
MATH 304 - Linear Algebra

Consider a finite dimensional vector space V . Let n = dim(V ). Many questions in mathematics
and its applications often lead to a linear transformation T : V −→ V . The goal is to get a good
understanding of T . For example, one could want to understand the iterations T, T ◦ T, T ◦ T ◦ T, . . . of
T . We will write T k for the composition of T with itself k-times. For example, T 4 = T ◦ T ◦ T ◦ T . It
is convenient to write T 0 for the identity transformation.

Choosing a basis B of V allows us to identify T with its matrix BTB (note that we use the same
basis for both the domain V and the codomain V ). The linear transformation T k is then represented
by the matrix (BTB)k, i.e. BT k

B = (BTB)k. However, it is usually quite hard to understand high powers
of a given matrix, unless the matrix has a particularly simple form. For example, it is easy to raise a
diagonal matrix to any power:
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It is therefore natural to ask for a basis of V in which the matrix of T is as simple as possible. For
example, can we always choose a basis in which the matrix of T is diagonal? Unfortunately, we will see
that this is not possible in general, though there are many cases when it is possible. It is our goal to
develop techniques which would allow us to answer such questions.

If D is another basis of V then the matrix DTD of T in the basis D is given by

DTD =D IB BTB DI−1

B

where DIB is the transition matrix from basis B to basis D. Note that any invertible n × n matrix
M = [mi,j ] is equal to DIB for some basis D of V . Indeed, let M−1 = [ki,j ]. If B consists of vectors
v1, . . . , vn then let wj = k1,jv1 + k2,jv2 + . . . + kn,jvn for j = 1, . . . , n. The vectors w1, w2, . . . , wn form
a basis D of V and the transition matrix from the basis D to the basis B is M−1 (recall that the j-th
column of BID consists of coordinates of wj in the basis B). Thus M =D IB . It follows that finding a
basis D in which the matrix of T is particularly simple is equivalent to finding an invertible matrix M
such that M(BTB)M−1 is particularly simple. This motivates the following definition.

Definition. Two n×n matrices A1, A2 are called similar if A2 = MA1M−1 for some invertible n×n
matrix M .

Note that if A1, A2 are similar then A2, A1 are similar as well. Clearly any matrix is similar to itself
and if A1 is similar to A2 and A2 is similar to A3 then A1 is similar to A3. Indeed, if A2 = MA1M−1

and A3 = NA2N−1 then A1 = (M−1)A2(M−1)−1 and A3 = (NM)A1(NM)−1.

Returning to our discussion of T , we see that a matrix A represents T in some basis if and only if it
is similar to BTB. Our problem can be now stated as: among all matrices similar to a given matrix
find one as simple as possible. Of course, this is not a very precise question as we do not specify what
”simple” means. Getting a diagonal matrix would be ideal though (but, as we have already said, this is
not always possible). We then introduce the following definition.

Definition. An n × n matrix A is called diagonalizable if it is simialr to a diagonal matrix, i.e. if
MA1M−1 is diagonal for some invertible n × n matrix M . A linear transformation T : V −→ V is
called diagonalizable if its matrix in some (any) basis is diagonalizable, i.e. if there is a basis of V in
which the matrix of V is diagonal.
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Suppose w1, ..., wn is a basis D of V in which the first column of DTD is of the form (λ, 0, . . . , 0). Recall
that the first column provides coordinates of T (w1) in the basis D. This means that T (w1) = λw1.
Vectors with this property are therefore fundamental for the question of diagonalizability of T . This
prompts the following definition.

Definition. Let T : V −→ V be a linear transformation. A scalar λ is called an eigenvalue of T if
there is a non-zero vector v ∈ V such that T (v) = λv. Any such v is called an eigenvector of T
corresponding to eigenvalue λ.

If A is an n × n matrix then eigenvalues and eigenvectors of A are, by definition, the eigenvalues
and eigenvectors of the linear transformation LA : Rn −→ R

n.

Note that λ is an eigenvalue of a matrix A if and only if the homogeneous system of equations
(A − λI)x = 0 has a non-zero solution. Recall that an n × n matrix is invertible iff it has rank n. We
say that an n × n matrix is singular if it is not invertible. Thus

λ is an eigenvalue of an n × n matrix A if and only the rank of the matrix A − λI is smaller than n,
i.e. if and only if A − λI is singular.

