
MATH 304 - Linear Algebra

In the last note we defined determinant of a square matrix and established a long list of properties
of the determinant. We ere denoting the determinant of an n × n matrix A by ∆n(A). From now on
we will use the notation det A for the determinant of A. Another common notation for the determinant
of A is |A|. This notation is particularly useful when applied to explicit matrices. For example, the

determinant of a 4 × 4 matrix







0 3 2 0
−2 −5 0 2
−3 0 5 3

0 −3 −2 0






is denoted by
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∣

∣

∣

∣

∣

∣

∣

0 3 2 0
−2 −5 0 2
−3 0 5 3
0 −3 −2 0

∣

∣

∣

∣

∣

∣

∣

∣

, which is simpler and

more convenient than det







0 3 2 0
−2 −5 0 2
−3 0 5 3

0 −3 −2 0






. We will use both notations.

Some of the 20 properties of the determinant established in the last note are special cases of the other
properties. We stated these properties the way we did to structure our justification of the properties.
Now we can summarize the properties in a shorter list:

1. If A, B, C are n × n matrices such that k-th rows of A, B, C coincide for k 6= i and the i-th
row of C is equal to the sum of a times the i-th row of A and b times the i-th row of B then
det C = a det A + b det B.

2. det A = 0 if and only if A is singular.

3. det(AB) = det A det B for any square matrices A, B of the same size.

4. det Ei,j(a) = 1, det Di(a) = a, det Si,j = −1.

5. det A = det At for any square matrix A.

6. AAD = (det A)I = ADA.

7. Laplace expansion by the i-th row (i = 1, 2, ..., n): if A = [ai,j ] then

det A =

n
∑

j=1

(−1)i+jai,j det Ai,j .

8. Laplace expansion by the j-th column (j = 1, 2, ..., n): if A = [ai,j ] then

det A =

n
∑

i=1

(−1)i+jai,j det Ai,j .

These properties provide several tools to compute determinants of concrete matrices. For example,
properties 3 and 4 tell us that performing a row or column operation of the form Ei,j(a) (i.e. adding a
multiple of one row (column) to another row (column)) does not change the value of the determinant
and switching 2 rows changes sign of the determinant. Laplace expansions allow us to use any row or
column to expand the determinant and reduces the computation to computations of determinants of
smaller size.

One very useful property of determinants is the following.

If A = [ai,j ] is lower-triangular or upper-triangular then det A = a1,1a2,2 . . . an,n is the product of
diagonal entries of A.

Indeed, suppose that A is lower triangular of size n. Thus a1,2 = . . . = a1,n = 0. Laplace expansion
by the first row yields then det A = a1,1 det A1,1. Note that A1,1 is also lower-triangular with diagonal
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entries a2,2, . . . , an,n. Now we can repeat the process (or use induction), and then repeat again and so
on and eventually arrive at det A = a1,1a2,2 . . . an,n.

When A is upper triangular then At is lower lower-triangular with the same diagonal entries as A,
hence the result follows from property 5.

Exercise. Let M be a matrix of the form

[

A B
0 C

]

, where A is a k × k matrix, C is a m × m matrix,

B is a k × m matrix and 0 is a m × k matrix whose all entries are 0. Prove that det M = det A det C.

Example. Computation of determinants of 2×2 matrices is straightforward using the formula

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

=

ad − bc. For example,
∣

∣

∣

∣

3 4
4 5

∣

∣

∣

∣

= 15 − 16 = −1.

Example. Computation of 3 × 3 determinants is still relatively simple. One method is to use Laplace
expansion in some row or column to reduce to 2 × 2 determinants. We look for a row or column with
as many zero entries as possible. For example,

∣

∣

∣

∣

∣

∣

1 2 3
4 0 5
2 3 1

∣

∣

∣

∣

∣

∣

= (−1) · 2 ·

∣

∣

∣

∣

4 5
2 1

∣

∣

∣

∣

+ (−1) · 3 ·

∣

∣

∣

∣

1 3
4 5

∣

∣

∣

∣

= (−2)(4 − 10) − 3(5 − 12) = 33.

We used Laplace expansion in the second column.
Alternatively, we could first do column operations E1,2(−2) (add −2 times the first column to the

second column) and E1,3(−3), which do not change the value of the determinant and then use Laplace
expansion in the first row:

∣

∣

∣

∣

∣

∣

1 2 3
4 0 5
2 3 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 0 0
4 −8 −7
2 −1 −5

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−8 −7
−1 −5

∣

∣

∣

∣

= 40 − 7 = 33.

