
MATH 304 - Linear Algebra

One of the key driving forces for the development of linear algebra was the profound idea (going
back to 17th century and the work of Pierre Fermat and Rene Descartes) that geometry can be studied
via algebraic methods by introducing coordinates. Interesting geometric objects and relations between
them can be then viewed in terms of equations which can be studied using algebraic methods.

In geometry and in many applications, vectors appear naturally equipped with additional structure:
the concept of a length and the concept of an angle between two vectors. To motivate the ideas leading
to such concepts let us recall some basic facts from plane geometry.

A starting point is the theorem of cosines, which should be thought of as an extension of Pythagoras
theorem, and which (in a slightly different form) has been known at least since the times of Euclid (3rd
century B.C.). To recall this theorem, consider a triangle ABC and let α be the angle ∠BAC. Then
we have

Theorem of cosines. BC2 = AB2 + AC2 − 2AB · AC cos α.

Suppose now that we use cartesian coordinates in which our points are A = (0, 0), B = (s, t) and
C = (p, q). Then AB2 = s2 + t2, AC2 = p2 + q2 and

BC2 = (s − p)2 + (t − q)2 = s2 − 2sp + p2 + t2 − 2tq + q2 = AB2 + AC2 − 2(sp + tq).

Comparing this to the theorem of cosines, we conclude that

AB · AC cos α = sp + tq.

Thinking now in terms of vectors
−−→
AB = v = (s, t) and

−→
AC = w = (p, q), we see that |v||w| cos α = v · w,

where on the right we have the dot product of the vectors v and w and on the left |v| and |w| denote
the length of v, w and α is the angle between v and w. Note also that |v| =

√
s2 + t2 =

√
v · v, and

similarly |w| =
√

w · w. Thus, the geometric concepts of length and angle can be expressed in terms of
the dot product: the length of a vector v is |v| =

√
v · v and the angle ∠(v, w) between vectors v and w

in the angle [0, π] such that

cos∠(v, w) =
v · w

|v||w| .

Similar formulas can be easily obtained for vectors in R
3 and we could use dot product in R

n to define
the concept of length and angle using the same formulas. Unfortunately, the dot product makes only
sense in R

n, while we would like to extend the ideas of length and angle to all vector spaces. Thus we
need to find a good analog of the dot product which works in an arbitrary vector space. A nice example
to think about is a subspace V of R

n, for example the plane x1 + x2 + x3 = 0 in R
3. Since we can

measure length and angle in R
3, we can restrict our attention just to the subspace and study the length

and the angles for vectors in the subspace. Suppose now that we forget that our subspace lives inside
R

3 (which is equipped with nice system of coordinates) so we need to find formulas for length and angle
in the subspace without any reference to the bigger space R

3. For example, we can choose a basis of our
subspace, say (1, 1, −2), (1, −2, 1) in our specific example, and then we want to find formulas for length
and angle in terms of the coordinates in the chosen basis. In our example, if v has coordinates (a, b)
and w has coordinates (e, f) then v = (a + b, a − 2b, −2a + b) and w = (e + f, e − 2f, −2e + f). Thus

v · w = (a + b)(e + f) + (a − 2b)(e − 2f) + (−2a + b)(−2e + f) = 6ae − 3af − 3be + 6bf

and |v| =
√

6a2 − 6ab + 6b2.
After analyzing several similar examples it is not hard to come with the following concept, which

will play the role of a dot product in an abstract vector space V .
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Definition. An inner product on a vector space V is a function V × V −→ R which to any pair
of vectors u, w of V assigns a real number, which we will denote by < u, w >, such that the following
conditions are satisfied:

1. < u, w >=< w, u > for any two vectors u, w ∈ V .

2. < au1 + bu2, w >= a < u1, w > +b < u2, w > for any vectors u1, u2, w ∈ V and any numbers a, b.

3. < u, u > is positive (i.e. < u, u >> 0) for any non-zero vector u ∈ V .

We often state property 1 by saying that the inner product is symmetric. The symmetry and property
2 easily imply that

< w, au1 + bu2 >= a < w, u1 > +b < w, u2 > for any vectors u1, u2, w ∈ V and any numbers a, b.

For that reason we often state property 2 by saying that the inner product is bilinear, i.e. when one
of the vectors is fixed, the inner product is a linear function of the second vector. Note that property
2 implies that < 0, w >= 0 for any vector w. In particular < 0, 0 >= 0. Property 3 is often stated by
saying that the inner product is positive definite. It implies that < v, v >= 0 if and only if v = 0.

