MATH 304 - Linear Algebra

In the last note we came up with a conjectural formulas for inverting square matrices. Let us recall our conjecture.

Definition. For any $n \times n$ matrix A define $A_{i,j}$ to be the matrix obtained from A by removing its i-th row and j-th column.

We predict that for every n there is a function Δ_n which to any $n \times n$ matrix A assigns a scalar $\Delta_n(A)$, called the **determinant** of A, which has the following properties:

- $\Delta_1([a]) = a.$
- $n \times n$ matrix A is invertible if and only if $\Delta_n(A) \neq 0$.
- For any $n \times n$ matrix A define the matrix A^D to be the $n \times n$ matrix whose i, j-entry is equal to $(-1)^{i+j}\Delta_{n-1}(A_{j,i})$, for $1 \le i, j \le n$. Then $AA^D = \Delta_n(A)I = A^DA$. In particular, if $\Delta_n(A) \ne 0$ then

$$A^{-1} = \frac{1}{\Delta_n(A)} A^D$$

Comparing the 1, 1-entries on both sides of the equality $AA^D = \Delta_n(A)I$ we see that if Δ_n with the above property exist for all *n* then they must be given by the following recursive formula:

$$\Delta_1([a]) = a$$

$$\Delta_n(A) = a_{1,1}\Delta_{n-1}(A_{1,1}) - a_{1,2}\Delta_{n-1}(A_{1,2}) + \ldots + (-1)^{n+1}a_{1,n}\Delta_{n-1}(A_{1,n}) = \sum_{j=1}^n (-1)^{1+j}a_{1,j}\Delta_{n-1}(A_{1,j})$$

where $A = [a_{i,j}]$. For example, for $A = \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix}$ we have

$$\Delta_2(A) = a_{1,1}\Delta_1([a_{2,2}]) - a_{1,2}\Delta_1([a_{2,1}]) = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

Now, for a 3 × 3 matrix $A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$ we have

$$\begin{split} \Delta_3(A) &= a_{1,1} \Delta_2 \left(\begin{bmatrix} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \end{bmatrix} \right) - a_{1,2} \Delta_2 \left(\begin{bmatrix} a_{2,1} & a_{2,3} \\ a_{3,1} & a_{3,3} \end{bmatrix} \right) + a_{1,3} \Delta_2 \left(\begin{bmatrix} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \end{bmatrix} \right) = \\ &= a_{1,1}(a_{2,2}a_{3,3} - a_{2,3}a_{3,2}) - a_{1,2}(a_{2,1}a_{3,3} - a_{2,3}a_{3,1}) + a_{1,3}(a_{2,1}a_{3,2} - a_{2,2}a_{3,1}) = \\ &= a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - a_{1,1}a_{2,3}a_{3,2} - a_{1,2}a_{2,1}a_{3,3} - a_{1,3}a_{2,2}a_{3,1}. \end{split}$$

And so on. What is left to show is that this unique possible Δ_n 's given by the recursive formula indeed have the expected properties. In the previous note we have proved this for n = 2, 3. Proving this for all n requires a substantial effort. It turns out that the determinant has many other interesting properties.

After all this discussion let us one more time state our recursive definition of Δ_n

Definition. To any $n \times n$ matrix $A = [a_{i,j}]$ we assign a scalar $\Delta_n(A)$, called the **determinant** of A, as follows:

$$\Delta_1([a]) = a,$$

$$\Delta_n(A) = a_{1,1}\Delta_{n-1}(A_{1,1}) - a_{1,2}\Delta_{n-1}(A_{1,2}) + \ldots + (-1)^{n+1}a_{1,n}\Delta_{n-1}(A_{1,n}) = \sum_{j=1}^n (-1)^{1+j}a_{1,j}\Delta_{n-1}(A_{1,j}).$$

Theorem. The determinant has the following properties.

- 1. $\Delta_n(I) = 1;$
- 2. $\Delta_n(A) = 0$ if two consecutive rows of A are equal.
- 3. We write $\Delta_n(r_1, ..., r_n)$ for $\Delta_n(A)$ when the *i*-th row of A is r_i for i = 1, 2, ..., n. Then, we have

$$\Delta_n(r_1, ..., ar'_i + br''_i, ..., r_n) = a\Delta_n(r_1, ..., r'_i, ..., r_n) + b\Delta_n(r_1, ..., r''_i, ..., r_n)$$

for any $i, 1 \leq i \leq n$.

