
MATH 304 - Linear Algebra

In the last note we came up with a conjectural formulas for inverting square matrices. Let us recall
our conjecture.

Definition. For any n × n matrix A define Ai,j to be the matrix obtained from A by removing its
i−th row and j−th column.

We predict that for every n there is a function ∆n which to any n × n matrix A assigns a scalar
∆n(A), called the determinant of A, which has the following properties:

• ∆1([a]) = a.

• n × n matrix A is invertible if and only if ∆n(A) 6= 0.

• For any n × n matrix A define the matrix AD to be the n × n matrix whose i, j-entry is equal to
(−1)i+j∆n−1(Aj,i), for 1 ≤ i, j ≤ n. Then AAD = ∆n(A)I = ADA. In particular, if ∆n(A) 6= 0
then

A−1 =
1

∆n(A)
AD.

Comparing the 1, 1-entries on both sides of the equality AAD = ∆n(A)I we see that if ∆n with the
above property exist for all n then they must be given by the following recursive formula:

∆1([a]) = a,

∆n(A) = a1,1∆n−1(A1,1)−a1,2∆n−1(A1,2)+ . . .+(−1)n+1a1,n∆n−1(A1,n) =

n
∑

j=1

(−1)1+ja1,j∆n−1(A1,j)

where A = [ai,j ]. For example, for A =

[

a1,1 a1,2

a2,1 a2,2

]

we have

∆2(A) = a1,1∆1([a2,2]) − a1,2∆1([a2,1]) = a1,1a2,2 − a1,2a2,1.

Now, for a 3 × 3 matrix A =





a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3



 we have

∆3(A) = a1,1∆2

([

a2,2 a2,3

a3,2 a3,3

])

− a1,2∆2

([

a2,1 a2,3

a3,1 a3,3

])

+ a1,3∆2

([

a2,1 a2,2

a3,1 a3,2

])

=

= a1,1(a2,2a3,3 − a2,3a3,2) − a1,2(a2,1a3,3 − a2,3a3,1) + a1,3(a2,1a3,2 − a2,2a3,1) =

= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a1,1a2,3a3,2 − a1,2a2,1a3,3 − a1,3a2,2a3,1.

And so on. What is left to show is that this unique possible ∆n’s given by the recursive formula indeed
have the expected properties. In the previous note we have proved this for n = 2, 3. Proving this for all
n requires a substantial effort. It turns out that the determinant has many other interesting properties.

After all this discussion let us one more time state our recursive definition of ∆n

Definition. To any n × n matrix A = [ai,j ] we assign a scalar ∆n(A), called the determinant of A,
as follows:

∆1([a]) = a,

∆n(A) = a1,1∆n−1(A1,1)−a1,2∆n−1(A1,2)+. . .+(−1)n+1a1,n∆n−1(A1,n) =

n
∑

j=1

(−1)1+ja1,j∆n−1(A1,j).
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Theorem. The determinant has the following properties.

1. ∆n(I) = 1;

2. ∆n(A) = 0 if two consecutive rows of A are equal.

3. We write ∆n(r1, ..., rn) for ∆n(A) when the i−th row of A is ri for i = 1, 2, ..., n. Then, we have

∆n(r1, ..., ar′
i + br′′

i , ..., rn) = a∆n(r1, ..., r′
i, ..., rn) + b∆n(r1, ..., r′′

i , ..., rn)

for any i, 1 ≤ i ≤ n.

4. ∆n(B) = −∆n(A) if B is obtained from A by switching two consecutive rows.

5. ∆n(B) = −∆n(A) if B is obtained from A by switching any two rows. In other words, ∆n(Si,jA) =
−∆n(A).

6. ∆n(A) = 0 if two rows of A are equal.

7. ∆n(Ei,j(a)A) = ∆n(A)

8. ∆n(Di(a)A) = a∆n(A)

9. ∆n(A) = 0 if A has a zero row.

10. ∆n(Ei,j(a)) = 1, ∆n(Di(a)) = a and ∆n(Si,j) = −1.