Here are some important examples of inner products.

Example 1. Let V = R
n and let < u, w. = u · w be the dot product. We leave it as a simple exercise

that this is an inner product on R
n.

Example 2. Let V be a vector space with an inner product < , >. If W is a subspace of V then the
restriction of the inner product < , > to the subspace W is an inner product on W . Starting with the
dot product on R

n and restricting it to various subspaces provides a large family of vector spaces with
an inner product.

Example 3. Consider the space Pn of all polynomials of degree at most n. Let a < b we real numbers

and define < f, g >=
∫ b

a
f(x)g(x)dx. Again , we leave this as a simple exercise that this defines an

inner product on Pn. As a matter of fact, the same formula defines an inner product on the space of all
continuous function on an interval containing the numbers a and b.

Example 4. Let V = R
2. Define < (a, b), (c, d) >= 6ac − 3ad − 3bc + 6bd. It is not hard to check that

this is an inner product on V .

Our next step is to see that the concept of an inner product is indeed a good generalization of the dot
product.

Theorem. Let < , > be an inner product on a vector space V .

1. 2 < u, w >=< u + w, u + w > − < u, u > − < w, w > for any vectors u, w ∈ V .

2. If u, w ∈ V and < v, u >=< v, w > for every v ∈ V then u = w.

3. Cauchy-Schwartz inequality: < u, w >2 ≤< u, u > · < w, w > for any u, w ∈ V .

To see 1. we use the bilinear property of the inner product:

< u + w, u + w >=< u, u + w > + < w, u + w >=< u, u > + < u, w > + < w, u > + < w, w >=

=< u, u > + < w, w > −2 < u, w >

which clearly is equivalent to 1.
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For 2. note that the assumption means that < v, u − w >= 0 for every v. Taking v = u − w we get
< v, v >= 0 which means that v = u − w = 0, i.e. u = w (recall that inner product is positive definite).

The Cauchy-Schwartz inequality is very important. As we will see soon, it is this inequality which
will allow us introduce the concepts of a length and an angle and show that they have the desired
properties. To justify the Cauchy-Schwartz inequality, consider u, w ∈ V and note that for every real
number t we have < u + tw, u + tw >≥ 0. Note that

< u + tw, u + tw >=< u, u > +2 < u, w > t+ < w, w > t2.

Now, considered as a function of t, the expression above is a quadratic polynomial, and we know that it
is always non-negative. This means that this quadratic polynomial either has no real roots or has exactly
one real root. Recall that this happens if and only if the discriminant of the quadratic polynomial is
≤ 0:

(2 < u, w >)2 − 4 < u, u > · < w, w >≤ 0.

This is clearly equivalent to the Cauchy-Schwartz inequality.

Exercise. Show that the equality holds in the Cauchy-Schwartz inequality if and only if either u = 0
or w = tu for some t (i.e. the vectors u, w are linearly dependent).

We now follow our original discussion an introduce the following definition.

Definition. Let < , > be an inner product on a vector space V . The length ||v|| of a vector v is
defined as ||v|| =

√
< v, v >.

The following result should be a convincing evidence that this is the right definition.

Theorem. Let < , > be an inner product on a vector space V .

1. ||v|| > 0 for any non-zero vector v ∈ V and ||0|| = 0.

2. If ||av|| = |a|||v|| for every v ∈ V every number a.

3. | < u, w > | ≤ ||u|| · ||w|| for any u, w ∈ V .

4. triangle inequality: ||u ± w|| ≤ ||u|| + ||w|| for any u, w ∈ V .

Property 1 is just a different way of saying that the inner product is positive definite.
For property 2, note that < av, av >= a < v, av >= a2 < v, v >. Taking square roots yields 2.
Property 3 is just a restatement of the Cauchy-Schwartz inequality (by taking square roots of both

sides).
For property 4 note that

||u ± w||2 =< u ± w, u ± w >=< u, u > ±2 < u, w > + < w, w >= ||u||2 ± 2 < u, w > +||w||2 ≤

≤ ||u||2 ± 2||u|| · ||w|| + ||w||2 = (||u|| + ||w||)2

(we used property 3: ± < u, w >≤ ||u|| · ||w||).

Exercise. Show that ||u + w|| = ||u|| + ||w|| if and only if either w = 0 or u = tw for some t ≥ 0.

We can now define the angle between two vectors.
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Definition. Let < , > be an inner product on a vector space V . The angle ∠(u, w) between two

vectors u, w ∈ V is the unique angle in the interval [0, π] such that cos∠(u, w) =
< u, w >

||u|| · ||w|| .