- 4. $\Delta_n(B) = -\Delta_n(A)$ if B is obtained from A by switching two consecutive rows.
- 5. $\Delta_n(B) = -\Delta_n(A)$ if B is obtained from A by switching any two rows. In other words, $\Delta_n(S_{i,j}A) = -\Delta_n(A)$.
- 6. $\Delta_n(A) = 0$ if two rows of A are equal.
- 7. $\Delta_n(E_{i,j}(a)A) = \Delta_n(A)$
- 8. $\Delta_n(D_i(a)A) = a\Delta_n(A)$
- 9. $\Delta_n(A) = 0$ if A has a zero row.
- 10. $\Delta_n(E_{i,j}(a)) = 1$, $\Delta_n(D_i(a)) = a$ and $\Delta_n(S_{i,j}) = -1$.
- 11. $\Delta_n(EB) = \Delta_n(E)\Delta_n(B)$ for any elementary matrix E and any matrix B.
- 12. If A is invertible then $\Delta_n(A) \neq 0$ and $\Delta_n(AB) = \Delta_n(A)\Delta_n(B)$ for any B;
- 13. A is singular if and only if $\Delta_n(A) = 0$. In other words, A is invertible if and only if $\Delta_n(A) \neq 0$.
- 14. $\Delta_n(AB) = \Delta_n(A)\Delta_n(B)$ for any A, B;
- 15. $\Delta_n(A^t) = \Delta_n(A)$ (here A^t is the transpose of A)
- 16. Laplace expansion by the *i*-th row (i = 1, 2, ..., n):

$$\Delta_n(A) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \Delta_{n-1}(A_{i,j}).$$

17. If $1 \leq i, k \leq n$ and $k \neq i$ then

$$0 = \sum_{j=1}^{n} (-1)^{i+j} a_{k,j} \Delta_{n-1}(A_{i,j}).$$

18.

$$AA^D = \Delta_n(A)I = A^D A.$$

19. Laplace expansion by the *j*-th column (j = 1, 2, ..., n):

$$\Delta_n(A) = \sum_{i=1}^n (-1)^{i+j} a_{i,j} \Delta_{n-1}(A_{i,j}), \ j = 1, 2, ..., n,$$

20. If $1 \leq j, k \leq n$ and $k \neq j$ then

$$0 = \sum_{i=1}^{n} (-1)^{i+k} a_{i,j} \Delta_{n-1}(A_{i,k}).$$

Proof: The proof will consist of several steps. First, we will establish properties 1,2,3. Then we will derive properties 4-15 from properties 1-3. Finally, we will establish properties 16-20.

Property 1. Note that if I is $n \times n$ identity matrix then $I_{1,1}$ is the $(n-1) \times (n-1)$ identity matrix. Thus our definition of Δ_n yields $\Delta_n(I) = \Delta_{n-1}(I)$. Repeating this reasoning we see that

$$\Delta_n(I) = \Delta_{n-1}(I) = \ldots = \Delta_1(I) = \Delta_1([1]) = 1.$$

(Note that above we use I to denote the identity matrix of any size; the appropriate size follows from the context.)

Property 2. This is the hardest part of the proof. We will first obtain a formula for the determinant, which is of interests in its own right. In what follows, we assume that n is at least 3. Recall the defining formula

$$\Delta_n(A) = \sum_{j=1}^n (-1)^{1+j} a_{1,j} \Delta_{n-1}(A_{1,j})$$

Now we apply the defining formula to each $\Delta_{n-1}(A_{1,j})$. For $1 \leq s < t \leq n$, let B(s,t) be the matrix obtained from A by removing its first two rows and both s-th and t-th columns. It is easy to see that $(A_{1,j})_{1,k} = B(k,j)$ if k < j and $(A_{1,j})_{1,k} = B(j,k+1)$ if $k \geq j$. Also, the 1, k-entry of $A_{1,j}$ is $a_{2,k}$ if k < j and it is $a_{2,k+1}$ if $k \geq j$. Thus

$$\Delta_{n-1}(A_{1,j}) = \sum_{1 \le k < j} a_{2,k} \Delta_{n-2}(B(k,j))(-1)^{1+k} + \sum_{j \le k < n} a_{2,k+1} \Delta_{n-2}(B(j,k+1))(-1)^{1+k}.$$