11. ∆n(EB) = ∆n(E)∆n(B) for any elementary matrix E and any matrix B.

12. If A is invertible then ∆n(A) 6= 0 and ∆n(AB) = ∆n(A)∆n(B) for any B;

13. A is singular if and only if ∆n(A) = 0. In other words, A is invertible if and only if ∆n(A) 6= 0.

14. ∆n(AB) = ∆n(A)∆n(B) for any A, B;

15. ∆n(At) = ∆n(A) (here At is the transpose of A)

16. Laplace expansion by the i-th row (i = 1, 2, ..., n):

∆n(A) =
n

∑

j=1

(−1)i+jai,j∆n−1(Ai,j).

17. If 1 ≤ i, k ≤ n and k 6= i then

0 =

n
∑

j=1

(−1)i+jak,j∆n−1(Ai,j).

18.
AAD = ∆n(A)I = ADA.

19. Laplace expansion by the j-th column (j = 1, 2, ..., n) :

∆n(A) =
n

∑

i=1

(−1)i+jai,j∆n−1(Ai,j), j = 1, 2, ..., n,

20. If 1 ≤ j, k ≤ n and k 6= j then

0 =

n
∑

i=1

(−1)i+kai,j∆n−1(Ai,k).
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Proof: The proof will consist of several steps. First, we will establish properties 1,2,3. Then we will
derive properties 4-15 from properties 1-3. Finally, we will establish properties 16-20.

Property 1. Note that if I is n × n identity matrix then I1,1 is the (n − 1) × (n − 1) identity matrix.
Thus our definition of ∆n yields ∆n(I) = ∆n−1(I). Repeating this reasoning we see that

∆n(I) = ∆n−1(I) = . . . = ∆1(I) = ∆1([1]) = 1.

(Note that above we use I to denote the identity matrix of any size; the appropriate size follows from
the context.)

Property 2. This is the hardest part of the proof. We will first obtain a formula for the determinant,
which is of interests in its own right. In what follows, we assume that n is at least 3. Recall the defining
formula

∆n(A) =
n

∑

j=1

(−1)1+ja1,j∆n−1(A1,j)

Now we apply the defining formula to each ∆n−1(A1,j). For 1 ≤ s < t ≤ n, let B(s, t) be the matrix
obtained from A by removing its first two rows and both s-th and t-th columns. It is easy to see that
(A1,j)1,k = B(k, j) if k < j and (A1,j)1,k = B(j, k + 1) if k ≥ j. Also, the 1, k-entry of A1,j is a2,k if
k < j and it is a2,k+1 if k ≥ j. Thus

∆n−1(A1,j) =
∑

1≤k<j

a2,k∆n−2(B(k, j))(−1)1+k +
∑

j≤k<n

a2,k+1∆n−2(B(j, k + 1))(−1)1+k.

Inserting these formulas into our formula for ∆n, we get then the following formula:

∆n(A) =

n
∑

j=1

(−1)1+ja1,j

∑

1≤k<j

a2,k∆n−2(B(k, j))(−1)1+k+

n
∑

j=1

(−1)1+ja1,j

∑

j≤k<n

a2,k+1∆n−2(B(j, k+1))(−1)1+k

=
∑

1≤k<j≤n

(−1)2+j+ka1,ja2,k∆n−2(B(k, j)) +
∑

1≤j≤k<n

(−1)2+j+ka1,ja2,k+1∆n−2(B(j, k + 1)).

The last sum can be written in terms of s = k + 1 as follows:

∑

1≤j<s≤n

(−1)1+j+sa1,ja2,s∆n−2(B(j, s))

and changing the name of j into k and s into j it is

∑

1≤k<j≤n

(−1)1+k+ja1,ka2,j∆n−2(B(k, j)).

Thus we get the promised formula for ∆n:

∆n(A) =
∑

1≤k<j≤n

(−1)2+j+ka1,ja2,k∆n−2(B(k, j)) +
∑

1≤k<j≤n

(−1)1+k+ja1,ka2,j∆n−2(B(k, j)) =

=
∑

1≤k<j≤n

(−1)1+j+k(a1,ka2,j − a1,ja2,k)∆n−2(B(k, j)).

