
MATH 304 - Linear Algebra

When we work with abstract vector spaces, we usually chose a basis, and then represent vectors via
their coordinates in the chosen basis. Then we compute with the coordinates as we do with vectors in
R

n. Since there is no preferred choice of a basis, we need to be able to compare computations in one
basis to similar computations in another basis. This is done via the transition matrices which provide
a ”translation” from one basis to another. We can then look for a choice of a basis best suited for a
particular problem we need to consider.

Similar philosophy can be applied to inner product spaces. In the last note we have seen that when
working with inner product spaces it is natural and very convenient to use orthonormal bases. One
can say that orthonormal basis for inner product spaces play the same role as arbitrary bases do for
abstract vector spaces. Since there are many choices for an orthonormal basis,it is natural to study
transition matrices from one orthonormal basis to another. It turns out that such matrices have very
special properties.

Suppose that V is an inner product space with orthonormal basis v1, . . . , vn and also with another
orthonormal basis w1, . . . , wn. We will denote the first basis by B and the second by D. Recall that
the i, j-entry of the transition matrix DIB is the i-th coordinate of vj in the basis D. In the last not
we have seen that the i-th coordinate of any vector v in an orthonormal basis w1, . . . , wn is equal to
< wi, v >. Thus the i, j-entry of DIB is equal to < wi, vj >.

Replacing the roles of B and D in the above discussion, we see that the i, j-entry of the matrix BID

is equal to < vi, wj >, which is the same as < wj , vi >, which in turn is the j, i-entry of DIB. This shows
that BID is the transpose of DIB. On the other hand, BID is the inverse of DIB. Thus the transpose
of DIB is the same as the inverse of DIB. This prompts the following definition.

Definition. A square matrix A is called orthogonal when the transpose of A is the inverse of A, i.e.
if AAt = I (equivalently, if A−1 = At).

Thus the transition matrix from one orthonormal basis to another is an orthogonal matrix. In fact, we
have the following result.

Proposition. Let A = [ai,j ] be an n × n matrix. The following conditions are equivalent.

1. A is orthogonal.

2. A is a transition matrix from some orthogonal basis to another.

3. If v1, . . . , vn is an orthonormal basis of an inner product space then the vectors wj = a1,jv1 +
a2,jv2 + . . . + an,jvn, j = 1, . . . , n form another orthonormal basis and A is the transition matrix
form the basis w1, . . . , wn to the basis v1, . . . , vn.

4. The columns of A considered as vectors of in R
n form an orthonormal basis of R

n (with dot
product as an inner product).

5. The rows of A considered as vectors of in R
n form an orthonormal basis of Rn (with dot product

as an inner product).

Indeed, we already know that 2 implies 1.
Suppose that A is orthogonal. Then AAt = I. The i, j-entry of AAt is the dot product of of the i-th

row of A and the j-th row of A (which is the same as the j-th column of At). Thus ri · rj = 0 if i 6= j
and ri · ri = 1 (here ri stands for the i=th row of A). This proves 5. So 1 implies 5.

Suppose A satisfies 5. Then, as we have just seen, ri · rj = 0 if i 6= j and ri · ri = 1. This means that
AAt = I. It follows that AtA = I. But the i, j-entry of AtA is the dot product of the i-th column of A
and the j-th column of A. This means that 4 holds for A. Thus 5 implies 4.
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Suppose A satisfies 4. Let vi and wi be as in property 3. Then the j-th column of A consists of
coordinates of wj in the basis v1, . . . , vn. Since v1, . . . , vn is an orthonormal basis, the inner product
< wi, wj > is the same as the dot product of the coordinate vectors of wi and wj in the basis v1, . . . , vn.
In other words, < wi, wj > is the dot product of the i-th and j-th columns of A. Since A has property
4, we have < wi, wj >= 0 if i 6= j and < wi, wi >= 1 for i = 1, . . . , n. This means that w1, . . . , wn is an
orthonormal basis. Clearly A is the transition matrix form the basis w1, . . . , wn to the basis v1, . . . , vn.
This proves that 4 implies 3.

Finally, it is obvious that 3 implies 2. In summary, we proved the implications 2 ⇒ 1 ⇒ 5 ⇒ 4 ⇒
3 ⇒ 2. This means that all the properties 1-5 are equivalent to each other.

Since (EID)(DIB) =E IB, we easily conclude that product of orthogonal matrices is orthogonal.

Product of orthogonal matrices is orthogonal. The inverse of an orthogonal matrix is orthogonal.

We can also prove this directly: if AAt = I = BBt then

(AB)(AB)t = (AB)(BtAt) = A(BBt)At = AIAt = AAt = I.

Example. For any α the matrix

[

cos α − sin α
sin α cos α

]

is an orthogonal matrix. Considered as a linear

transformation R
2 −→ R

2, this matrix represents rotation counterclockwise about the origin by the
angle α.