Inserting these formulas into our formula for Δ_n , we get then the following formula:

$$\Delta_n(A) = \sum_{j=1}^n (-1)^{1+j} a_{1,j} \sum_{1 \le k < j} a_{2,k} \Delta_{n-2}(B(k,j))(-1)^{1+k} + \sum_{j=1}^n (-1)^{1+j} a_{1,j} \sum_{j \le k < n} a_{2,k+1} \Delta_{n-2}(B(j,k+1))(-1)^{1+k} = \sum_{1 \le k < j \le n} (-1)^{2+j+k} a_{1,j} a_{2,k} \Delta_{n-2}(B(k,j)) + \sum_{1 \le j \le k < n} (-1)^{2+j+k} a_{1,j} a_{2,k+1} \Delta_{n-2}(B(j,k+1)).$$

The last sum can be written in terms of s = k + 1 as follows:

1

$$\sum_{\leq j < s \leq n} (-1)^{1+j+s} a_{1,j} a_{2,s} \Delta_{n-2}(B(j,s))$$

and changing the name of j into k and s into j it is

$$\sum_{1 \le k < j \le n} (-1)^{1+k+j} a_{1,k} a_{2,j} \Delta_{n-2}(B(k,j)).$$

Thus we get the promised formula for Δ_n :

$$\Delta_n(A) = \sum_{1 \le k < j \le n} (-1)^{2+j+k} a_{1,j} a_{2,k} \Delta_{n-2}(B(k,j)) + \sum_{1 \le k < j \le n} (-1)^{1+k+j} a_{1,k} a_{2,j} \Delta_{n-2}(B(k,j)) = \sum_{1 \le k < j \le n} (-1)^{1+j+k} (a_{1,k} a_{2,j} - a_{1,j} a_{2,k}) \Delta_{n-2}(B(k,j)).$$

Suppose now that the first two rows of A coincide: $a_{1,j} = a_{2,j}$ for j = 1, ..., n. Then each term $a_{1,j}a_{2,k} - a_{1,k}a_{2,j}$ in the above formula is 0 and consequently $\Delta_n(A) = 0$. Thus we proved that if the first two rows of A coincide then $\Delta_n(A) = 0$ (we did it for $n \ge 3$; for n = 2 this is straightforward).

Now we can prove the full Property 2. We already know that it holds for n = 2. Suppose we have established the property for all sizes smaller than n. Let A be an $n \times n$ matrix with two consecutive rows equal. If the first 2 rows of A are equal, we already proved that $\Delta_n(A) = 0$. If rows k and k + 1 of A are equal for some k > 1, then each matrix $A_{1,j}$ has two equal rows. Since the size of $A_{1,j}$ is smaller than n, we know that $\Delta_n(A_{1,j}) = 0$ for $j = 1, \ldots, n$. Our defining formula for the determinant implies that $\Delta_n(A) = 0$. This completes our argument. **Property 3.** We establish this property using technique similar to the one employed at the end of our proof of Property 2. Namely, it is clear that Property 3 holds for 1×1 matrices. Now suppose that we already established Property 3 for matrices of size less than n. We will show that the property holds for matrices of size n (the method we use is called **mathematical induction**).

Let A be the matrix with rows $r_1, ..., ar'_i + br''_i, ..., r_n$, let B be the matrix with rows $r_1, ..., r'_i, ..., r_n$, and let C be the matrix with rows $r_1, ..., r''_i, ..., r_n$. Thus we need to show that $\Delta_n(A) = a\Delta_n(B) + b\Delta_n(C)$ We consider two cases.

<u>**case 1:**</u> i = 1. In this case, we have $A_{1,j} = B_{1,j} = C_{1,j}$ for j = 1, ..., n. Let $r'_1 = (a'_{1,1}, ..., a'_{1,n})$, $r''_1 = (a''_{1,1}, ..., a''_{1,n})$, so $r_1 = (aa'_{1,1} + ba''_{1,1}, ..., aa'_{1,n} + ba''_{1,n})$. Using our definition of the determinant, we have

$$\Delta_n(A) = \sum_{j=1}^n (-1)^{1+j} (aa'_{1,1} + ba''_{1,1}) \Delta_{n-1}(A_{1,j}) = a \sum_{j=1}^n (-1)^{1+j} a'_{1,1} \Delta_{n-1}(B_{1,j}) + b \sum_{j=1}^n (-1)^{1+j} a'_{1,1} \Delta_{n-1}(C_{1,j}) = a \Delta_n(B) + b \Delta_n(C),$$

so Property 3 is true in this case.

