
MATH 304 - Linear Algebra

In the previous note we learned an important algorithm to produce orthogonal sequences of vectors
called the Gramm-Schmidt orthogonalization process.

Gramm-Schmidt orthogonalization process. Let < , > be an inner product on a vector space V

and let v1, . . . , vk be linearly independent. Define recursively vectors w1, . . . , wk as follows:

w1 = v1, wj+1 = vj+1 −

(

< vj+1, w1 >

< w1, w1 >
w1 +

< vj+1, w2 >

< w2, w2 >
w2 + . . . +

< vj+1, wj >

< wj , wj >
wj

)

.

Then

1. w1, w2, . . . , wk is orthogonal.

2. span{w1, . . . , wj} = span{v1, . . . , vj} for j = 1, . . . , k.

As we noted before, when the process is applied to linearly dependent vectors v1, . . . , vk then we will
get wj = 0 for some j (in fact, j is the smallest index such that vj is a linear combination of v1, . . . , vj−1)
and then the process can not be continued.

Another simple observation is that if the first j vectors of the sequence v1, . . . vk are already orthog-
onal to each other (i.e. the sequence v1, . . . vj is orthogonal) then the Gramm-Schmidt process will yield
w1 = v1, w2 = v2,. . . , wj = vj .

The Gramm-Schmidt orthogonalization has several important consequences which we are going to dis-
cuss now. We will use the term inner product space for a vector space with an inner product.

Theorem. Every finite dimensional inner product space has an orthonormal basis.

Indeed, start with an arbitrary basis v1, . . . , vn and apply the Gramm-Schmidt orthogonalization
process to get an orthogonal sequence w1, . . . , wn. We know that any orthogonal sequence is linearly
independent so w1, . . . , wn is an orthogonal basis (since n = dim V ). Then w1

||w1|| ,
w2

||w2|| , . . . , wn

||wn|| is an

orthonormal basis.

Theorem. Let V be a finite dimensional inner product space. Every orthogonal (orthonormal)
sequence in V can be extended to an orthogonal (orthonormal) basis.

Indeed, suppose that w1, . . . , wk is orthogonal. Then it is linearly independent hence can be ex-
tended to a basis w1, . . . , wk, vk+1, . . . , vn. The Gramm-Schmidt process applied to this basis yields
an orthogonal basis w1, . . . , wk, wk+1, . . . , wn extending our original sequence (we know that the first k

vectors will be unchanged by the Gramm-Schmidt process). If we started with an orthonormal sequence
w1, . . . , wk then w1, . . . , wk,

wk+1

||wk+1|| , . . . , wn

||wn|| is an orthonormal basis extending our sequence.

Orthogonal bases are very convenient for computations:
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Proposition. Let v1, . . . , vn be an orthogonal basis of an inner product space V .

1. For any vector v ∈ V we have

v =
< v1, v >

< v1, v1 >
v1 +

< v2, v >

< v2, v2 >
v2 + . . . +

< vn, v >

< vn, vn >
vn.

2. If T : V −→ V is linear transformation then the matrix A = [ai,j ] representing T in the basis

v1, . . . , vn has entries ai,j =
< vi, T (vj) >

< vi, vi >
.

Indeed, v = a1v1 + . . . + anvn for some scalars a1, . . . , an. Thus

< vi, v >=< vi, a1v1 + . . . + anvn >= a1 < vi, v1 > + . . . + an < vi, vn >= ai < vi, vi >

since < vi, vj >= 0 for j 6= i. It follows that ai = <vi,v>

<vi,vi>
for i = 1, . . . , n which proves part 1.

For part 2 recall that ai,j is the i − th coordinate of T (vj) in the basis v1, . . . , vn. Part 1 tells us that

the i-th coordinate of any vector v in the basis v1, . . . , vn is equal to <vi,v>

<vi,vi>
. Thus ai,j =

<vi,T (vj)>

<vi,vi>
.

The above formulas become even simpler if the basis is orthonormal, as then < vi, vi >= 1:

Proposition. Let v1, . . . , vn be an orthonormal basis of an inner product space V .

1. For any vector v ∈ V we have

v =< v1, v > v1+ < v2, v > v2 + . . . + < vn, v > vn.

2. If T : V −→ V is linear transformation then the matrix A = [ai,j ] representing T in the basis
v1, . . . , vn has entries ai,j =< vi, T (vj) >.

3. if u, w ∈ V have in the basis v1, . . . , vn coordinates (a1, . . . , an) and (b1, . . . , bn) respectively, then
< u, w >= a1b1 + . . .+anbn. In other words, the inner product expressed in the coordinates with
respect to an orthonormal basis is just the dot product of the vectors of coordinates.

Indeed, parts 1 and 2 are just special cases of the previous proposition. Part 3 is a simple computation.
First note that u = a1v1 + . . . + anvn and w = b1v1 + . . . + bnvn. Thus < u, w >= a1 < v1, w >

+ . . . + an < vn, w >. By part 1, < vi, w >= bi for i = 1, . . . , n, so the result follows.

