_{D} T_{B}={ }_{D} I_{B}{ }_{B} T_{B}$. Thus

$$
{ }_{D} T_{B}=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
1 & 2 & 0 & 0 \\
0 & -1 & 4 & 0 \\
0 & 0 & -3 & 6 \\
0 & 0 & 0 & -5
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & -3 \\
0 & 0 & -3 & -9 \\
0 & 0 & 0 & -5
\end{array}\right] .
$$

We could also use the formula ${ }_{D} T_{B}={ }_{D} T_{D}{ }_{D} I_{B}$ which yields

$$
{ }_{D} T_{B}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -5
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
0 & -1 & -2 & -3 \\
0 & 0 & -3 & -9 \\
0 & 0 & 0 & -5
\end{array}\right]
$$

Let us remark that the matrix ${ }_{D} T_{B}$ tells us that

$$
\begin{gathered}
T(1)=1 \cdot 1+0 \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T(x)=1 \cdot 1+(-1) \cdot(x-1)+0 \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T\left(x^{2}\right)=1 \cdot 1+(-2) \cdot(x-1)+(-3) \cdot(x-1)^{2}+0 \cdot(x-1)^{3}, \\
T\left(x^{3}\right)=1 \cdot 1+(-3) \cdot(x-1)+(-9) \cdot(x-1)^{2}+(-5) \cdot(x-1)^{3} .
\end{gathered}
$$