Suppose now that the first two rows of A coincide: a1,j = a2,j for j = 1, . . . , n. Then each term
a1,ja2,k − a1,ka2,j in the above formula is 0 and consequently ∆n(A) = 0. Thus we proved that if the
first two rows of A coincide then ∆n(A) = 0 (we did it for n ≥ 3; for n = 2 this is straightforward).

Now we can prove the full Property 2. We already know that it holds for n = 2. Suppose we have
established the property for all sizes smaller than n. Let A be an n × n matrix with two consecutive
rows equal. If the first 2 rows of A are equal, we already proved that ∆n(A) = 0. If rows k and k + 1 of
A are equal for some k > 1, then each matrix A1,j has two equal rows. Since the size of A1,j is smaller
than n, we know that ∆n(A1,j) = 0 for j = 1, . . . , n. Our defining formula for the determinant implies
that ∆n(A) = 0. This completes our argument.
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Property 3. We establish this property using technique similar to the one employed at the end of our
proof of Property 2. Namely, it is clear that Property 3 holds for 1 × 1 matrices. Now suppose that we
already established Property 3 for matrices of size less than n. We will show that the property holds
for matrices of size n (the method we use is called mathematical induction).

Let A be the matrix with rows r1, ..., ar′
i + br′′

i , ..., rn, let B be the matrix with rows r1, ..., r′
i, ..., rn, and

let C be the matrix with rows r1, ..., r′′
i , ..., rn. Thus we need to show that ∆n(A) = a∆n(B) + b∆n(C)

We consider two cases.

case 1: i = 1. In this case, we have A1,j = B1,j = C1,j for j = 1, . . . , n. Let r′
1 = (a′

1,1, . . . , a′
1,n),

r′′
1 = (a′′

1,1, . . . , a′′
1,n), so r1 = (aa′

1,1 + ba′′
1,1, . . . , aa′

1,n + ba′′
1,n). Using our definition of the determinant,

we have

∆n(A) =

n
∑

j=1

(−1)1+j(aa′
1,1+ba′′

1,1)∆n−1(A1,j) = a

n
∑

j=1

(−1)1+ja′
1,1∆n−1(B1,j)+b

n
∑

j=1

(−1)1+ja′
1,1∆n−1(C1,j) =

= a∆n(B) + b∆n(C),

so Property 3 is true in this case.

case 2: i > 1. In this case, for j = 1, . . . , n, the i − 1st row of A1,j (which corresponds to i-th row of
A) is equal to the sum of a times the i − 1st row of B1,j and b times the i − 1st row of C1,j . Moreover,
for k 6= i the k-th rows of A1,j , B1,j , C1,j coincide. Since we assume that Property 3 holds for matrices
of size less than n, we get

∆n−1(A1,j) = a∆n−1(B1,j) + b∆n−1(C1,j) for j = 1, . . . , n.

Since A, B, C have the same first row (a1,1, . . . , a1,n), we get

∆n(A) =

n
∑

j=1

(−1)1+j∆n−1(A1,j) =

n
∑

j=1

(−1)1+j(a∆n−1(B1,j) + b∆n−1(C1,j)) =

a

n
∑

j=1

(−1)1+j∆n−1(B1,j) + b

n
∑

j=1

(−1)1+j∆n−1(C1,j) = a∆n(B) + b∆n(C),

so Property 3 is true in this case as well.

This completes our first step of establishing properties 1,2,3. Now we will see that these three properties
imply properties 1-15.

Property 4. Let the rows of A be r1, . . . , rn suppose that B is obteined from A by switching rows k

and k + 1. Thus,

∆n(A) = ∆n(r1, . . . , rk, rk+1, . . . , rn) and ∆n(B) = ∆n(r1, . . . , rk+1, rk, . . . , rn).

