MATH 304 - Linear Algebra
Consider a system of m linear equations with n unknowns:
1121 + a1222 + -+ a1 pTy = by
2121 + a22%2 + -+ a2 Ty = b2
Gm, 121 + A, 202 + -+ Um,nTn = bm

Here xy, ..., z, are the unknowns, a; ; and b; are numbers. We associate to such a system two matrices,
the coefficient matrix A and the augmented matrix B:

ayi Q12 -.. Qg a1 ar2 ... ainib

G271 Q22 ... Q2n, azi @G22 ... G2, bo
A= B = :

Um,1 Gm2 ... Amn am,1 Gm2 ... Amn ibm

(the vertical lione separating the last column of B is just for our convenience).

Our goal is to solve systems of linear equations. We call system consistent if it has at least one
solution, otherwise - when there are no solutions - we call it inconsistent.

When we attempt to solve such a system of equations, the following three types of manipulations
are useful: add a multiple of one equation to another equation; switch two of the equations; multiply
an equation by a non-zero constant. Fach such manipulation produces a new system of equations,
however both systems have the same sets of solutions (clearly any solution to the original system is
also a solution to the new system; since the manipulations are reversible, the converse is also true). It
is straightforward to see that the coefficient and augmented matrices of the new system are obtained
from the corresponding matrices of the original system by performing an elementary row operation (this
observation is one of the motivations for considering matrices and elementary row operations). We say
that two systems of linear equations (in the same unknowns) are equivalent if they have the same sets
of solutions. Our discussion so far justifies the following result:

Proposition. If two systems of linear equations (with the same number of unknowns) have row equiv-
alent augmented matrices then the systems are equivalent.

Remark. The converse is also true for consistent systems, i.e. equivalent consistent systems have
row equivalent augmented matrices (this makes sense only if both systems have the same number of
equations; we can always assume this by adding several ”obvious” equations: 0-z1+0-2o+...40-x,, = 0).

Consider now a system of m linear equations with n unknowns as above. Let B be the augmented
matrix of this system. We know that B is row equivalent to a matrix D in a reduced row-echelon form.
According to our proposition above, solving our original system is equivalent to solving the system with
augmented matrix D. It turns out that systems with augmented matrix in a reduced row-echelon form
are easy to solve.

Suppose first that the last column of D is a pivot column. This means that the last non-zero row of
D is 0,0,...,0,1. The equation corresponding to this row is 0-z; +0-22+ ...+ 0-x, = 1 and this
equation clearly has no solutions. It follows that the system is inconsistent (i.e. has no solutions).

Suppose now that the last column of D is not a pivot column but all other columns are pivot. Then
D has the following form

10 0...00wu
01 0...00u
D=[00 .. 0 1iu,
00 0 00i0
(00 0 00! 0]

(there may be no zero rows at all). The corresponding system of equations has evidently unique solution
Tl =ULy.- 3Ty = Up



Finally, suppose that the last column of D is not a pivot column and there are other non-pivot
columns. It is convenient to introduce the following terminology: unknowns corresponding to non-pivot
columns are called free variables, and the remaining unknowns are called dependent variables. It is
not hard to see that each non-zero row of D yields an equation which expresses one of the dependent
variables in terms of the free variables. It follows that we can specify arbitrary values to the free variables
and then uniquely compute the dependent variables yielding a solution to our system. Thus, the system
has infinitely many solutions parametrized by ¢ parameters, where ¢ is the number of non pivot columns
of D, not counting the last column (i.e. ¢ is the number of non-pivot columns of the coefficient
matrix, i.e. t =n — rank(D)). Let us illustrate this by the following example:

Suppose that D is the following matrix:

40 —2
_ 50 3
b= 01 2
00 Of

120 -1 1
001 3 2
000 O 3
000 O 0
The first, third, and sixth columns are pivot columns (and the last column is not a pivot column),
so x1,x3,xg are the dependent variables and xo, x4, x5, x7 are the free variables. The first equation is

T1 + 229 — x4 + dxs — 207 =1, ie. 11 = —2x9 + x4 — 4x5 + 227 + 1. Similarly, the second equations is
T3 + 3x4 + bxs + 37 = 2, i.e. x3 = —3x4 — dxs — 3x7 + 2. Finally, the third equation is xg + 227 = 3,
ie. g = —2x7 + 3. The solutions to the system are given in terms of 4 parameters (free variables)

To, T4, X5, X7 by the formulas

T1 = —2x9+ 14 —4xs 4+ 2x7 +1

T3 = — 3564 —51‘5 - 31‘7 +2

Tg = —2x7 +3
We may choose any values for the free variables and compute the dependent variables using the above
formulas to get a solution. For example, choosing zo = 1, x4 = —1, x5 = 0, z7 = 2 gives the solution
1 =-10, 20 =1, 23 = —1, x4 = —1, x5 = 0, z¢ = —1, 7 = 2. From this point of view, perhaps the

simplest solution is obtained by choosing all the free variables to be 0.
Let us summarize our discussion in the following theorem

Theorem. Let B be the augmented matrix of a system of linear equations with n unknowns. Then

e the system is inconsistent (has no solutions) if and only if the last column of B is a pivot column.
e the system has unique solution if and only if all columns of B except the last one are pivot columns.

e the system has infinitely many solutions if and only if the last column and at least one other
column are not pivot columns of B. In this case the solutions are given in terms of ¢ parameters
(free variables), where t = n — rank(DB).