Note that part 3 tells us that any two inner product spaces of the same dimension look the same when
expressed in an orthonormal basis. A more precise way to say this is the following result.

Theorem. Let V and W inner product spaces of the same finite dimension. Let v1, . . . vn be an
orthonormal basis of V and let w1, . . . , wn be an orthonormal basis of W . The linear transformation
T : V −→ W defined by the condition T (vi) = wi for i = 1, 2, . . . , n is an isomorphism which preserves
inner product, i.e.

< T (u), T (v) >W =< u, v >V for any u, v ∈ V

(here < , >V , < , >W denote the inner product on V and W respectively).

Indeed, coordinates of any vector v ∈ V in the basis v1, . . . vn are exactly the same as the coordinates
of T (v) in the basis w1, . . . , wn and the inner products are equal to the dot product of the vectors of
coordinates.
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This result says that any two inner product spaces of the same dimension can be identified (are isomor-
phic). However there are many such identifications (since there are many choices for an orthonormal
basis), none of which can be chosen as preferred in any meaningful way. This is why we study the more
abstract concept of an inner product space rather than just focus on R

n with the dot product.

The orthogonality relation has many nice properties. To state them we introduce the following definition

Definition. Let V be an inner product space and S a subset of V . We define the orthogonal

complement S⊥ of S as the set of all vectors in V which are orthogonal to every vector in S:

S⊥ = {v ∈ V : v ⊥ w for all w ∈ S}.

This concept has the following properties

Theorem. Let V be a finite dimensional inner product space.

1. S⊥ is a subspace of V for any subsets S.

2. If S ⊆ T then T ⊥ ⊆ S⊥.

3. (S⊥)⊥ = span(S).

4. (span(S))⊥ = S⊥.

5. S ∩ S⊥ ⊆ {0}.

6. If W is a subspace of V then any vector v ∈ V can be written in a unique way as w + u, where
w ∈ W and u ∈ W ⊥.

7. If W is a subspace of V then dim W + dim W ⊥ = dim V .

Let us justify all these properties. Let S be a subset of V . Since 0 is perpendicular to all vectors, we have
0 ∈ S⊥. Suppose v, w ∈ S⊥. Then for any u ∈ S we have < v +w, u >=< v, u > + < w, v >= 0+0 = 0.
It follows that v + w is orthogonal to all vectors in S, i.e. v + w ∈ S⊥. Similarly, for any scalar a we
have < av, u >= a < v, u >= a · 0 = 0, so av ∈ S⊥. This proves that S⊥ is a subspace of V .

Clearly if a vector is perpendicular to very vector in T then it is perpendicular to every vector in the
subset S of T , This show that T ⊥ ⊆ S⊥.

By the very definition, every vector in S is orthogonal to any vector in S⊥. It follows that S ⊆ (S⊥)⊥.
Since (S⊥)⊥ is a subspace by part 1, we have span(S) ⊆ (S⊥)⊥. Choose an orthonormal basis v1, . . . vk

of span(S) and complete it to an orthonormal basis of V by adding vk+1 . . . , vn. For j > k the subspace
vj

⊥ contains vectors v1, . . . , vk, hence it contains the whole space span{v1, . . . , vk} = span(S). Thus,
for j > k, the vector vj is orthogonal to every vector in span(S), hence also to every vector in S. In
other words, vj ∈ S⊥ for j > k. Suppose now that v =

∑n

i=1 aivi ∈ (S⊥)⊥. Then 0 =< v, vj >= aj for

j > k. Thus v =
∑k

i=1 aivi ∈ span(S). This shows that (S⊥)⊥ ⊆ span(S). Since we earlier showed the
opposite inclusion, we have the equality claimed in property 3.

By property 3, we have ((S⊥)⊥)⊥ = span(S⊥) = S⊥ (since S⊥ is a subspace). On the other hand, again
by property 3, ((S⊥)⊥)⊥ = (span(S))⊥. This shows property 4.

If a vector v belongs to both S and S⊥ then v ⊥ v, which happens only for v = 0. This shows property
5.

Now we justify property 6. Suppose first that we have two ways of writing v as a sum of a vector from W

and a vector from W ⊥: v = w +u = w1 +u1. Then w −w1 = u1 −u. But w −w1 ∈ W and u1 −u ∈ W ⊥
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so the vector w − w1 = u1 − u is in W ∩ W ⊥. By property 4 we conclude that this vector is 0 so w = w1

and u = u1. This shows that there is at most one way of expressing v as a sum of a vector from W and a
vector from W ⊥. Now choose an orthonormal basis w1, . . . , wk of W and complete it to an orthonormal
basis of V by adding wk+1, . . . , wn. For j > k the vector wj is orthogonal to w1, . . . , wk, hence it is in
W ⊥. Now v = a1w1 + . . . + anwn for some scalars a1, . . . , an. Note that w = a1w1 + . . . akwk ∈ W ,
u = ak+1wk+1 + . . . anwn ∈ W ⊥, and v = w + u. This shows existence of w and u.