<u>case 2:</u> i > 1. In this case, for j = 1, ..., n, the i - 1st row of $A_{1,j}$ (which corresponds to *i*-th row of A) is equal to the sum of a times the i - 1st row of $B_{1,j}$ and b times the i - 1st row of $C_{1,j}$. Moreover, for $k \neq i$ the k-th rows of $A_{1,j}$, $B_{1,j}$, $C_{1,j}$ coincide. Since we assume that Property 3 holds for matrices of size less than n, we get

$$\Delta_{n-1}(A_{1,j}) = a\Delta_{n-1}(B_{1,j}) + b\Delta_{n-1}(C_{1,j}) \text{ for } j = 1, \dots, n.$$

Since A, B, C have the same first row $(a_{1,1}, \ldots, a_{1,n})$, we get

$$\Delta_n(A) = \sum_{j=1}^n (-1)^{1+j} \Delta_{n-1}(A_{1,j}) = \sum_{j=1}^n (-1)^{1+j} (a \Delta_{n-1}(B_{1,j}) + b \Delta_{n-1}(C_{1,j})) = a \sum_{j=1}^n (-1)^{1+j} \Delta_{n-1}(B_{1,j}) + b \sum_{j=1}^n (-1)^{1+j} \Delta_{n-1}(C_{1,j}) = a \Delta_n(B) + b \Delta_n(C),$$

so Property 3 is true in this case as well.

This completes our first step of establishing properties 1,2,3. Now we will see that these three properties imply properties 1-15.

Property 4. Let the rows of A be r_1, \ldots, r_n suppose that B is obtained from A by switching rows k and k + 1. Thus,

$$\Delta_n(A) = \Delta_n(r_1, \dots, r_k, r_{k+1}, \dots, r_n) \text{ and } \Delta_n(B) = \Delta_n(r_1, \dots, r_{k+1}, r_k, \dots, r_n).$$

From property 2 we get that $\Delta_n(r_1, \ldots, r_k + r_{k+1}, r_k + r_{k+1}, \ldots, r_n) = 0$ (since rows k and k+1 coincide). On the other hand, using property 3 we get

$$\Delta_{n}(r_{1},\ldots,r_{k}+r_{k+1},r_{k}+r_{k+1},\ldots,r_{n}) = \Delta_{n}(r_{1},\ldots,r_{k},r_{k}+r_{k+1},\ldots,r_{n}) + \Delta_{n}(r_{1},\ldots,r_{k+1},r_{k}+r_{k+1},\ldots,r_{n}) = \\ = \Delta_{n}(r_{1},\ldots,r_{k},r_{k},\ldots,r_{n}) + \Delta_{n}(r_{1},\ldots,r_{k},r_{k+1},\ldots,r_{n}) + \Delta_{n}(r_{1},\ldots,r_{k+1},r_{k},\ldots,r_{n}) + \Delta_{n}(r_{1},\ldots,r_{k+1},r_{k+1},\ldots,r_{n}).$$
Since $\Delta_{n}(r_{1},\ldots,r_{k},r_{k},\ldots,r_{n}) = 0 = \Delta_{n}(r_{1},\ldots,r_{k+1},r_{k+1},\ldots,r_{n}),$ we conclude that

$$0 = \Delta_n(r_1, \dots, r_k, r_{k+1}, \dots, r_n) + \Delta_n(r_1, \dots, r_{k+1}, r_k, \dots, r_n) = \Delta_n(A) + \Delta_n(B)$$

i.e. $\Delta_n(B) = -\Delta_n(A)$.

Property 5. Suppose that *B* is obtained from *A* by switching rows *k* and *l* with k < l. This can be achieved by several switches of consecutive rows, namely switch rows *k* and k+1, then k+1, k+2,..., then l-1, l then l-2, l-1,..., then finally k+1, k. We performed a total of (l-k) + (l-k-1) = 2(l-k) - 1 switches of consecutive rows. By property 4, each times we switch two consecutive rows, the determinant

changes sign. Thus, to get $\Delta_n(B)$ we need to switch the sign of $\Delta_n(A)$ an odd number of times, so $\Delta_n(B) = -\Delta_n(A)$.