Example. For the 4 × 4 determinant

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 0
−2 −5 0 2
−3 0 5 3
0 −3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

we could use Laplace expansion in the first

row or column, but this would require computing two 3 × 3 determinants. We could use elementary row
operation E3,2(−3/2) to make one more entry in the first column 0, but this would introduce fractions.
So we first multiply second row by −3, third row by 2 and then do the row operation E3,2(1). We need
to remember that multiplying a row or column of a matrix A by a produces a matrix whose determinant
is a det A, so we need to divide by a to compensate:

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 0
−2 −5 0 2
−3 0 5 3
0 −3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

=
1

−3

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 0
6 15 0 −6

−3 0 5 3
0 −3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

=
1

−3
·
1

2

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 0
6 15 0 −6

−6 0 10 6
0 −3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

=
−1

6

∣

∣

∣

∣

∣

∣

∣

∣

0 3 −2 0
6 15 0 −6
0 15 10 0
0 −3 −2 2

∣

∣

∣

∣

∣

∣

∣

∣

=

Now we do Laplace expansion in the first column

=
−1

6
· (−1) · 6

∣

∣

∣

∣

∣

∣

3 −2 0
15 10 0

−3 −2 2

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

3 −2
15 10

∣

∣

∣

∣

= 120.

We are now ready to discuss a method of finding eigenvalues of a given matrix A. Recall that λ is an
eigenvalue of A if and only if A − λI is singular, which happens if and only if det(A − λI) = 0. This
prompts the following important definition.
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Definition. Let A be an n × n matrix. The function pA(t) = det(A − tI) is called the characteristic

polynomial of the matrix A.

It is not hard to see that pA(t) is indeed a polynomial in t of degree n with leading coefficient (−1)n.
This justifies the name.

The following proposition is immediate from our discussion so far.

Proposition. Let A be an n × n matrix. λ is an eigenvalue of A if and only if it is a root of the
characteristic polynomial pA(t) of the matrix A.

Our strategy for finding the eigenvalues of A is now straightforward: compute the characteristic
polynomial of A and then find its roots.

Example. Finding the characteristic polynomial of a 2×2 matrix is quite simple. Indeed, if A =

[

a b
c d

]

then

pA(t) =

∣

∣

∣

∣

a − t b
c d − t

∣

∣

∣

∣

= (a − t)(d − t) − bc = t2 − (a + d)t + ad − bc.

For example, in note 17 we considered the matrix A =

[

1/3 2/3
1/2 1/2

]

. Thus pA(t) = t2 − 5

6
t − 1

6
. It is easy

to see that the roots of this polynomial are 1 and −1/6.

Example. In note 17 we also looked at the matrix





4 0 1
2 3 2
1 0 4



. The characteristic polynomial of this

matrix is

p(t) =

∣

∣

∣

∣

∣

∣

4 − t 0 1
2 3 − t 2
1 0 4 − t

∣

∣

∣

∣

∣

∣

= (3−t) =

∣

∣

∣

∣

4 − t 1
1 4 − t

∣

∣

∣

∣

= (3−t)((4−t)2−1) = (3−4)(4−t−1)(4−t+1) = (3−t)2(5−t).

Thus 3 and 5 are the roots of p(t), i.e. they are the eigenvalues of our matrix (as claimed in note 17).

Example. In note 18 we worked with the matrix M =







0 3 2 0
−2 −5 0 2
−3 0 5 3

0 −3 −2 0






. The characteristic polynomial

of M is

pM (t) =

∣

∣

∣

∣

∣

∣

∣

∣

−t 3 2 0
−2 −5 − t 0 2
−3 0 5 − t 3
0 −3 −2 −t

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−t 3 2 −t
−2 −5 − t 0 0
−3 0 5 − t 0
0 −3 −2 −t

∣

∣

∣

∣

∣

∣

∣

∣

=

(we added the first column to the last column; now we use Laplace expansion in the last column)

= (−1)(−t)

∣

∣

∣

∣

∣

∣

−2 −5 − t 0
−3 0 5 − t
0 −3 −2

∣

∣

∣

∣

∣

∣

+ (−t)

∣

∣

∣

∣

∣

∣

−t 3 2
−2 −5 − t 0
−3 0 5 − t

∣

∣

∣

∣

∣

∣

=

(now we use Laplace expansion in first column for the first 3 × 3 determinant and Laplace expansion in
the third column for the second determinant)