Exercise. Prove that if A is orthogonal then det A = ±1.

Exercise. Prove that if A is a 2 × 2 orthogonal matrix then either A =

[

cos α − sin α
sin α cos α

]

or A =
[

cos α sin α
sin α − cos α

]

for some α.

Orthogonal matrices show up also in another context. First a definition.

Definition. Let V be an inner product space. A linear transformation T : V −→ V is called an
isometry if ||Tv|| = ||v|| for every v ∈ V .

We have the following result.

Theorem. Let T : V −→ V be a linear transformation from an inner product space to itself. Following
properties are equivalent.

1. T is an isometry.

2. < Tv, Tw >=< v, w > for any v, w ∈ V .

3. There is an orthonormal basis v1, . . . , vn of V such that T (v1), . . . , T (vn) is also an orthonormal
basis.

4. T (v1), . . . , T (vn) is an orthonormal basis of V for any orthonormal basis v1, . . . , vn of V .

5. There is an orthonormal basis v1, . . . , vn of V in which the matrix representation of T is an
orthogonal matrix.

6. The matrix representation of T in any orthonormal basis of V is an orthogonal matrix.
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Indeed, suppose that T is an isometry. Recall that 2 < v, w >= ||v + w||2 − ||v||2 − ||w||2 for any
v, w ∈ V . Thus

2 < Tv, Tw >= ||Tv+Tw||2−||Tv||2−||Tw||2 = ||T (v+w)||2−||Tv||2−||Tw||2 = ||v+w||2−||v||2−||w||2 = 2 < v, w > .

This shows that property 2 holds. Conversely, if property 2 holds then taking v = w we see that
< T (v), T (v) >=< v, v > for any v. This clearly is the same as property 1. Thus properties 1 and 2 are
equivalent.

Suppose now that property 2 holds. If v1, . . . , vn is an orthonormal basis of V then

< Tvi, T vj >=< vi, vj >=

{

0 if i 6= j

1 if i = j.
.

Thus T (v1), . . . , T (vn) is an orthonormal basis of V . Thus property 4 holds.

Suppose now that property 4 holds. Pick an orthonormal basis v1, . . . , vn. Note that the matrix repre-
sentation of T in the basis v1, . . . , vn is the same as the transition matrix from the basis T (v1), . . . , T (vn)
to the basis v1, . . . , vn (the i-th column of each of these matrices provides coordinates of T (vi) in the
basis v1, . . . , vn.). Since both bases v1, . . . , vn and T (v1), . . . , T (vn) are orthonormal, we know that the
transition matrix is an orthogonal matrix. This shows that property 6 holds.

Clearly property 5 is a special case of property 6.

Suppose now that property 5 holds. Since the matrix of T in the basis v1, . . . , vn is orthogonal, it is
invertible so T is invertible. It follows that T (v1), . . . , T (vn) is a basis of V . As we observed above, the
matrix representation of T in the basis v1, . . . , vn is the same as the transition matrix from the basis
T (v1), . . . , T (vn) to the basis v1, . . . , vn. Thus the transition matrix from the basis T (v1), . . . , T (vn) to
the basis v1, . . . , vn is orthogonal and so its its inverse, i.e. the the transition matrix from the basis
v1, . . . , vn to the basis T (v1), . . . , T (vn) is orthogonal. We know that an orthogonal matrix transitions
an orthogonal basis to an orthogonal basis. Thus T (v1), . . . , T (vn) is an orthogonal basis. This shows
that property 3 holds.

Finally, assume property 3. Consider two vectors v, w in V . Clearly the coordinates of v (respec-
tively w) in the basis v1, . . . , vn are the same as the coordinates of Tv (respectively Tw) in the basis
T (v1), . . . , T (vn). Recall now that inner product of two vectors is equal to the dot product of the vectors
of coordinates in any orthonormal basis. This shows that < v, w >=< Tv, Tw >, i.e. property 2 holds.

In summary, we proved the implications 2 ⇒ 4 ⇒ 6 ⇒ 5 ⇒ 3 ⇒ 2. We also showed that 1 and 2 are
equivalent. This means that all the properties 1-6 are equivalent to each other.

Challenging exercise. Suppose that f : V −→ V is a function such that f(0) = 0 and ||f(v)−f(w)|| =
||v − w|| for any v, w. Prove that f is an isometry (the key point here is to prove that f must be a linear
transformation).