Property 6. If rows k and l of A are equal, k < l, then let B be obtained from A by switching rows k+1 and l. By property 5, $\Delta_n(B) = -\Delta_n(A)$. Since B has two consecutive rows equal, we get $\Delta_n(B) = 0$ by property 2. Thus $\Delta_n(A) = 0$.

Property 7. Let r_1, \ldots, r_n be the rows of A. Then $E_{i,j}(a)A$ has *i*-th row equal to $r_i + ar_j$ and *k*-th rows of A and $E_{i,j}(a)A$ coincide for $k \neq i$. By property 3, we have

$$\Delta_n(E_{i,j}(a)A) = \Delta_n(r_1, \dots, r_{i-1}, r_i + ar_j, \dots, r_n) = \Delta_n(r_1, \dots, r_{i-1}, r_i, \dots, r_n) + a\Delta_n(r_1, \dots, r_{i-1}, r_j, \dots, r_n).$$

Note that $\Delta_n(r_1, \ldots, r_{i-1}, r_i, \ldots, r_n) = \Delta_n(A)$ and, by property 6, $\Delta_n(r_1, \ldots, r_{i-1}, r_j, \ldots, r_n) = 0$, since the *i*th and *j*th rows are the same. Thus $\Delta_n(E_{i,j}(a)A) = \Delta_n(A)$.

Property 8. This property is a special case of property 3, with b = 0 (recall that $D_i(a)A$ is obtained from A by multiplying the *i*-th row of A by a).

Property 9. Suppose that the *i*-th row of A is zero. Then $D_i(2)A = A$. Thus, by property 8,

$$2\Delta_n(A) = \Delta_n(D_i(2)A) = \Delta_n(A)$$

which clearly implies that $\Delta_n(A) = 0$.

Property 10. This follows immediately from property 1 and properties 7,8,5 respectively applied to the matrix A = I.

Property 11. This follows immediately from property 10 and property 7 if $E = E_{i,j}(a)$, property 8 if $A = D_i(a)$, and property 5 if $E = S_{i,j}$.

Property 12. If A is invertible then $A = E_1 \dots E_k$ for some elementary matrices E_1, \dots, E_k . By property 11, for any matrix B we have

$$\Delta_n(AB) = \Delta_n(E_1 \dots E_k B) = \Delta_n(E_1)\Delta_n(E_2 \dots E_k B) = \dots = \Delta_n(E_1)\Delta_n(E_2)\dots\Delta_n(E_k)\Delta_n(B).$$

Using B = I we get $\Delta_n(A) = \Delta_n(E_1)\Delta_n(E_2)\dots\Delta_n(E_k) \neq 0$ since each $\Delta_n(E_i) \neq 0$ by property 10. Returning to arbitrary B, we get

$$\Delta_n(AB) = \Delta_n(E_1)\Delta_n(E_2)\dots\Delta_n(E_k)\Delta_n(B) = \Delta_n(A)\Delta_n(B).$$

Property 13. If A is not singular than A is invertible and $\Delta_n(A) \neq 0$ by property 12.

Suppose now that A is singular and let B be the reduced row echelon form of A. Since A is singular, the last row of B is zero. Thus $\Delta_n(B) = 0$ by property 9. There is and invertible matrix M such that A = MB (since A, B are row equivalent). Thus, using property 12,

$$\Delta_n(A) = \Delta_n(MB) = \Delta_n(M)\Delta_n(B) = 0.$$

Property 14. If A is invertible, the result follows from property 12. If A is singular then AB is singular too. By property 13, we have $\Delta_n(A) = 0 = \Delta_n(AB)$, so the results holds in this case as well.