= t

(

(−2)

∣

∣

∣

∣

0 5 − t
−3 −2

∣

∣

∣

∣

+ (−1)(−3)

∣

∣

∣

∣

−5 − t 0
−3 −2

∣

∣

∣

∣

− 2

∣

∣

∣

∣

−2 −5 − t
−3 0

∣

∣

∣

∣

− (5 − t)

∣

∣

∣

∣

−t 3
−2 −5 − t

∣

∣

∣

∣

)

=

t((−2)3(5−t)+3(−5−t)(−2)−2·3(−5−t)−(5−t)(t(5+t)+6)) = t(6t−30+6t+30+30+6t−(5−t)(t2+5t+6)) =
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= t(18t + 30 + t3 + 5t2 + 6t − 5t2 − 25t − 30) = t(t3 − t) = t2(t2 − 1) = t2(t − 1)(t + 1).

We see that the roots of pM are 0, 1, −1 (as claimed in note 18).

Example. The characteristic polynomial of the matrix





0 0 −a
1 0 −b
0 1 −c



 is

∣

∣

∣

∣

∣

∣

−t 0 −a
1 −t −b
0 1 −c − t

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

0 −t2 −a − bt
1 −t −b
0 1 −c − t

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−t2 −a − bt
1 −c − t

∣

∣

∣

∣

= −(t3 + ct2 + bt + a)

(our first step was the row operation E1,2(t)). We see that any cubic polynomial with leading coefficient
−1 can be the characteristic polynomial of a 3 × 3 matrix.

We reduced the question of finding eigenvalues to the problem of finding roots of a polynomial. This is
not an easy problem in general, but there are formulas for roots of polynomials of degree at most 4 and
there are techniques to find close approximations to the roots of a polynomial.

Challenge. Extend the last example to matrices of any size.
We end this note with some important observations about characteristic polynomials and eigenspaces.
First a simple but important to remember remark.

If C is invertible then det(C−1) = (det C)−1.

Indeed, since I = CC−1, we have 1 = det I = det(CC−1) = det C det C−1, i.e. det(C−1) =
(det C)−1.

Now we have the following important result.

Proposition. Similar matrices have equal determinants and equal characteristic polynomials.

Indeed, suppose that A and B are similar. This means that B = CAC−1 for some invertible matrix
C. Thus det(B) = det(CAC−1) = det(C) det(A) det(C−1) = det A. Moreover, we have

B − tI = CAC−1 − tI = C(A − tI)C−1

so B − tI and C − tI are similar. Hence

pB(t) = det(B − tI) = det(A − tI) = pA(t).

This proposition allows us to define the determinant and the characteristic polynomial of a linear
transformation from a finite dimensional vector space to itself.

Definition. Let T : V −→ V be a linear transformation (V finite dimensional). The determinant
and the characteristic polynomial of the matrix BTB are the same for every basis B of V and they are
called the determinant and the characteristic polynomial of T respectively.

Recall now that if f(t) is a polynomial and λ is a root of f then there is m > 0 such that f(t) =
(t − λ)mg(t), where g(t) is a polynomial and g(λ) 6= 0. The number m is called the multiplicity of the
root λ.
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Theorem. Let T : V −→ V be a linear transformation. Let p(t) be the characteristic polynomial of
T and let λ be a root of p(t), so λ is an eigenvalue of T . The dimension d of the eigenspace V (λ) is
smaller or equal than the multiplicity of λ as a root of p(t).

Indeed, choose a basis v1, . . . , vd of the eigenspace V (λ). We know that we can extend it to a basis B
of V by adding some vectors vd+1, . . . , vn, n = dim V . The matrix of T in the basis B has the following

form

[

λId X
0 A

]

, where Id is the identity matrix of size d, X is some d × (n − d) matrix , A is a square

matrix of size n − d and 0 is the (n − d) × d zero matrix. Using Laplace expansion by the first column
we get

p(t) =

∣

∣

∣

∣

(λ − t)Id X
0 A − tI

∣

∣

∣

∣

= (λ − t)

∣

∣

∣

∣

(λ − t)Id−1 Y
0 A − tI

∣

∣

∣

∣

where Y is obtained from X by removing its first row. Repeating this another d − 1 times we get that

p(t) = (t − λ)d det(A − tI).

Since det(A − tI) is a polynomial, it follows that the multiplicity of λ as a root of p(t) is at least d as
claimed.
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