We have the following useful observation.

λ is an eigenvalue of the linear transformation T : V −→ V if an only if λ is an eigenvalue for the
matrix BTB of T in some (any) basis of V . A vector w ∈ V is an eigenvector of T corresponding to λ
if and only if the vector of coordinates of w in the basis B is an eigenvector of the matrix BTB .

Indeed, if B consists of vectors v1, . . . , vn and if w = t1v1 + . . . tnvn then T (w) = λw if and only if

BTBy = λy, where y = (t1, . . . , tn) is the vector of coordinates of w in the basis B.
In particular we have the following result.

Similar matrices have the same eigenvalues.

It is also easy to justify the last observation directly: if Ax = λx and M is invertible then
(MAM−1)(Mx) = MAx = M(Ax) = M(λx) = λ(Mx). In other words, if x is an eigenvector of
A corresponding to λ them Mx is an eigenvector of MAM−1 corresponding to λ.

We can state a criterion for a linear transformation to be diagonalizable.

A linear transformation T : V −→ V is diagonalizable if an only if V has a basis consisting of eigen-
vectors of T .

Indeed, if v1, v2, . . . , vn is a basis B of V consisting of eigenvectors, then there exist scalars λi such
that T (vi) = λivi, i = 1, . . . , n. It follows that

BTB =











λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn
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






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is diagonal, so T is diagonalizable.
Conversely, if T is diagonalizable, then there is a basis D of V such that

DTD =




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



λ1 0 . . . 0
0 λ2 . . . 0
...

...
...

...
0 0 . . . λn











If D consists of vectors w1, . . . , wn then we have T (wi) = λiwi so D consists of eigenvalues of T .
The following simple observation is very useful.

Proposition. Let T : V −→ V be a linear transformation and let λ be a scalar. The set

V (λ) = {v ∈ V : T (v) = λv}

is a subspace of V called the eigenspace of T corresponding to λ.

Indeed, clearly T (0) = 0 = λ · 0, so 0 ∈ V (λ). If u, w ∈ V (λ) then T (u) = λu and T (w) = λw. Thus

T (u + w) = T (u) + T (w) = λu + λw = λ(u + v)

and
T (au) = aT (u) = a(λu) = λ(au)

for any scalar a. It follows that both u + w and au are in V (λ). This proves that V (λ) is a subspace of
V .

It is clear now that λ is an eigenvalue of T if and only if the eigenspace of T corresponding to λ contains
a non-zero vector, i.e. if and only if dim(V (λ)) > 0.

We end this note with the following important result.

Theorem. Let λ1, . . . , λs be pairwise distinct eigenvalues of a linear transformation T . Let ui be an
eigenvector corresponding to λi. The vectors u1, . . . , us are linearly independent.

Indeed, suppose they are not independent. Then there is t < s such that u1, . . . , ut are linearly indepen-
dent and ut+1 = a1u1+. . .+atut for some scalars at. Applying T we get T (ut+1) = T (a1u1+. . .+atut) =
a1T (u1) + . . . + atT (ut). Since T (ui) = λiui, we have

λt+1ut+1 = a1λ1u1 + . . . + atλtut.

Multiplying the equality ut+1 = a1u1 + . . . + atut by λt+1 we get

λt+1ut+1 = a1λt+1u1 + . . . + atλt+1ut.

It follows that
0 = a1(λ1 − λt+1)u1 + . . . + at(λt − λt+1)ut.

Since u1, . . . , ut are linearly independent, we must have

0 = a1(λ1 − λt+1) = a2(λ2 − λt+1) = . . . = at(λt − λt+1).

Since λ1, . . . , λs be pairwise distinct, this implies that a1 = . . . = at = 0. However this means that
ut+1 = a1u1 + . . . + atut = 0, which is false. We see that our assumption that u1, . . . , us are linearly
dependent leads to a contradiction. Thus u1, . . . , us are linearly independent

The last theorem has several important corollaries.