To see that this definition is meaningful, recall cos defines a bijection between [0, π] and [−1, 1]. In

other words, for any number t in [−1, 1] there is unique α ∈ [0, π] such that cos α = t. Since
< u, w >

||u|| · ||w||
is in [−1, 1] by property 3. from the last theorem, the angle ∠(u, w) is indeed well defined.

Having defined the angle between vectors we can now speak about perpendicular vectors. Recall that
cos(π/2) = 0 so ∠(u, w) = π/2 if and only if < u, w >= 0. This leads us to the following definition.

Definition. Let < , > be an inner product on a vector space V . We say that vectors u, w ∈ V are
orthogonal (or perpendicular), and write u ⊥ w if ∠(u, w) = π/2. Equivalently, u ⊥ w if and only
if < u, w >= 0

For example, in R
n with the dot product as the inner product, any two different vectors in the

standard basis are orthogonal. Basis with this property are very convenient when working with inner
products. Thus we introduce the following definition.

Definition. Let < , > be an inner product on a vector space V . A sequence of vectors v1, v2, . . . , vk

is called orthogonal if all the vectors are non-zero and they are orthogonal to each other, i.e. vi ⊥ vj

for i 6= j. We say that a sequence of vectors v1, v2, . . . , vk is orthonormal if it is orthogonal and all
the vectors have length 1.

A vector of length 1 is often called a unit vector. Note that if v is a non-zero vector then
1

||v||v is

a unit vector. For simplicity, we write
v

||v|| for
1

||v||v. The following observation is straightforward.

If v1, v2, . . . , vk is orthogonal then v1/||v1||, v2/||v2||, . . . , vk/||vk|| is orthonormal.

The following result will play important role.

Theorem. If v1, . . . , vk is an orthogonal sequence then it is linearly independent.

Indeed, suppose that a1v1 + a2v2 + . . . akvk = 0. By the bilinear property of the inner product we
have

0 =< 0, v >=< a1v1 + a2v2 + . . . akvk, v >= a1 < v1, v > +a2 < v2, v > + . . . + ak < vk, v >

for any vector v. For i = 1, . . . k, take v = vi and note that < vj , vi >= 0 for j 6= i. Thus 0 = ai <
vi, vi >. Since < vi, vi >> 0, we conclude that ai = 0. Thus the only way a1v1 + a2v2 + . . . akvk = 0 is
when a1 = . . . = ak = 0. This means that our vectors are linearly independent.

4



The last theorem implies that an orthogonal sequence can not be longer that the dimension of V . It is
natural to ask whether we can always find an orthogonal basis. We will see that the answer is positive,
In fact, we will soon learn a very nice procedure which changes and linearly independent sequence of
vectors into and orthogonal sequence. The procedure is based on the following observation. Suppose
w1, . . . , wk is an orthogonal sequence. Suppose v is a non-zero vector which is not a linear combination
of the vectors w1, . . . , wk. Can we modify v by some linear combination of w1, . . . , wk to get a vector
orthogonal to each of the vectors w1, . . . , wk? In other words, we are asking if there are numbers
a1, . . . , ak such that v − (a1w1 + . . . + akwk) is orthogonal to wi for i = 1, . . . , k. This means that

< v − (a1w1 + . . . + akwk), wi >=< v, wi > −ai < wi, wi >= 0 so ai =
< v, wi >

< wi, wi >
.

We see that there is a unique choice of the coefficients a1, . . . , ak which satisfies our requirements. This
observation leads to the following procedure.

Gramm-Schmidt orthogonalization process. Let < , > be an inner product on a vector space V
and let v1, . . . , vk be linearly independent. Define recursively vectors w1, . . . , wk as follows:

w1 = v1, wj+1 = vj+1 −
(

< vj+1, w1 >

< w1, w1 >
w1 +

< vj+1, w2 >

< w2, w2 >
w2 + . . . +

< vj+1, wj >

< wj , wj >
wj

)

.

Then

1. w1, w2, . . . , wk is orthogonal.

2. span{w1, . . . , wj} = span{v1, . . . , vj} for j = 1, . . . , k.

The justification of 1 and 2 is quite simple. Assuming that w1, w2, . . . , wj is orthogonal and span{w1, . . . , wj} =
span{v1, . . . , vj} we see that wj+1 − vj+1 ∈ span{w1, . . . , wj}, and therefore

span{w1, . . . , wj , wj+1} = span{w1, . . . , wj , vj+1} = span{v1, . . . , vj , vj+1}.