Note that if v ∈ W ⊥ then v = 0 + v is the decomposition from property 6, i.e. w = 0, u = v. We
showed above that u is a linear combination of wk+1, . . . , wn. Thus any v ∈ W ⊥ is a linear combination
of wk+1, . . . , wn, so wk+1, . . . , wn is a basis of W ⊥. This shows that dim W ⊥ = n − k = dim V − dim W ,
i.e. we get 7.

Let us discuss now some consequences of property 6. First a definition.

Definition. Let V be an inner product space and W a subspace of V . For v ∈ V define PW (v) to be
the unique vector w ∈ W such that v = w + u for some u ∈ W ⊥. Thus PW : V −→ W is a function
which is called the orthogonal projection onto W .

We will often think of PW as a function PW : V −→ V (whose image is in the subspace W ).

Proposition. Let V be an inner product space and W a subspace of V .

1. PW : V −→ V is a linear transformation.

2. ker PW = W ⊥, image(PW ) = W , and PW ◦ PW = PW .

3. If w1, . . . , wk is an orthogonal basis of W then

PW (v) =
< v, w1 >

< w1, w1 >
w1 +

< v, w2 >

< w2, w2 >
w2 + . . . +

< v, wk >

< wk, wk >
wk.

Indeed, if v1 = z1 +u1, v2 = z2 +u2 with z1, z2 ∈ W and u1, u2 ∈ W ⊥ then v1 +v2 = (z1 +z2)+(u1 +u2)
and av1 = az1 + au1 for any scalar a. Note that z1 + z2 and az1 are in W and u1 + u2, au2 ∈ W ⊥. It
follows that

PW (v1 + v2) = z1 + z + 2 = PW (z1) + PW (z2), and PW (av1) = az1 = aPW (v1).

This shows that PW is linear.
Clearly PW (v) = 0 if and only if v = 0 + u for some u ∈ W ⊥, i.e. if and only if v ∈ W ⊥. This shows

that ker PW = W ⊥. By the very definition, the image of PW is contained in W . On the other hand, if
w ∈ W then w = w + 0 and 0 is in W ⊥, so PW (w) = w. This means that all vectors in W are in the
image of PW , hence image(PW ) = W . We have seen that PW (w) = w for w ∈ W . Since PW (v) is in W

for any v ∈ V , we have PW (PW (v)) = PW (v). Thus PW ◦ PW = PW .
If v ∈ W then we know that v = <v,w1>

<w1,w1>
w1 + <v,w2>

<w2,w2>
w2 + . . . + <v,wk>

<wk,wk>
wk and v = PW (v), so

property 3 holds in this case. If v 6∈ W then w1, . . . , wk, v is linearly independent. The Gramm-Schmidt
process applied to this sequence will yield w1, . . . , wk, u where u ∈ W ⊥. The formula for u yields
v = <v,w1>

<w1,w1>
w1 + <v,w2>

<w2,w2>
w2 + . . . + <v,wk>

<wk,wk>
wk + u. Since the vector <v,w1>

<w1,w1>
w1 + <v,w2>

<w2,w2>
w2 + . . . +

<v,wk>

<wk,wk>
wk is in W , it is equal to PW (v).

Property 3 provides a more geometric view on the Gramm-Schmidt orthogonalization process: the vector
wk is equal to vk − u, where u is the projection of v onto the subspace span{v1, . . . , vk−1}.

The orthogonal projection of a vector v onto a subspace W has an important feature: it minimizes
the length ||v − w|| among all w ∈ W . To see this we first state a simple but important result, which
extends a classical result from Euclidean geometry.
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Pythagoras Theorem. Vectors v and w are orthogonal if and only if ||v + w||2 = ||v||2 + ||w||2.

Indeed,

||v + w||2 =< v + w, v + w >=< v, v > + < w, w > +2 < v, w >= ||v||2 + ||w||2 + 2 < v, w >

so the equality ||v + w||2 = ||v||2 + ||w||2 holds if and only if < v, w >= 0.

Theorem. Let V be an inner product space, let W a subspace of V , and let v ∈ V . Among all vectors
w ∈ W the distance ||v − w|| is shortest possible if and only if w = PW (v).

Indeed, write v = PW (v) + u for some u ∈ W ⊥. For any w ∈ W the vectors PW (v) − w and u are
orthogonal. Thus, by Pythagoras, we have ||v −w||2 = ||(PW (v)−w)+u||2 = ||(PW (v)−w)||2 + ||u||2 ≥
||u||2 with equality if and only if PW (v) − w = 0.
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