Recall now that a particularly nice linear transformations are those which are diagonalizable. This
means that there exists a basis consisting of eigenvectors. In the context of inner product spaces, the
analogous property would ask for an orthonormal basis consisting of eigenvectors. Consider then a
linear transformation T : V −→ V , where V is an inner product space. Suppose that v1, . . . , vn is an
orthonormal basis consisting of eigenvectors. Thus the matrix P of T in this basis is diagonal. Consider
another orthonormal basis w1, . . . , wn and let A be the transition matrix from the basis w1, . . . , wn to
the basis v1, . . . , vn. Then A is orthogonal and A−1PA is the matrix of T in the basis w1, . . . , wn. Since
A−1 = At and P = P t is symmetric, we see that AtPA is symmetric. Thus the matrix of T in any
orthonormal basis is symmetric. We have the following result.
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Proposition. Let V be an inner product space and let T : V −→ V be a linear transformation.
Following conditions are equivalent.

1. < Tv, w >=< v, Tw > for any v, w ∈ V .

2. There is an orthonormal basis in which T is represented by a symmetric matrix.

3. The matrix representing T in any orthonormal basis is symmetric.

To justify the proposition, suppose first that property 1 holds. If v1, . . . , vn is an orthonormal
basis of V , then the i, j-entry of the matrix M representing T in this basis is < vi, T vj >. Since
< vj , T vi >=< Tvi, vj >=< vi, T vj > (the last equality follows from preoperty 1), the matrix M is
symmetric. This shows that property 3 holds.

Clearly property 2 is a special case of property 3.
Finally, suppose that property 2 holds for some orthonormal basis v1, . . . , vn. Let M be the matrix

representing T in this basis, so M is symmetric. Consider two vectors v, w ∈ V and let (a1, . . . , an)
and (b1, . . . , bn) be the coordinates of v and w respectively in the basis v1, . . . , vn. Let A = [a1, . . . , an],
B = [b1, . . . , bn] be 1 × n matrices whose row list coordinates of v, w respectively. Then the entries
of the n × 1 matrices MAt, MBt are the coordinates of Tv, Tw respectively (in the basis v1, . . . , vn).
The dot product of the vectors of coordinates of v and TW is the only entry of the matrix A(MBt), so
[< v, Tw >] = A(MBt). Similarly, [< Tv, w >] = [< w, Tv >] = B(MAt). Clearly, every 1 × 1 matrix
is symmetric. Thus

[< v, Tw >] = [< v, Tw >]t = (A(MBt)t = (Bt)tM tAt = BMAt = [< Tv, w >].

This means that < Tv, w >=< v, Tw >. So property 1 holds.
In summary, we proved the implications 1 ⇒ 3 ⇒ 2 ⇒ 1. This means that all the properties 1-3 are

equivalent to each other.

Definition. Let V be an inner product space. A linear transformation T : V −→ V is called an
self-adjoint if < Tv, w >=< v, Tw for every v, w ∈ V .

The name may seem unmotivated at this point, but there is a good reason for it. Unfortunately,
providing more details now would take us too far away. Note that the proposition implies in particular
that a matrix A is symmetric if and only if the linear transformation LA is self-adjoint (when we use
the dot product as an inner product on R

n).
Note that we can now reformulate an observation we made earlier as follows:

Let V be an inner product space. If V has an orthonormal basis consisting of eigenvectors of a linear
transformation T : V −→ V then T is self-adjoint. In particular, if R

n has an orthonormal basis
consisting of eigenvectors of a matrix A then A is symmetric.

It turns out that the converse to this statement is also true. In other words, we have the following
important theorem.

Symmetric Matrix Theorem. Let V be an inner product space. V has an orthonormal basis
consisting of eigenvectors of a linear transformation T : V −→ V if and only if T is self-adjoint. In
particular, an n × n matrix A is symmetric if and only if Rn has an orthonormal basis consisting of
eigenvectors of A.
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We will devote the rest of this note to a proof of this result. The key to proving this result is the
following:

A self-adjoint linear transformation has an eigenvalue.

Indeed, suppose that we already proved this result. Consider a self-adjoint linear transformation
T : V −→ V , where dim V = n. We know that T has an eigenvalue λ1. Let v1 be an eigenvector
corresponding to λ1 and let W = {v1}⊥. Replacing v1 by v1/||v1|| if necessary, we may assume ||v1|| = 1.
Thus W is a subspace of V of dimension n − 1. Note that for any w ∈ W we have

< v1, Tw >=< Tv1, w >=< λ1v1, w >= λ1 < v1, w >= 0.

This shows that Tw ∈ W . In other words, T maps W into W . We consider W as an inner product
space with the inner product being the restriction of the inner product on V to the subspace W . Then
TW : W −→ W is clearly self-adjoint, where we write TW for the restriction of T to W . Using induction,
we can assume that we have already constructed an orthonormal basis v2, . . . , vn of W consisting of
eigenvectors of TW . Thus v1, . . . , vn is an orthonormal basis of V consisting of eigenvectors of T . This
proves the hard part of the symmetric matrix theorem.