Furthermore, wj+1 is orthogonal to each of w1, . . . , wj by the computation which led us to the Gramm-
Schmidt process.

One could try to perform the Gramm-Schmidt orthogonalization process without knowing up-front
that v1, . . . , vk are linearly independent. However, if these vectors are actually linearly dependent then
we will get wj = 0 for some j and then the process can not be continued. Thus Gramm-Schmidt
orthogonalization process could be used to detect linear dependence.

Example. Consider the basis v1 = (1, 1, 0), v2 = (1, 0, 1), v3 = (1, 1, 1) of R3 with dot product as the
inner product. Let us apply the Gramm-Schmidt orthogonalization process to the vectors v1, v2, v3. We
have

step 1:
w1 = v1 = (1, 1, 0) and < w1, w1 >= (1, 1, 0) · (1, 1, 0) = 2,

step 2:
< v2, w1 >= (1, 0, 1) · (1, 1, 0) = 1

so

w2 = v2 − < v2, w1 >

< w1, w1 >
w1 = (1, 0, 1) − 1

2
(1, 1, 0) = (

1

2
,

−1

2
, 1),

and

< w2, w2 >= (
1

2
,

−1

2
, 1) · (

1

2
,

−1

2
, 1) =

3

2
.

step 3:

< v3, w1 >= (1, 1, 1) · (1, 1, 0) = 2, < v3, w2 >= (1, 1, 1) · (
1

2
,

−1

2
, 1) = 1
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so

w3 = v3 − < v3, w1 >

< w1, w1 >
w1 − < v3, w2 >

< w2, w2 >
w2 = (1, 1, 1) − 2

2
(1, 1, 0) − 1

3

2

(
1

2
,

−1

2
, 1) = (

−1

3
,

1

3
,

1

3
).

We see that w1, w2, w3 is an orthogonal basis of R3 (verify this!). Thus the vectors w1

||w1|| = ( 1√
2
, 1√

2
, 0),

w2

||w2|| = ( 1√
6
, −1√

6
,

√
2√
3
), w3

||w3|| = ( −1√
3
, 1√

3
, 1√

3
) form an orthonormal basis of R3.

Example. Let V = P3 be the space of polynomials of degree at most 3 with the inner product

< f, g >=
∫ 1

0
f(x)g(x)dx. Consider the basis v1 = 1, v2 = x, v3 = x2, v4 = x3 of V . Let us apply the

Gramm-Schmidt orthogonalization process to the vectors v1, v2, v3, v4. We have
step 1:

w1 = v1 = 1 and < w1, w1 >=

∫ 1

0

1dx = 1,

step 2:

< v2, w1 >=

∫ 1

0

xdx =
1

2

so

w2 = v2 − < v2, w1 >

< w1, w1 >
w1 = x −

1

2

1
· 1 = x − 1

2
,

and

< w2, w2 >=

∫ 1

0

(x − 1

2
)2dx =

1

12
.

step 3:

< v3, w1 >=

∫ 1

0

x2dx =
1

3
, < v3, w2 >=

∫ 1

0

x2(x − 1

2
)dx =

1

12

so

w3 = v3 − < v3, w1 >

< w1, w1 >
w1 − < v3, w2 >

< w2, w2 >
w2 = x2 −

1

3

1
· 1 −

1

12

1

12

(x − 1

2
) = x2 − x +

1

6

and

< w3, w3 >=

∫ 1

0

(x2 − x +
1

6
)2dx =

1

180
.

step 4:

< v4, w1 >=

∫ 1

0

x3dx =
1

4
, < v4, w2 >=

∫ 1

0

x3(x−1

2
)dx =

3

40
, < v4, w3 >=

∫ 1

0

x3(x2−x+
1

6
)dx =

1

120

so

w4 = v4 − < v4, w1 >

< w1, w1 >
w1 − < v4, w2 >

< w2, w2 >
w2 − < v4, w3 >

< w3, w3 >
w3 = x3 −

1

4

1
·1−

3

40

1

12

(x− 1

2
)−

1

120

1

180

(x2 −x+
1

6
) =

= x3 − 1

4
− 9

10
(x − 1

2
) − 3

2
(x2 − x +

1

6
) = x3 − 3

2
x2 +

3

5
x − 1

20
.

Thus 1, x − 1

2
, x2 − x + 1

6
, x3 − 3

2
x2 + 3

5
x − 1

20
is an orthogonal basis of P3.

6