From property 2 we get that ∆n(r1, . . . , rk +rk+1, rk +rk+1, . . . , rn) = 0 (since rows k and k+1 coincide).
On the other hand, using property 3 we get

∆n(r1, . . . , rk+rk+1, rk+rk+1, . . . , rn) = ∆n(r1, . . . , rk, rk+rk+1, . . . , rn)+∆n(r1, . . . , rk+1, rk+rk+1, . . . , rn) =

= ∆n(r1, . . . , rk, rk, . . . , rn)+∆n(r1, . . . , rk, rk+1, . . . , rn)+∆n(r1, . . . , rk+1, rk, . . . , rn)+∆n(r1, . . . , rk+1, rk+1, . . . , rn).

Since ∆n(r1, . . . , rk, rk, . . . , rn) = 0 = ∆n(r1, . . . , rk+1, rk+1, . . . , rn), we conclude that

0 = ∆n(r1, . . . , rk, rk+1, . . . , rn) + ∆n(r1, . . . , rk+1, rk, . . . , rn) = ∆n(A) + ∆n(B)

i.e. ∆n(B) = −∆n(A).

Property 5. Suppose that B is obtained from A by switching rows k and l with k < l. This can be
achieved by several switches of consecutive rows, namely switch rows k and k+1, then k+1, k+2,..., then
l − 1, l then l − 2, l − 1,..., then finally k + 1, k. We performed a total of (l − k) + (l − k − 1) = 2(l − k) − 1
switches of consecutive rows. By property 4, each times we switch two consecutive rows, the determinant
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changes sign. Thus, to get ∆n(B) we need to switch the sign of ∆n(A) an odd number of times, so
∆n(B) = −∆n(A).

Property 6. If rows k and l of A are equal, k < l, then let B be obtained from A by switching rows k+1
and l. By property 5, ∆n(B) = −∆n(A). Since B has two consecutive rows equal, we get ∆n(B) = 0
by property 2. Thus ∆n(A) = 0.

Property 7. Let r1, . . . , rn be the rows of A. Then Ei,j(a)A has i-th row equal to ri + arj and k-th
rows of A and Ei,j(a)A coincide for k 6= i. By property 3, we have

∆n(Ei,j(a)A) = ∆n(r1, . . . , ri−1, ri+arj , . . . , rn) = ∆n(r1, . . . , ri−1, ri, . . . , rn)+a∆n(r1, . . . , ri−1, rj , . . . , rn).

Note that ∆n(r1, . . . , ri−1, ri, . . . , rn) = ∆n(A) and, by property 6, ∆n(r1, . . . , ri−1, rj , . . . , rn) = 0,
since the ith and jth rows are the same. Thus ∆n(Ei,j(a)A) = ∆n(A).

Property 8. This property is a special case of property 3, with b = 0 (recall that Di(a)A is obtained
from A by multiplying the i-th row of A by a).

Property 9. Suppose that the i-th row of A is zero. Then Di(2)A = A. Thus, by property 8,

2∆n(A) = ∆n(Di(2)A) = ∆n(A)

which clearly implies that ∆n(A) = 0.

Property 10. This follows immediately from property 1 and properties 7,8,5 respectively applied to
the matrix A = I.

Property 11. This follows immediately from property 10 and property 7 if E = Ei,j(a), property 8 if
A = Di(a), and property 5 if E = Si,j .

Property 12. If A is invertible then A = E1 . . . Ek for some elementary matrices E1, . . . , Ek. By
property 11, for any matrix B we have

∆n(AB) = ∆n(E1 . . . EkB) = ∆n(E1)∆n(E2 . . . EkB) = . . . = ∆n(E1)∆n(E2) . . . ∆n(Ek)∆n(B).

Using B = I we get ∆n(A) = ∆n(E1)∆n(E2) . . . ∆n(Ek) 6= 0 since each ∆n(Ei) 6= 0 by property 10.
Returning to arbitrary B, we get

∆n(AB) = ∆n(E1)∆n(E2) . . . ∆n(Ek)∆n(B) = ∆n(A)∆n(B).

Property 13. If A is not singular than A is invertible and ∆n(A) 6= 0 by property 12.
Suppose now that A is singular and let B be the reduced row echelon form of A. Since A is singular,

the last row of B is zero. Thus ∆n(B) = 0 by property 9. There is and invertible matrix M such that
A = MB (since A, B are row equivalent). Thus, using property 12,

∆n(A) = ∆n(MB) = ∆n(M)∆n(B) = 0.