The discussion below is optional. It outlines a reason why the matrix in reduced row-
echelon form row equivalent to a given matrix is unique.

Let A be a matrix in a reduced row-echelon form. Consider the system of linear equations with
coefficient matrix A and augmented matrix B having the last column with only 0’s (in other words,
in the notation at the beginning of this note, we set by = ... = b,, = 0). It turns out that we can
recover A from the set of all solutions to this system. Indeed, let z1,...,x, be the unknowns. For
each k let us asked the following question: is there a solution to the system such that zp = 1 and
Tyl = ... = xp = 07 If zp is a dependent variable (i.e. the k-th column of A is a pivot column) then
x) can be expressed in terms of the variables xy1,...,x, which are all 0, hence x); must be zero as
well. Thus the answer is "no”. If x; is a free variable, then we can set xz; = 1 and all the other free
variables to be 0 and there will be a solutions corresponding to this choice of parameters which will
satisfy our requirement, so the answer is "yes”. We see that which columns of A are pivot and which
are not is uniquely determined by the properties of the solution set to our system. Since the first pivot
column of A has 1 in the first row and 0 everywhere else, this column is determined by the solutions.
Similarly, the second pivot column has 1 in the second row and 0 everywhere else, so it is determined



as well, and similarly for all other pivot columns. What about the non-pivot columns? Suppose that
the k-th column of A is not a pivot column, so zj, is a free variable. Consider the unique solution with
x = 1 and all other free variables equal to 0. It is easy to see that the value of the first dependent
variable in this solution is equal to the negative of the first entry in the k-th column. Similarly, the
value of the second dependent variable in this solution is equal to the negative of the second entry in
the k-th column, etc. Thus the k-th column is determined by the set of solutions to our system. This
completes our claim that A is determined by the set of solutions to the system. Suppose now that A is
another matrix in a reduced row-echelon form row equivalent to A. Thus the corresponding system of
equations will have the same solutions as the one for A. Therefore the columns of A; will be the same
as the columns of A, as they are determined by the set of solutions and therefore A = Aj.
Let us illustrate the above reasoning by a concrete example. Suppose that

o O Ut
o~ oo
O N W

0 -1
1 3
0 0
0 0

OO O
OO O N

The corresponding system of equations has augmented matrix

120-140-2/0
B— 001 350 30
“|000 001 2 0
000 00O O0:0
The solutions to this system are given by the formulas
T1 = —2x94 14 —4xs + 2x7
T3 = —3x4 —5x5 — 37
Tg = — 2x7
We ask the questions:
is there a solution with z; =1 and x5 = ... = 7 = 07 Clearly no.
is there a solution with o =1 and z3 = ... =27 = 0?7 Yes, z; = —2.
is there a solution with z3 =1 and x4 = ... = z7 = 07 Clearly no.
is there a solution with z4 =1 and x5 = ... = z7 = 07 Yes, for example x3 = —3, 2o =0, 1 = 1.
is there a solution with x5 = 1 and zg = 7 = 07 Yes, for example x4 = 0, z3 = —5, 5 = 0,
Tr1 = —4.
is there a solution with z¢ = 1 and x7 = 07 Clearly no.
is there a solution with x7 = 1?7 Yes, for example g = —2, 5 =0, x4 =0, x3 = —3, 22 =0, 1 = 2.

We see that the k-th question has positive answer if and only if xj, is a free variable. Thus we can
determine which columns of A are pivot and which are not form the properties of the set of solutions.
In other words, any matrix in a reduced row echelon-form for which the corresponding system has the
same solutions will have the first, the third, and the sixth columns as pivot columns and the remaining
columns as non-pivot columns. Now the system has unique solution with zo = 1, 4 = x5 = ©7 = 0. The

dependent variables in this solution are 1 = —2, x3 = 0, g = 0, which are the negatives of the entries
in the second column. Similarly, the system has unique solution with x4 = 1, 2 = x5 = 7 = 0. The
dependent variables in this solution are 1 = 1, 3 = —3, g = 0, which are the negatives of the entries
in the 4-th column. The system has unique solution with x5 = 1, x5 = x4 = 7 = 0. The dependent
variables in this solution are x1 = —4, x3 = —5, ¢ = 0, which are the negatives of the entries in the
5-th column. Finally, the system has unique solution with z7 = 1, zo = 4 = x5 = 0. The dependent
variables in this solution are x1 = 2, x3 = —3, x4 = —2, which are the negatives of the entries in the 4-th

column. This illustrates how we recover A from the properties of the set of solutions to the associated
system of equations.