3



Corollary. Let λ1, . . . , λs be pairwise distinct eigenvalues of a linear transformation T . Let
wi,1, wi,2, . . . , wi,di

be a basis of V (λi), i = 1, . . . , s. Then the sequence

w1,1, . . . , w1,d1
, w2,1, . . . , w2,d2

, . . . , ws,1, . . . , ws,ds

is linearly independent.

Indeed suppose that

a1,1w1,1 + . . . + a1,d1
w1,d1

+ a2,1w2,1 + . . . + a2,d2
w2,d2

+ . . . + +as,1ws,1 + . . . + as,ds
ws,ds

= 0.

Let ui = ai,1wi,1 + . . . + ai,di
wi,di

. Thus u1 + u2 + . . . + us = 0. Note that ui ∈ V (λi). By our last
theorem, the non-zero vectors among u1, . . . us are linearly independent. This means that all ui must
be actually zero. Since wi,1, wi,2, . . . , wi,di

is a basis of V (λi), we have ai,1 = . . . = ai,di
= 0.

Corollary. Let λ1, . . . , λs be pairwise distinct eigenvalues of a linear transformation T . Then

dim(V (λ1)) + . . . + dim(V (λs)) ≤ dim(V ).

Corollary. Let T : V −→ V be a linear transformation. Then T has at most dim(V ) different
eigenvalues. In particular, an n × n matrix has at most n distinct eigenvalues.

Corollary. Let T : V −→ V be a linear transformation. Let λ1, . . . , λs be all the eigenvalues of T .
Then T is diagonalizable if and only if

dim(V (λ1)) + . . . + dim(V (λs)) = dim(V ).

In particular, if T has dim(V ) distinct eigenvalues, then T is diagonalizable.

Example 1. Consider the space P3 of polynomials of degree at most 3. Let T : P3 −→ P3 be the
differentiation: T (f) = f ′. λ is an eigenvalue of T if f ′ = λf for some non-zero polynomial f . If λ 6= 0
then f ′ has degree lower than λf , hence we can not have f ′ = λf . If λ = 0 then f ′ = 0, so f is constant.
We see that 0 is the only eigenvalue of T and the corresponding eigenspace has dimension 1 (it consists
of constant polynomials). Thus T is not diagonalizable. Since T (1) = 0, T (x) = 1, T (x2) = 2x and
T (x3) = 3x2, the matrix of T in the basis 1, x, x2, x3 is







0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0






.

Thus this matrix is not diagonalizable.

Example 2. Consider the matrix

A =





4 0 1
2 3 2
1 0 4





and let T = LA : R3 −→ R
3 be the corresponding linear transformation. Thus A is the matrix of T in

the standard basis. We claim that 3 and 5 are eigenvalues of T . Indeed,

A − 3I =





4 0 1
2 3 2
1 0 4



 −





3 0 0
0 3 0
0 0 3



 =





1 0 1
2 0 2
1 0 1



 .
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We see that A − 3I is singular, so 3 is indeed an eigenvalue of A. The corresponding eigenspace consists
of solution to (A − 3I)x = 0, i.e.





1 0 1
2 0 2
1 0 1









x1

x2

x3



 =





0
0
0





The reduced row echelon form of





1 0 1
2 0 2
1 0 1



 is





1 0 1
0 0 0
0 0 0



. Thus space of solutions is two dimensional

(we have 2 free variables x2 and x3) and a basis of solutions is (0, 1, 0), (−1, 0, 1).
Similarly, we have

A − 5I =





4 0 1
2 3 2
1 0 4



 −





5 0 0
0 5 0
0 0 5



 =





−1 0 1
2 −2 2
1 0 −1



 .

We see that A − 3I is singular, so 5 is also an eigenvalue of A. The corresponding eigenspace consists
of solution to (A − 5I)x = 0, i.e.