Property 15. Recall that $E_{i,j}(a)^t = E_{j,i}(a)$, $D_i(a)^t = D_i(a)$ and $S_{i,j}^t = S_{i,j}$. It follows that $\Delta_n(E) = \Delta_n(E^t)$ if E is an elementary matrix. If A is singular then so is A^t and we have $\Delta_n(A) = 0 = \Delta_n(A^t)$. If A is invertible then $A = E_1 \dots E_k$ for some elementary matrices E_1, \dots, E_k . Then $A^t = E_k^t \dots E_1^t$ and

$$\Delta_n(A) = \Delta_n(E_1)\Delta_n(E_2)\dots\Delta_n(E_k) = \Delta_n(E_1^t)\Delta_n(E_2^t)\dots\Delta_n(E_k^t) = \Delta_n(E_k^t)\dots\Delta_n(E_2^t)\Delta_n(E_1^t) = \Delta_n(A^t).$$

This completes our second step (which shows that properties 4-15 are consequences of properties 1-3, i.e. any function of matrices with properties 1-3 must have properties 4-15). Our last step is to get properties 16-20.

Property 16. Let r_1, \ldots, r_n be the rows of A and let B be the matrix with rows $r_i, r_1, \ldots, r_{i-1}, r_{i+1}, \ldots, r_n$. Clearly $A_{i,j} = B_{1,j}$ for $j = 1, \ldots, n$. Note that B can be obtained from A by switching rows i and i-1, Then i-1 and i-2, ..., then 2 and 1. This requires i-1 switches. It follows that $\Delta_n(B) = (-1)^{i-1} \Delta_n(A)$. Since the first row of B is $(a_{i,1}, \ldots, a_{i,n})$, we have

$$(-1)^{i-1}\Delta_n(A) = \Delta_n(B) = \sum_{j=1}^n (-1)^{1+j} a_{i,j} \Delta_{n-1}(B_{1,j}) = \sum_{j=1}^n (-1)^{1+j} a_{i,j} \Delta_{n-1}(A_{i,j}).$$

Multiplying both sides by $(-1)^{i-1}$ we get

$$\Delta_n(A) = (-1)^{i-1} \sum_{j=1}^n (-1)^{1+j} a_{i,j} \Delta_{n-1}(A_{i,j}) = \sum_{j=1}^n (-1)^{i+j} a_{i,j} \Delta_{n-1}(A_{i,j}).$$

Property 17. Let *B* be the matrix obtained from *A* by replacing the *i*-th row of *A* by *k*-th row of *A*. Thus the *i*-th and *k*-th rows of *B* coincide and therefore $\Delta_n(B) = 0$ by property 6. Clearly $B_{i,j} = A_{i,j}$ for $j = 1, \ldots, n$. Since the *i*-th row of *B* is $(a_{k,1}, \ldots, a_{k,n})$, the Laplace expansion by the *i*-th row of *B* (property 16) yields

$$0 = \Delta_n(B) = \sum_{j=1}^n (-1)^{i+j} a_{k,j} \Delta_{n-1}(B_{i,j}) = \sum_{j=1}^n (-1)^{i+j} a_{k,j} \Delta_{n-1}(A_{i,j}).$$

Property 18. Note that the *i*, *i*-entry of AA^D is given by the right side of the formula in property 15. Hence the diagonal entries of AA^D are all equal to $\Delta_n(A)$. For $k \neq i$, the *k*, *i*-entry of AA^D is given by the right side of the formula in property 17. Thus the off-diagonal entries of AA^D are all zero. This proves that $AA^D = \Delta_n(A)I$.

Consider now the transpose A^t of A. It is clear that $(A^t)_{i,j} = (A_{j,i})^t$. Since $\Delta_n((A_{j,i})^t) = \Delta_n(A_{j,i})$ by property 15, we see that $(A^t)^D = (A^D)^t$. Since we know that $A^t(A^t)^D = \Delta_n(A^t)I$, we conclude that $A^t(A^D)^t = \Delta_n(A)I$. Transposing both sides of the last equality we get

$$\Delta_n(A)I = (\Delta_n(A)I)^t = (A^t(A^D)^t)^t = ((A^D)^t)^t (A^t)^t = A^D A.$$

Property 19. Note that the right hand side of the formula in property 19 is equal to the j, j-entry of $A^D A$, which is $\Delta_n(A)$ by property 18.

Property 20. Note that the right hand side of the formula in property 20 is equal to the k, j-entry of $A^D A$, which is 0 by property 18.

This completes the justification of properties 1-20.

Exercise: Show that $(AB)^D = B^D A^D$ (this is quite easy when A or B is invertible, but more subtle in the remaining case).