Property 14. If A is invertible, the result follows from property 12. If A is singular then AB is singular
too. By property 13, we have ∆n(A) = 0 = ∆n(AB), so the results holds in this case as well.

Property 15. Recall that Ei,j(a)t = Ej,i(a), Di(a)t = Di(a) and St
i,j = Si,j . It follows that ∆n(E) =

∆n(Et) if E is an elementary matrix. If A is singular then so is At and we have ∆n(A) = 0 = ∆n(At).
If A is invertible then A = E1 . . . Ek for some elementary matrices E1, . . . , Ek. Then At = Et

k . . . Et
1 and

∆n(A) = ∆n(E1)∆n(E2) . . . ∆n(Ek) = ∆n(Et
1)∆n(Et

2) . . . ∆n(Et
k) = ∆n(Et

k) . . . ∆n(Et
2)∆n(Et

1) = ∆n(At).

This completes our second step (which shows that properties 4-15 are consequences of properties 1-3,
i.e. any function of matrices with properties 1-3 must have properties 4-15). Our last step is to get
properties 16-20.

Property 16. Let r1, . . . rn be the rows of A and let B be the matrix with rows ri, r1, . . . , ri−1, ri+1, . . . , rn.
Clearly Ai,j = B1,j for j = 1, . . . , n. Note that B can be obtained from A by switching rows i and i − 1,
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Then i−1 and i−2, ..., then 2 and 1. This requires i−1 switches. It follows that ∆n(B) = (−1)i−1∆n(A).
Since the first row of B is (ai,1, . . . , ai,n), we have

(−1)i−1∆n(A) = ∆n(B) =

n
∑

j=1

(−1)1+jai,j∆n−1(B1,j) =

n
∑

j=1

(−1)1+jai,j∆n−1(Ai,j).

Multiplying both sides by (−1)i−1 we get

∆n(A) = (−1)i−1

n
∑

j=1

(−1)1+jai,j∆n−1(Ai,j) =

n
∑

j=1

(−1)i+jai,j∆n−1(Ai,j).

Property 17. Let B be the matrix obtained from A by replacing the i-th row of A by k-th row of A.
Thus the i-th and k-th rows of B coincide and therefore ∆n(B) = 0 by property 6. Clearly Bi,j = Ai,j

for j = 1, . . . , n. Since the i-th row of B is (ak,1, . . . , ak,n), the Laplace expansion by the i-th row of B

(property 16) yields

0 = ∆n(B) =

n
∑

j=1

(−1)i+jak,j∆n−1(Bi,j) =

n
∑

j=1

(−1)i+jak,j∆n−1(Ai,j).

Property 18. Note that the i, i-entry of AAD is given by the right side of the formula in property 15.
Hence the diagonal entries of AAD are all equal to ∆n(A). For k 6= i, the k, i-entry of AAD is given
by the right side of the formula in property 17. Thus the off-diagonal entries of AAD are all zero. This
proves that AAD = ∆n(A)I.

Consider now the transpose At of A. It is clear that (At)i,j = (Aj,i)
t. Since ∆n((Aj,i)

t) = ∆n(Aj,i)
by property 15, we see that (At)D = (AD)t. Since we know that At(At)D = ∆n(At)I, we conclude that
At(AD)t = ∆n(A)I. Transposing both sides of the last equality we get

∆n(A)I = (∆n(A)I)t = (At(AD)t)t = ((AD)t)t(At)t = ADA.

Property 19. Note that the right hand side of the formula in property 19 is equal to the j, j-entry of
ADA, which is ∆n(A) by property 18.

Property 20. Note that the right hand side of the formula in property 20 is equal to the k, j-entry of
ADA, which is 0 by property 18.

This completes the justification of properties 1-20.

Exercise: Show that (AB)D = BDAD (this is quite easy when A or B is invertible, but more subtle in
the remaining case).
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