−1 0 1
2 −2 2
1 0 −1









x1

x2

x3



 =





0
0
0





The reduced row echelon form of





−1 0 1
2 −2 2
1 0 −1



 is





1 0 −1
0 1 −2
0 0 0



. Thus space of solutions is one dimen-

sional (we have 1 free variable x3) and a basis of solutions is (1, 2, 1).
According our theorem, the vectors (0, 1, 0), (−1, 0, 1), (1, 2, 1) are linearly independent. Thus they

form a basis B of R3 which consists of eigenvectors. Thus T is diagonalizable. The transition matrix EIB

from the basis B to the standard basis E is





0 −1 1
1 0 2
0 1 1



. The transition matrix BIE from the standard

basis to the basis B is the inverse of





0 −1 1
1 0 2
0 1 1



. A simple computation yields





0 −1 1
1 0 2
0 1 1





−1

=







−1 1 −1

−1/2 0 1/2

1/2 0 1/2






. Thus







−1 1 −1

−1/2 0 1/2

1/2 0 1/2











4 0 1
2 3 2
1 0 4









0 −1 1
1 0 2
0 1 1



 =





3 0 0
0 3 0
0 0 5



 .

Thus A is diagonalizable and it is similar to the diagonal matrix





3 0 0
0 3 0
0 0 5



.

Example 3. Suppose that we have a particle which can be at one of two different states 1 and 2. Every
second the particle in state i can change to the other state j with probability pi,j or it can stay at the
state i with probability pi,i = 1 − pi,j . We would like to know the probability pi,j(n) that a particle
originally in state i is in state j after n seconds. It is a nice exercise to see that the answer is given in
terms of the 2 × 2 matrix P = [pi,j ]. Namely pi,j(n) is simply the (i, j) entry of the matrix P n.

To make things more concrete, suppose that p1,1 = 1/3 and p2,2 = 1/2 so that the matrix P is




1/3 2/3

1/2 1/2



. We consider P as the matrix of a linear transformation T = LP : R
2 −→ R

2 in the
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standard basis E of R2. λ is an eigenvalue of P if and only if the matrix





1

3
− λ 2

3

1

2

1

2
− λ



 is singular.

Performing on this matrix the row operations S1,2, D1(2), D2(3), and E2,1(3λ − 1) we get

[

1 1 − 2λ

0 2 + (3λ − 1)(1 − 2λ)

]

.

The last matrix is singular if and only if 2 + (3λ − 1)(1 − 2λ) = 0, i.e. 6λ2 − 5λ − 1 = 0. The solutions to
this quadratic equations are λ = 1 and λ = −1/6. Thus 1 and −1/6 are eigenvalues of the matrix P . We
now easily find that v1 = (1, 1) is an eigenvector corresponding to the eigenvalue 1 (so T (1, 1) = (1, 1))
and v2 = (−4, 3) is an eigenvector corresponding to the eigenvalue −1/6 (so T (−4, 3) = −1

6
(−4, 3)).

It follows that v1, v2 is a basis B of R
2 consisting of eigenvectors of T . Thus P is diagonalizable:

CPC−1 =

[

1 0

0 −1/6

]

, where C is the transition matrix from the standard basis E to the basis B. Now

it is easy to get C−1, which is the transition matrix from B to E, so C−1 =

[

1 −4
1 3

]

. Inverting this

matrix, we get

C =





3

7

4

7

−1

7

1

7



 .

Note that for any matrix A, any invertible matrix M , and any positive integer k we have (M−1AM)k =

M−1AkM . Since P = C−1

[

1 0

0 −1/6

]

C, we get

P k = C−1

[

1 0

0 −1

6

]k

C =

[

1 −4
1 3

]

[

1 0

0 ( −1

6
)k

]





3

7

4

7

−1

7

1

7



 =





3

7
+ 4

7
( −1

6
)k 4

7
− 4

7
( −1

6
)k

3

7
− 3

7
( −1

6
)k 4

7
+ 3

7
( −1

6
)k





As a consequence of our discussion, note that for k very large the probability that the particle ends up
in state 1 practically does not depend on where it started and is about 3/7. The probability that the
particle ends up in state 2 is about 4/7.

Exercise. Solve the above problem in general.
Hint. The cases when both p1,1 and p2,2 are 0 or both are 1 requires separate treatment, but is easy.
All other cases are handled by the same method as in our example. Just note that the vectors v1 = (1, 1)
and v2 = (−p1,2, p2,1) are eigenvectors of P .
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