It remains to prove our key statement, that a self-adjoint linear transformation has an eigenvalue. Let V
be an inner product space and let T : V −→ V be a self-adjoint linear transformation. We will consider
the set U = {v ∈ V : ||v|| = 1 of all vectors of length 1. Choosing and orthonormal basis, we see that a
vector v is in U if and only if its coordinates x1, . . . , xn satisfy x2

1
+ . . . + x2

n = 1. This identifies U with
the subset Sn = {(x1, . . . , xn) ∈ R

n : x2

1
+ . . . + x2

n = 1 of Rn which is often called the unit n-sphere.
We will use without proof the following well known fact from analysis:

Every continuous function f : Sn −→ R attains its maximum value at some point of Sn.

This is not a difficult result. It extends the result form calculus (often called extreme value theorem),
that a continuous function on a closed interval attains its largest and smallest value. To prove this fact
is a good exercise in calculus (it only requires the fact that a bounded sequence of real numbers has a
convergent subsequence).

We will apply this to the function f : U −→ R given by f(v) =< v, Tv >. Expressed in coordinates
x1, . . . , xn this is easily seen to be a polynomial function from Sn to R, hence continuous. Thus there
us u ∈ U such that f(u) is the largest value of f on U . Let W = {u}⊥. Choose any w ∈ W such that
||w|| = 1. Note that for any t the vector cos tu + sin tw is in U . Indeed

< cos tu+sin tw cos tu+sin tw, cos tu+sin tw >= cos2 t < u, u > + sin2 t < w, w > +2 sin t cos t < u, w > cos2 t+sin2 t = 1

since < u, u >= 1 =< w, w, > and < u, w >= 0. Let g(t) = f(cos tu + sin tw). Thus g(0) = f(u) and

g(t) = f(cos tu+sin tw) =< cos tu+sin tw, T (cos tu+sin tw) >=< cos tu+sin tw, cos tT (u)+sin tT (w) >

=< u, Tu > cos2 t+ < w, Tw > sin2 t + (< u, Tw > + < w, Tu >) sin t cos t.

Now g is a differentiable function of t and g(0) = f(u) is the largest value of g. This means that
g′(0) = 0. Since

g′(t) = −2 < u, Tu > cos t sin t + 2 < w, Tw > sin t cos t + (< u, Tw > + < w, Tu >)(cos2 t − sin2 t)

we see that 0 = g′(0) =< u, Tw > + < w, Tu >. Since T is self adjoin, we have < u, Tw >=<
Tu, w >=< w, Tu >. It follows that 2 < w, Tu >= 0. In other words, Tu is orthogonal to every vector
w in W of length 1. This implies that that Tu is orthogonal to every vector in W . Indeed, if v ∈ W
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then w = v/||v|| is in W and has length 1, so < v, Tu >=< ||v||w, Tu >= ||v|| < w, Tu >= 0. We see
that Tu ∈ W ⊥ = ({u}⊥)⊥ = span{u}. This means that Tu = λu for some λ. Thus we proved that

u is an eigenvector of T and therefore T has an eigenvalue.

This completes the proof of the symmetric matrix theorem. The fact that the the vector where f attains
largest value is an eigenvector of T has important geometric meaning, but we will not discuss it here.

Te symmetric matrix theorem tells us that if A is a symmetric n×n matrix then there is an orthonormal
basis v1, . . . , vn of R

n consisting of eigenvectors for A. If K is the transition matrix form the basis
v1, . . . , vn to the standard basis then K is an orthogonal matrix and K−1AK is diagonal. We often say
that A is orthogonally diagonalizable. Of course, we would like to have a procedure allowing us to find
K and the orthonormal basis v1, . . . , vn. It turns out that we can follow the same procedure we use to
diagonalize a matrix, with just a small modification. Here are the steps

• find all eigenvalues of A.

• for every eigenvalue λ find an orthonormal basis of the eigenspace V (λ) (this is the small modi-
fication, as we want the basis to be orthonormal). We can first find a basis of V (λ), then apply
Gramm-Schmidt process to get an orthogonal basis, and then normalize the vectors to get an
orthonormal basis.

• combine the orthonormal bases for each eigenspace. This will give you an orthonormal basis of
R

n consisting of eigenvectors for A.

We need to justify the claim in last step. It easily folows from the following result, which is of
independent interest.

Let T : V −→ V be self-adjoint. If v,w are eigenvectors of T corresponding to different eigenvalues,
then v ⊥ w.

Indeed, we have T (v) = av and Tw = bw for some scalars a 6= b. Now

a < v, w >=< av, w >=< Tv, w >=< v, Tw >=< v, bw >= b < v, w >

so (a − b) < v, w >= 0. Since a − b 6= 0, we have < v, w >= 0, i.e. v ⊥ w.
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